EUROGRAPHICS ITALIAN CHAPTER

PSP: Progressive Subdivision Paradigm for Large Scale
Visualization

R. Borgo,! R. Scopigno,! P. Cignoni,! and V. Pascucci,

2

! Visual Computing Group, Consiglio Nazionale delle Ricerche
2 Center for Applied Scientific Computing Lawrence Livermore National Laboratory

Abstract

The increasing rate of growth in size of currently available datasets is a well known issue. The possibility of devel-
oping fast and easy to implement frameworks able to visualize at least part of a tera-sized volume is a challenging
task. Subdivision methods in recent years have been one of the most successful techniques applied to the multi-
resolution representation and visualization of surface meshes. Extensions of these techniques to the volumetric
case presents positive effects and major challenges mainly concerning the generalization of the combinatorial
structure of the refinement procedure and the analysis of the smoothness of the limit mesh. In this paper we ad-
dress mainly the first part of the problem, presenting a framework that exploits a subdivision scheme suitable for

extension to 3D and higher dimensional meshes.

1. INTRODUCTION

Modern scanning devices, modelling systems and computer
simulations give rise to surface and volume of ever increas-
ing resolution. Real-time display and transmission of this
sheer amount of data is a challenging task requiring to gener-
ate approximations of minimal size with respect to given er-
ror bounds. To address these issues new data-streaming tech-
niques have been proposed mainly concerning progressive
processing and visualization. Techniques relying on subdivi-
sion paradigms to generate approximations of minimal sizes,
with respect to given error bounds, have made great pro-
gresses especially in the surface mesh visualization field.
Generalization of such techniques to the volumetric case is
not always straightforward. In this paper we present a new
approach that combines the flexibility of a progressive multi-
resolution representation with the advantage of a recursive
subdivision scheme. Our approach right now focuses on the
case where the multi-resolution representation of the volu-
metric data is based on the edge bisection refinement rule
widely used in mesh generation 10- 11,

2. PREVIOUS WORK

In the course of the paper we will refer mainly at isocontour
extraction and visualization in very large dataset. For rea-
son of space we need to abbreviate the section related to the
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state of the art of isosurface extraction techniques leaving
the reader to refer to the Bibliography for a more detailed
analysis. A very rich literature in isosurface extraction ex-
ists. Three main classes of algorithms can be identified. The
first one groups all those methods that overworked and im-
proved the well known Marching Cubes algorithm ¢; exam-
ples of accelerating techniques included the use of hierarchi-
cal data structures like octrees 14 and value decomposition
methods 12.5. A second class of isosurface rendering algo-
rithms refers to techniques that resembles the contour prop-
agation algorithms 7 of Pascucci et al.; these type of algo-
rithms identify a seed cell from which to begin the propaga-
tion, they end up with a sort of seed set covering the isovalue
range. The third class groups those algorithms that mainly
focus on the reduction of the number of triangles generated
during the isosurface extraction; belongs to this class the al-
gorithm proposed by Livnat and Hansen 4. The approach we
focus on belongs to the class of Subdivision Schemes intro-
duced by Pascucci ®. The approach adopted responds well to
three big issues typical of multiresolution approaches: ver-
tex proliferation (mainly dependent on the subdivision mask
adopted), efficient extraction of the refined surface, render-
ing in time-critical environment. The following section de-
scribes in details the mathematical rules at the base of our
refinement algorithm.
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3. Subdivision Scheme Description

The refinement scheme at the base of our framework follows
the edge-bisection refinement introduced by Rivara in !! and
Velho and Zorin in 13(4-8 or v/2 subdivision). Figures 1 (a-
e) show the subdivision scheme for a rectilinear grid, Fig-
ures 1(a’-e’) show the subdivision strategy applied to quadri-
lateral elements. The base mesh is a squared mesh divided
into triangles by bisecting each square at the middle of one
of the two diagonals; the diagonal selected for the bisection
is considered as “main diagonal”. Each generated triangle
is subdivided, at each refinement step, at the middle of its
longest edge. Each refinement is performed inserting a point
at the center of each square/rhombus and splitting the di-
amond into four triangles. Each pair of triangles adjacent
along an old edge are merged into a new square/rhombus.
In the next section we show how this procedures can be
generalized to the volumetric case. For the extension of the
scheme to 3D we organize the subdivision process into lev-
els and tiers (see 9). Each level [ has four tiers, from 0 to 3,
where tier 3 of level [ is coincident with tier O of level [ 41 .
This naming convention is used to maintain the comparison
with classical tensor product subdivisions that would refine
directly a mesh from tier O of level [ to tier O of level [ + 1.
In our scheme each refinement is a transition from tier i to
i+ 1. At tier 3 the level is increased by one and the tier is
reset to 0. We denote cells, facets, edges and vertices of the
generated grid with the symbols ¢;, fi, v;.

3.1. Subdivision Rules

In this section we analyze the geometrical aspect of our sub-
division scheme. The subdivision scheme is similar to the 2D
case described earlier in the paper. Extension of the scheme
to the 3D case augments the subdivision process of one step
indicated as tier 3. The following paragraphs analyze each
refinement step in details.

3.1.0.1. From tier 0 to tier 1. For each cell ¢; in the input
mesh its center p; is selected. The cell ¢; having n facets is
decomposed into n pyramidal cells by connecting the center
pi with all its facets. Let’s denote by p <1 f the pyramid built
by connecting p with a facet f. For each pair of cells ¢;,c;,
adjacent along a facet f, a new cell F is created by merging
the pyramid p; < f with the pyramid p; < f:

F=(pi<f)U(p;<f),

Figure 2 shows the construction of F' from c¢; and c;.

with f = ¢;Nc;.

3.1.0.2. From tier 1 to tier 2. Consider a cell F of tier 1
and its center g. Let g; be the facets of F' that do not belong
to tier O (for non-sharp F all the facets are of tier 1). We de-
compose F' into a set of pyramids each given by g < g;. If F
is a sharp cell, its center g is coincident with the center of
its facet f of tier 0. In this way we handle directly boundary
cases and 2-dimensional sharp features. Each pyramid g < g;
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Figure 1: 4-8 recursive subdivision. (a-e) Classical longest
edge bisection of a rectilinear grid. (a’-e’) Equivalent /2
subdivision where pairs of adjacent triangles are merged
into one square.

(a) )

Figure 2: 3D cell refinement from tier 0 tier 1. (a)The two
cells ¢y and c; intier 0. Their centers py and py are marked
with two crosses. Their adjacency facet f is highlighted in
gray. (b) The cell F of tier 1 (in gray) is the union of the
pyramids p1 < f and py < f.

contains exactly one edge e; of tier 0. After each tier 1 cell is
split all the pyramids incident to the same edge e are merged
into a cell E. All the cells built in this way form the mesh of
tier 2. Figure 3 shows the construction of one cell of tier 2.
The coarse mesh has four cells all incident to an edge e (Fig-
ure 3a). Four cells of tier 1 are built by merging pairs face
pyramids (Figure 3b). Each tier 1 cell is then decomposed
into four pyramids, of which we select only two incident to
e (Figure 3c). The eight pyramids selected (two per cell) are
finally merged into one cell E of tier 2, (Figure 3d).

3.1.0.3. From tier 2 to tier 3. As in the previous two steps
one determines the center r of any cell E. Each cell E is then
partitioned by joining r with each facet of E. As usual, for
sharp cells the point r should be considered as the center of e
and is shared among all the cells around e. The last merging
step is among cells that are incident both to a vertex v and a
cell center p. Figure 4 shows the construction of one cell of
tier 3 from a cell of tier 2.

3.2. Refinement Characterization

Given a mesh representation model it can be organized hi-
erarchically in terms of embedded entities that we call dia-
monds (with the term diamond we indicate a cell that can be
combinatorially partitioned into a set of simplices all shar-
ing an edge, called axis of the diamond, all the cells gen-
erated by our scheme are diamonds, for extended proof of
the assumption made see”). By construction, the topology of
such hierarchy is implicit to the diamonds themselves: from
its center, characterized by three index (i, j, k), it is possible
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Figure 3: Cell refinement from tier 1 to tier 2. (a) Four cells c,cy,c3 and c4 of tier 0 share, in pairs, the facets f1, f>, f3 and f4.
The edge e is shared by all facets f1, f>, f3 and f4. (b) Each facet f; generates a cell F;. (c¢) Each cell F; is decomposed into four
pyramids only two of which are selected. The selected pyramids are those containing the edge e. (c) All the pyramids containing

e are merged together to form the cell E of tier 2.

to derive tier, type, orientation and refinement level it rep-
resents, through simple mathematical rules it is possible to
identify its sons. Every point of the mesh can be reached
following our subdivision scheme. Traversals of the mesh
by means of our diamond hierarchy allows the extraction
of all the mesh related information: mesh data, range and
approximation error. Diamonds as entities do not really ex-
ists, only their centers exists. The regularity of the diamond
shape allows in fact to gather the diamond vertexes simply
adding a 3 constant to the center coordinates. Overworking
these properties we have developed a Progressive Subdivi-
sion Paradigm (PSP) oriented to the visualization of large
dataset. The following section describes the implementation
details of our PSP algorithm and data-structures.

4. PSP Framework

The Progressive Subdivision Paradigm (PSP) framework
corresponds to a level-of-detail approximation of a regular
data volume. Each level consists of a set of uniformly rep-
resented diamond-entities generated through recursive sub-
division of the volume and fusion of adjacent items follow-
ing a merging “diamond-generation” scheme. Any kind of
traversal of the multiresolution framework generates an ap-
proximation of the object volume corresponding to an error-
based simplification of the volume itself. Our multiresolu-
tion framework can be seen as a two phases process: a pre-
processing where auxiliary information (data, range, approx-
imation error) are extracted, and a rendering phase where
the mesh is traversed, at run-time, to extract the model un-
der appropriate constraints (view-dependent, adaptiveness,
error-based criteria). Input of the framework is a regular vol-
umetric dataset extended when needed to even dimension i.e.
V1) x 2V +1) x 2V +1).
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4.1. Pre-Processing Phase

Following the subdivision scheme the pre-processing phase
correspond to a formalization of the dataset with our sub-
division scheme. Initially the volume is subdivided through
a per-vertex adding process. The initial step consists of the
subdivision of the bounding volume introducing the vertex
corresponding to the center of the bounding box itself, each
successive step picks up new vertexes from the original vol-
ume and adds them continuing the subdivision process until
all vertices are added. Vertexes are added at each step follow-
ing a breadth first priority (BFP) policy. Through the subdi-
vision process we extract the data embedded in the volume
and calculate the range (min and max field values contained
in a diamond) belonging to each diamond. In a successive
step we traverse the volume in depth first order to compute
the approximation error belonging to each diamond. Results
are described in the following paragraph.

4.1.1. Data Organization

In the implementation of our framework we have decided
to organize all of the information inferable from the mesh
representation model in tables. We end up with three main
tables: data, range, field. Each table has dimension (ZN +
1) x (2V 4+1) x (2V 4 1), equal to the dimension of the vol-
ume, and access key equal to a function of the (i, j,k) in-
dexes of each diamond center. Filling of data and range ta-
bles can be done during the volume subdivision, a simple
min/max routine assures the nesting of the min/max ranges.
Because volume subdivision is performed following a BFP
policy, the complexity of the filling step is equal to the com-
plexity of a breadth first visit of a tree, linear in the num-
ber of cells/nodes. For computing the approximation error
an explicit representation of the hierarchy is needed. The er-
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Figure 4: Cell refinement from tier 2 to tier 3.

ror metric we adopt assures an overestimation of the error
introduced.

4.2. Rendering Phase

Extraction and refinement of the isosurface are executed at
runtime performing traversals of the mesh representation
model. Starting from the diamond cell of center coincident
with the bounding box of the entire model we proceed gener-
ating, following our subdivision rules, the sons needed. The
mesh can be traversed following a breadth first policy, to ob-
tain a rough but homogeneous approximation of the original
dataset, or a depth first policy allowing for selective refine-
ment of the original dataset. Only those cells intersecting the
isosurface are visited and eventually refined. Isosurface ex-
traction is performed during the traversal. Refinement of a
diamond is decided in function of error metrics (see Sec-
tion 4.2.2). The isosurface is extracted even if further refine-
ment is needed, this allows us to keep always a consistent
version of the model available and to render at any given
time partial results while the computation makes progress.

4.2.1. Isosurface Extraction

To perform the extraction we subdivide each diamond cell,
belonging to the level of refinement required, into tetrahe-
dra. In this way we have a piecewise linear representation
of the scalar field F (x) necessary to compute an isocontour
using the marching tetrahedra algorithm. Each isocontour is
updated within a single tetrahedron and then composed to
update the global isosurface within the set 7 of all tetrahe-
dra around the bisection edge.

4.2.1.1. Isosurface Extraction: Inheritance. The recur-
sive subdivision produces, by construction, a set of “par-
tially” embedded diamonds, partially because only a portion
of a diamond is embedded in each of its fathers and a dia-
mond embeds only a portion of each of its children. This spe-
cial embedding allows for each diamond to share with its fa-
thers and sons part of the isocontour it intersects. To exploit
this property and to avoid redundant calculation we have de-
cided to try to support the inheritance of shared vertexes
between diamonds: fathers pass to sons vertexes in com-
mon. Because there is no explicit representation of the hier-
archy produced by the subdivision process (as mentioned in
Sect 3.2 the topology of the refinement hierarchy is implicit
to the cells) to support vertex inheritance we need to explicit

Figure 5: Isovertex inheritance for a tierl diamond from its
two tier0 fathers. The diamond inherits exactly 12 vertexes,
8 from each father but 4 in common on the shared face.

the hierarchy for at least two levels of refinement: the one
of just refined diamond (i.e. diamonds belonging to refine-
ment level /), and the one of diamonds generated by the re-
finement (i.e. diamonds belonging to refinement level / + 1).
The two hierarchy levels are organized in a data-structure,
of only two levels, called Hierarchy Tree (HT). Each node
in HT stores diamond center, computed isovertexes and sons
position. The HT structure is used only at runtime. Support-
ing inheritance has gains and loss, advantages and disadvan-
tages of this choice are analyzed in sections 4.2.3 and 5.

4.2.2. Error Metrics

To measure the error introduced by approximating the ren-
dered model with low resolution level of details we adopt
two different error metrics: field space error ! (8) and screen
space error (p). Our field space error measure is an overes-
timation of the field space error computed between succes-
sive levels of refinement. The field space error is computed
traversing the hierarchy DT from bottom to top in the pre-
processing phase. The error of a diamond is the maximum
between its internal error and the error of its sons, this guar-
antees a correct propagation of the object space errors during
pre-processing. View-dependent algorithms projects object
space errors onto the screen generating a screen space error
p(8). Screen space error is simply a factor that amplifies the
object space error. It can be computed in function of the dis-
tance along the view direction of the objects from the point
of view. The most simple metric of this form can be written
as:

d;

e ()
[[p; —ell

Pi
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Dataset Size Pre-processing Time Dataset Resolution  IsoSurf. Extr.  IsoSurf. Extr.

(sec.) w/ Inh. w/o Inh.

Hipip 64 X 64 X 64 3.9 secs 60% 0.1 secs 0.3 secs.

Hipip (64%)  85% 0.4 secs 1.0 secs.

Hydrogen 128 x 128 x 128 10.5 secs 100% 0.9 secs 2.5 secs.

Table 1: Computational time required for the pre-processing 60% 0.4 secs 1.0 secs.

phase of the algorithm. Performances computed over the Hydrogen 85% 1.5 secs 4.6 secs.
HIPIP (64°) and the IDROGEN-ATOM datasets (1283). (1283%)

100% 3.9 secs 11.7 secs.

4.2.3. Memory Occupancy and Overheads

In our strategy we have decided to store all the mesh re-
lated information in tables. We have four main table: data
(IT), field value range(MT), error (ET) and flag (FT). Each
of them has size equal to the size of the mesh grid: (2V +
1) x (2¥ +1) x (2V 4 1). Tables requires storage and com-
putational time for filling. Let’s us analyze both aspects in
detail:

4.2.3.1. Storage Field values and errors are data that needs
to be stored besides any type of implementation. Range is an
information needed to be able to perform efficient isocon-
touring and, especially when dealing with of large meshes,
the possibility to discard cells, not intersecting the isocon-
tour, means lots of computational time saved during mesh
traversal. The regularity of the structures in which those data
are stored and the methods used for accessing the data makes
them suitable for partitioning and distribution on the type of
resources available.

4.2.3.2. Computational Time Table filling is one of the
heaviest operations we perform, for this reason it is restricted
to the phase of pre-processing. The only table “filled” (some
of its value are updated during the hierarchy traversal) at
run time is FT. Part of the memory is occupied by the Di-
amond Tree that we need to create for computing the error
approximation (but just in the pre-processing phase). This
structure is used only during the pre-processing phase. The
diamond tree (DT) is actually needed because of the error
metric adopted (Sect 4.2.2) that requires to easily move from
bottom levels to top levels of the hierarchy. In the present
context we can guarantee, keeping the hierarchy represen-
tation implicit to each diamond, an easy top-down traversal
of the hierarchy but not an equally easy traversal bottom-
up. In DT we store the least possible amount of informa-
tion (only center coordinates, 3 short for each center, and
pointer to the sons, 8 short in the worst case for each dia-
mond), for hierarchy construction, due to the regularity of
the subdivision, DT can be easily partitioned in blocks of
smaller size. Each block can be distributed to different pro-
cessors each of which can perform independently the error
calculation. The regularity of the subdivision mask applied
and the organization of the information in Tables allow us
at run-time to keep everything implicit in the diamond cells
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Table 2: Computational time required for the run-time phase
of the algorithm. Performances computed over the HIPIP
dataset (64%) and the IDROGEN-ATOM dataset (1283)

that require a very low footprint to be represented (3 short).
To access data in the tables we need only the center coor-
dinates of the diamond we are interested in (constant time).
The introduction of vertex-inheritance support causes as im-
mediate drawback an overhead in memory requirements for
what concerns the two level hierarchy structure HT. Nev-
ertheless the introduced overhead is worth compared to the
gain in terms of computational time saved. From the point of
view of computational time saved introducing this overhead
we avoid to recalculate for each diamond all the isosurface
vertexes it contains limiting the computation to those ver-
texes not in common/inherited from the fathers reducing the
operation of interpolation of a factor of 3. Results are shown
in Section 5.

5. Results

Our algorithm has been implemented in C** and developed
on both SGI and Windows platforms. Results have been car-
ried on a PC on a Windows 2000 Server platform, AMD
Athlon processor, 528Kb RAM, NVIDIA GeForce2. We
computed the performance of the algorithm on two datasets:
Hipip and IdrogenAtom of sizes 643 and 128> respectively.
Table 1 shows the time in seconds for the pre-processing
phase (tables filling, DT hierarchy construction procedures
and object space error measurement). Table 2 shows the time
in seconds for the Isosurface extraction for different values
of resolution required. Results obtained with introduction of
inheritance support are compared to results obtained with a
“plain” version of the algorithm. Fig. 6 and 7 show progres-
sive refinement of Hipip and IdrogenAtom obtained apply-
ing our algorithm with the inheritance paradigm active.

6. DISCUSSION AND FUTURE WORK

In this paper we have introduced a progressive algorithm and
data structures for time-critical and memory-critical isosur-
face extraction. Providing a set of local rules for continuous
geometric transitions (geomorphs) of one level of resolution
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Figure 7: Steps in a progressive isosurface computation from the volumetric HIPIP dataset, left to right.

into the next we keep the same advantages of a hierarchi-
cal data structure without the overhead of keeping explicit
the hierarchy structure. Our approach guarantees the genera-
tion of non-self intersecting surfaces while extracting adap-
tive levels of detail from the multi-resolution surface repre-
sentation. Exploiting the subdivision scheme properties we
can guarantee optimal time performance in isosurface ex-
traction in spite of a minimal memory overhead (inheritance
support). The regularity of the scheme makes our approach
well suited for the design of an efficient run-time data parti-
tioning and distribution algorithm to reduce the local mem-
ory requirement and overwork distributed environment po-
tentiality currently only approached. Our present work re-
gards performance testings of our paradigm to datasets of
large size, our future work will regard the application of our
technique in distributed environments and the development
of data-partitioning schemes optimal for our framework.
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