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1 Introduction

A number of approaches exist to support multi-resolution management: näıve
sub sampling, wavelet techniques, methods based on hierarchical space sub-
divisions (e.g. octrees), methods based on simplicial decomposition. The term
multi-resolution is often used to indicate either discrete or continuous level
of detail (LOD) representation. We will cover mostly the second aspect,
and therefore we point our attention to those methods that allow to man-
age selective refinements (or the inverse operation, i.e. selective coarsening)
in a dynamic manner, according to the interactive requests of the applica-
tion. Simplicial meshes have been often used in the visualization of volume
dataset. The simplicity of the basic cell allows to easily manage isosurface
extraction (field is linearly interpolated, no ambiguity) and to implement
in an efficient manner direct volume rendering (DVR) solutions. Moreover,
tetrahedral-based DVR solution can now be implemented using off-the-shelf
graphics hardware, gaining impressive speed-ups with respect to software so-
lutions. Therefore, simplicial decompositions have been often considered in
the design of multi-resolution methods, not only because easy to render but
also because they easily adapt to different shapes or to the data field struc-
ture/topology. This paper presents an overview and a comparison of the dif-
ferent approaches based on multi-resolution simplicial decomposition, which
have been proposed in the context of volume visualization. We subdivide
the existing methods in two main classes, which depend on the refinement
kernel used to manage the selective refinement/coarsening: regular or irregu-
lar. Regular techniques starts from a coarse irregular base domain and apply
recursive regular refinement, resulting in large meshes organized as uniform
grid patches. Irregular techniques are independent from the topology of the
underlying mesh and as consequence during the refinement procedure new
vertices can be inserted at more convenient locations instead of predefined
positions; not being forced to follow a regular subdivision scheme irregular
techniques result to be more flexible and suitable to resolve complex geomet-
ric features and geometry changes.
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2 Using Irregular Refinement Techniques

As introduced in the previous section, multiresolution models for generic
tetrahedral meshes has evolved to manage set of level of details in a more
flexible, efficient and compact way. The main idea behind these methods is
to exploit, in some way, the information that can be collected during the
simplification of a volume dataset. The assumption is that we use an iter-
ative simplification algorithm that progressively reduces/refines the dataset
by means of small local operations. This sequence of small modifications is
organized in a structure that encodes all the temporal dependencies among
themselves and makes it possible to apply backward the small modifications
in a different order. In this way is possible, for example, selectively refine, or
simplify, only certain portions of the domain, according to the user needs.
These techniques are therefore strongly related with multiresolution and
simplification techniques for generic three-dimensional surface meshes where
those ideas were firstly developed (see, e.g., [10] for a survey of surface mul-
tiresolution). For this reason in the next section we shortly review the existing
techniques for the simplification of a tetrahedral complex.

2.1 Simplification of a simplicial complex

One of the first approaches to the construction of a simplified representation
of a tetrahedral dataset was proposed in [3]; it exploits a basic coarse-to-
fine refinement strategy, an early technique developed in the two-dimensional
case and widely used for approximating natural terrains [7, 11]. An on-line
algorithm for Delaunay tetrahedralization is used together with a selection
criterion to refine an existing Delaunay mesh by inserting one vertex at a time.
The selection strategy at each iteration is aimed to refine the tetrahedron
that causes the maximum warping/error in the current approximation: this
is obtained by selecting the datum vmax corresponding to the maximum error
as a new vertex. After a point is added to the dataset, the tetrahedron that
contains it is split and a sequence of flipping actions (see Fig. 1) is performed
until the resulting mesh satisfies the Delaunay criterion.
This refinement procedure always converges since the number of points in V
is finite; total accuracy is warranted when all of them are inserted as vertices
of Σ.
This approach is limited to datasets whose domain is convex, because the
result of a Delaunay tetrahedralization is always convex. We have proposed
the extension of this approach in [5] to deal also with non-convex curvilin-
ear datasets; in this case the Delaunay tetrahedralization is computed in the
computational domain (i.e. the underlying grid), while its image through lift-
ing gives the corresponding mesh in the physical domain.

The vertex insertion method described above is difficult to adapt to the case
of generic non-convex irregular datasets. Major difficulties arise in finding
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Fig. 1. A tetrahedra split, due to a new vertex selection and insertion in the
mesh (top image); the two classes of tetrahedra flip actions: the 2 to 3 flip, which
produces three cells out of two (center image); the 3 to 2 flip, needed when the two
tetrahedra present a non convex union (a), and a third cell (b) has to be included
in the flip action.

an initial coarse mesh to approximate the original domain Ω of the dataset
and in the estimation of warping. Delaunay triangulation is not applicable
to non-convex polyhedra; moreover even if we have an approximation of the
boundary of the starting domain finding a tetrahedralization of this polyhe-
dron, without adding new points, is an NP-complete problem [19].
Experience in the approximation of non-convex surfaces through 2D triangu-
lar meshes suggests that a decimation technique might be more appropriate to
the case of non-convex irregular volume datasets (see, for example, [1,12,20]).
Similarly for the 2D surface case in the decimation approach we start from the
reference mesh Γ , and vertices are iteratively discarded as long as the error
introduced by removing them does not exceed a given a accuracy threshold.
Gross and Staadt [21] present a simplification technique based on collapsing
an edge to an arbitrary interior point, and propose various cost functions to
drive the collapsing process. Cignoni et al. [5] propose an algorithm based
on collapsing an edge to one of its extreme vertices (called half-edge collapse
see Fig. 2), in which the simplification process is driven by a combination of
the geometric error introduced in simplifying the shape of the domain and of
the error introduced in approximating the scalar field with fewer points. This
approach has been extended in [2] by defining a framework for the unified
management of the two errors (related to geometric domain and scalar field)
and by proposing some techniques for an efficient evaluation and forecast of
such errors.
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Fig. 2. Half-Edge collapse in 2D: (a) a valid collapse; (b) an inconsistent collapse.

In fact, selecting a vertex to be removed involves an estimation of the amount
of field error and geometric domain error due to the removal: the criterion usu-
ally adopted is that the vertex causing the smallest increase in error/warping
should be selected at each iteration. An exact estimation of the change in
error and warping can be obtained by simulating deletion of all vertices in
the current mesh. This would be computationally expensive, since each ver-
tex has 24 incident tetrahedra on average. This may involve relocating many
points lying inside such tetrahedra. We prefer to use heuristics to estimate
apriori how a vertex removal affects error and warping. Such an estimation
is computed for all vertices before decimation starts, and it is updated for a
vertex each time one or more of its incident tetrahedra change.
Trotts et al. [22] perform half-edge collapse as well. They control the quality
of the simplified mesh by estimating the deviation of the simplified scalar
field from the original one, and by predicting increase in deviation caused by
a collapse. They also provide a mechanism to bound the deformation of the
domain boundary.
Another approach for the simplification of generic simplicial complexes, called
Progressive Simplicial Complex (PSC), has been proposed by Popovic and
Hoppe [16], as an extension of the Progressive Meshes (PM) model [12]. The
PM models are based on the simplification of a mesh with a sequence of edge-
collapse transformations, this sequence of operations is encoded in the PM
structure. Given a PM, a mesh can be reconstructed by applying, in the right
order, a series of vertex-split transformations (the reverse of edge-collapse).
The PSC codifies in a similar manner the sequence of more general edge-
collapse transformations. It should be noted that while the PSC are quite
general, they have been conceived for the management of possibly degen-
erated 2D surfaces rather than simplicial complexes representing a volume
dataset, so the conditions of legality of a sequence of vertex-split operation
of a generic complex are not specified, and the problem of evaluating the
approximation error introduced in the volume field representation is not con-
sidered.

2.2 From simplification to Multiresolution Models

In this section we introduce the framework of multiresolution simplicial mod-
els (MSM) introduced by De Floriani, Puppo and Magillo [8] as a multidi-
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mensional extension of the two dimensional structure described by Puppo
in [17].

Definitions Let S be a finite set. A partial order on S is an antisymmetric
and transitive relation < on its elements. A pair (S,<) is called a partially
ordered set (poset). For every s, s′ ∈ S with s <′ s we mean that s < s′

and @s′′ such that s < s′′ < s′. A subset S′ ⊆ S is called a lower set if
∀s′ ∈ S′, s < s′ ⇒ s ∈ S′. Intuitively S′ is a lower set if it contains all
the elements that precede each of its elements. The algebraic structure of a
poset (S,<) can be described by a direct acyclic graph (DAG), where nodes
represent elements of S and arcs encode the <′ relation. For any s ∈ S the
set Ss = {s′ ∈ S|s′ ≤ s} is the smallest lower set containing s and it is called
the down-closure of s. The sub-closure of s is defined as S−s = Ss\{s}.
We call any finite set of d-simplexes in IEn a d-set; a regular d-simplicial
complex Σ is completely characterized by the collection of its d-simplexes
i.e. by the d-set associated with Σ.
When managing a collection of representation of the same complex at dif-
ferent resolutions, as done in the previous section, we need a measure of the
error we commit. With µ(σ) we denote a function µ : Σ → [0, 1] measuring
this error, µ(0) means exact representation. With µ(Σ) we denote the max-
imum error among all the tetrahedra of Σ: maxσ∈Σ µ(σ). Operators. We
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Fig. 3. The DAG describing a simple two-dimensional MSM.

define two operators on d-sets: the interference operator ⊗ and the combina-
tion operator ⊕. Both operators take two d-sets as arguments and produce a
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d-set. The interference operator of two d-sets is defined as:

Σi ⊗Σj = {σ ∈ Σi|∃σ′ ∈ Σj , i(σ) ∩ σ′ 6= ∅}

In other words, the interference of two d-sets Σi, Σj is the set of the simplexes
of Σi that have a proper intersection with some simplexes of Σj .
The combination operator of two d-set is defined as:

Σi ⊕Σj = Σi\(Σi ⊗Σj) ∪Σj

In other words, the combination of two d sets Σi, Σj is the set of the simplexes
that can be obtained by adding to Σj the simplexes of Σi not interfering with
Σj .
If Σi ⊕Σj is a d-simplicial complex and ∆(Σi ⊕Σj) = ∆(Σi)∪∆(Σj), then
the complex Σj it is said to be compatible over Σi.
Let [Σ0, . . . , Σk] be a sequence of d-complexes. the combination ⊕k

i=0Σk is
defined as:

– if k = 0 then ⊕0
i=0Σk = Σ0

– if k > 1 then ⊕k
i=0Σk = (⊕k−1

i=0 Σk)⊕Σk

Multiresolution Simplicial Model A Multiresolution Simplicial Model
(MSM) on Ω is a poset (S, <), where S = {Σ0, . . . , Σh} is a set of d-complexes
and < is a partial order on S satisfying the following conditions:

1. ∆(Σ0) = Ω,
2. ∀i, j = 0..h, i 6= j,,

a) Σi <′ Σj ⇒ Σi ⊗Σj 6= ∅
b) Σi ⊗Σj 6= ∅ ⇒ Σi is in relation with Σj

3. the sequence [Σ0, . . . , Σh] of all complexes of S defines a consistent order
w.r.t. relation < and [Σ0, . . . , Σh] is a compatible sequence.

The meaning of the second condition becomes clearer if we consider the DAG
encoding relation <′ for the set S:

– if two complexes Σi and Σj are connected by an arc, they are interfering;
– if two complexes Σi and Σj interfere then they are connected through a

path.

The elements of S are called components or fragments; intuitively the frag-
ments describe a portion of the domain Ω at a certain resolution. For example,
if we think to an iterative refinement procedure on a simplicial mesh, the set
of simplexes, derived from the substitution of a complex with a more re-
fined one, can be considered as a fragment that is combined over the existing
complex. Combining a lower set of S give us a complete description of Ω at
various resolutions.
The following properties holds for MSM’s:

Lemma 1. Σ0 is unique minimum element of (S, <).
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In other words Σ0 is the starting coarsest complex. Given any subset S ′ ⊆ S
the total order of its elements consistent with the sequence [Σ0, . . . , Σh] is
called the default order of S ′.
Lemma 2. The default order of any lower set S ′ ⊆ S is a consistent order.

Lemma 3. In a MSM (S, <), the combination of a lower set S ′ ⊆ S is
independent of the specific consistent order.

Since the combination obtained from any consistent order is unique, it will
simply called the combination of S ′ and denoted with ⊕S. Let Σi be a com-
ponent of (S, <); the combination of the subclosure S−Σ is called the support
of Σi; the set of the simplices of the support that are interfering with Σi,
(⊕S−Σ )⊗Σiis called the floor of Σi.
The following definitions permit us to consider a particular class of MSM’s
where the order relations provide control over the size in terms of number of
simplexes. A MSM (S, <) is increasing if and only if for every pair of lower
sets S ′,S ′′ holds: (S ′ ⊂ S ′′ ⇒ |⊕S ′| < |⊕S ′′|. Similarly is defined the concept
of decreasing MSM; an increasing or decreasing MSM is said monotone. In
other words a MSM is increasing (decreasing) if and only if the size of each
fragment is larger (smaller) than the size of its floor.
In Figure 3 is shown a simple multiresolution simplicial model for the two
dimensional case; the arrows in the figure correspond to the relation <′.
The fragments of a MSM can be used to build different triangulations of
the domain Ω through the paste operator. The intuitive meaning of the <
relation is of dependence between the pasting of the fragments: if we use a
fragment Σi in a triangulation then all the fragments Σj < Σi must also be
used.
In Figure 4 is shown the triangulation resulting from the pasting/combination
of a subset S ′ of fragments in a consistent order Σ0, Σ2, Σ3, Σ4, Σ7; note that
any other consistent order of pasting of S ′ (like Σ0, Σ3, Σ2, Σ4, Σ7) builds
the same triangulations.

2.3 MSM for Volume Visualization

Each simplification algorithm described in Section 2.1 can be used to build a
MSM. Both a decimation or a refinement algorithm for simplifying a tetra-
hedral complex can be regarded as producing an “historical” sequence of
tetrahedra, namely all tetrahedra that appear in the current mesh Σ during
its construction. An historical sequence can be also viewed as the sequence
of all subdivisions of the whole domain that are obtained through changes,
or as an initial subdivision plus a sequence of fragments reflecting the local
changes iteratively done to the mesh, i.e. subdivisions of portions of the do-
main, which can be partially overlapping and are pasted one above the other
to update the existing structure.
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Fig. 4. A subset S ′ ⊂ S combined in a consistent order builds a triangulation

For example, if we follow the refinement heuristics, the minimum of the poset
is the starting coarse triangulation; when we insert a new point vi in the
complex the new tetrahedra that are built form a new fragment Σi; the floor
of this fragment is constituted by the tetrahedra that were destroyed by the
insertion of vi.
Following the MSM all these fragments, represented by a tetrahedral complex
covering a small part of the whole domain Ω, are arranged in a poset where
the order relation between fragments is dependent on their interferences in 3D
space. The minimum fragment Σ0, the coarsest representation of our mesh,
has an empty floor. Similarly all the triangles on the top of S, representing
the dataset at its full resolution, have no upper fragments.
A simple data structure to encode a generic MSM was presented in [6]; in [4] a
much more compact data structure has been proposed for a three-dimensional
tetrahedral MSM built based on a sequence of general edge collapses; this
structure, customized to the needs of volume visualization, requires three
times less storage space with respect to a simple indexed data structure en-
coding the original mesh at full resolution, and 5.5 times less space than a
data structure for the original mesh encoding both connectivity and adja-
cency information (as required, e.g., by direct volume rendering algorithms
based on cell projection).
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2.4 Extracting a variable resolution model

The algorithm for the extraction of a variable resolution model here presented
are a straightforward extension to tetrahedral complexes of the one presented
in [17]. We suppose that our MSM is monotone, to extract a variable reso-
lution model we need a boolean acceptance function c(σ) in order to decide,
for a given tetrahedron, if its accuracy is sufficient or if we need to further
refine that part of the domain.
The algorithm for the extraction of a variable resolution model tries to incre-
mentally build the desired solution by adding new fragments to the current
solution. The algorithm is based on a breadth-first traversal of the DAG rep-
resenting the MSM. The traversal starts from the coarsest fragment Σ0, root
of the DAG, and fragments above the current solution are progressively tra-
versed and marked. The current solution is maintained as a list of tetrahedra
ΣOut. For each fragment Σ that we encounter in the traversal of the tree,
the following two loops are executed:

– we search for fragments before Σ, still not visited and, if found, they are
added to the traversal queue Q. All the fragments before Σ can be found by
checking, for each tetrahedron σ ∈ Σ, if the corresponding lower fragment
Lower(σ), has been marked.

– for each tetrahedron σ ∈ Σ, if it satisfies the acceptance function c(σ) then
σ is added to the current solution, else we add the upper fragment of σ to
the traversal queue Q and mark it to be removed from the solution.

The correctness of this algorithm has been proved in [6].

3 Using Regular Refinement Techniques

Within regular subdivision the world is divided if not into equal sized voxel
at least into regular shaped entity following a recurrent pattern. Simple
mathematical rules withhold the basis of a subdivision scheme that is ap-
plied in a recursive manner.The adoption of a predefined rule to perform
the subdivision introduces some constrains on the topology of the local re-
gion to be refined/simplified, and in effect this type of approach adapts
just to regular dataset. Initially, this approach has been proposed for ter-
rain data represented by gridded [9], and then been extended to represent
voxels dataset with a simplicial decomposition constructed via a regular sub-
division rule [13, 14, 23]. Essentially the refinement heuristic consists of a
uniform recursive subdivision of the volume data, driven by a set of sim-
ple mathematical rules that guarantee a progressive update of the accuracy
of the intermediate representation in an error-controlled manner. The sub-
division process in general starts by subdividing the bounding box of the
volume (i.e. a single hexahedral cell) in simplicial cells. The subdivision pro-
ceeds recursively and can be described either as a vertex-adding process or,
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analogously, as a cell subdivision process. Each step picks up a vertex from
the original volume and divides the cell containing it (or a group of adja-
cent cells) in two (or more) simplicial cells. Because of the regular and hence
predictable parametric structure of the regular refinement, these techniques
always generate meshes with bijective mapping between the coarsest levels
and the finest levels. Therefore, going from fine/coarse to coarse/fine levels
correspond in executing a regular fusion/subdivision of simplices allowing for
smooth and continuous changes between different levels of details. Recur-
sive subdivision schemes automatically achieve hierarchical multi-resolution
representations, hence, regular refinement techniques guaranteeing an almost
everywhere regular structure allows for efficient tree based data structures
organization with higher performances on modern processors. The beauty
of regular refinement techniques basically lies in their elegant mathematical
formulation and in the simplicity of the rules for generating different repre-
sentations. In the next paragraph we introduce in detail some of the main
contribution in the field of regular refinement techniques.

3.1 Refinement of Tetrahedral Grids

Regular subdivision scheme allows for the organization of the space of the
data in a hierarchical manner. As the subdivision proceeds a more detailed
version of the surface is produced causing each level of the hierarchy to hold
implicitly a multi-resolution organization of the dataset itself. A hierarchical
organization of the dataset allows as primary consequence for a selective
traversal of the representation and indeed fast construction of adaptive levels
of detail. For what concern volume visualization not many attempt has been
tried to accomplish good balance between efficient subdivision techniques and
easiness of implementation. Techniques for tetrahedra bisection mostly recall
similar patterns of subdivision, for this reason we have individuated three
principal contribution in the area of regular volume refinement techniques
based on simplicial complexes.
As first work we introduce the one from Plaza and Carey [15] in which re-
finement and conformity are protracted together.

Definitions Skeleton. Let Ω be a bounded set in Rnwith non empty interior
and τ an n-simplicial mesh of Ω. The set skt(τ) = {∂(ti) : ti ∈ τ} will be
called skeleton or (n-1)-skeleton of τ with ∂ being the boundary in Rn. The
skeleton of a tetrahedralization in 3D dimensions is comprised of the faces of
the tetrahedra, in 2D is the set of edges of the triangles and in 1D it is the
set of the points which define the partition into segments.
Edge bisection. Let S =< X0, X1, . . . , Xn > be an n-simplex in Rn, with
edge < Xk, Xk′ > having midpoint A = (Xk + Xk′ )/2. Then two new
simplices S1 =< X0, . . . , Xk−1, A,Xk+1, . . . , Xk′ , . . . , Xn > and S2 =<
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(a) Starting TRiangle
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Fig. 5. 2D version of the 4T Rivara’s algorithm

X0, . . . , Xk, . . . , Xk′−1, A,Xk′+1, . . . , Xn > may be formed such that the in-
teriors are disjoint and S = S1 ∪ S2. This defines a subdivision of S by edge
bisection.

Refinement of Tetrahedral Grids: Plaza and Carey Technique Plaza
and Carey’s starting point is a modified version of the 4T algorithm from
M.C. Rivara [18]. In 2D such techniques can be seen as triangle refinement
based on a longest edge bisection criteria and works as follows.
Considering a generic triangle t, the 4T algorithm divides t in 4 new trian-
gles as in Fig. 5. The subdivision consists of two steps showed respectively in
Fig. 5b-c. In the first step a selection of the longest edge of the triangle t is
performed and the triangle is bisected in two halves by the line joining the
bisection point and the “opposite vertex”. The second step proceeds with the
subdivision of the triangles produced in step 1 following the same bisection-
criteria as for the original triangle.

The 4T algorithm is used by Plaza as refining technique of what is called
“skeleton” of the mesh to be refined. A point worth noting is that to guaran-
tee the conformity of the mesh Plaza induces the subdivision of all simplices
that contain the bisected edge.
The 3D version of the 4T algorithm applies to tetrahedral meshes in the same
way the 4T algorithm applies to triangular meshes.
Let Tn = {τ1 < τ2 < . . . < τn} be a sequence of nested three dimensional
grids with τ1 be the initial mesh and τn the finest mesh in the sequence, τn+1,
with τn < τn+1, is generated applying a 2-dimensional refinement algorithm
to the skeleton of τn. The algorithm works as follows:

• Step 1: all the t ∈ τn that need to be refined are selected;

• Step 2: a node is added at the midpoint of each edge of each selected t;
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• Step 3: the conformity of each t ∈ τn is checked. If a t is non-conforming a
node is added at the midpoint of the longest-edge of each non-conforming
face of t and also to the midpoint of the longest edge of t;

• Step 4: each t ∈ sktτn is subdivided by the 4T algorithm of Rivara;

• Step 5: each t ∈ τn is properly subdivided,

(a) Starting mesh. (b) Steps 1 and 2

(c) Step 3: checking conformity (d) Step 4: skeleton disvision

(e) Step 5: division in terahedra

Fig. 6. Application of the 3D algorithm

the result produced can be seen in 6e.

In Plaza’s algorithm the most difficult case is represented by the presence
of regular faces or elements, in this case further heuristics need to be formal-
ized: the first edge in which has been introduced a node for division is chosen
as the longest edge of the face/element. This kind of choice avoids breaks
in the refinement area and limits the growth of the subdivision because of
required conformity. The five steps of the algorithm are showed in Fig. 6.
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As second contribution we decided to introduce a work from Zhou et al. [23].
Quite different from Plaza’s algorithm, Zhou work still adopts a longest edge
bisection criteria approach to perform the subdivision of the volume.

Refinement of Tetrahedral Grids: Zhou, Chen and Kaufman Tech-
nique Starting point of Zhou’s algorithm is the bounding box of the volume
seen as a cube with faces parallel to a coordinate plane. The bounding box
is subdivided into tetrahedra. The center of the box is added to the volume
and connected to all the 8 vertices forming 6 pyramids. Each pyramid can
be easily divided into two tetrahedra by connecting the diagonal of the base
face generating 12 tetrahedra. After this initial step the algorithm proceed
as a regular scheme for tetrahedra subdivision. Each produced tetrahedra is
recursively subdivided adding a midpoint to its longest edge and connecting
the new vertex with the opposite one lying on the “base” face. The tetrahedra
generated by the subdivision can be grouped in three main classes:

• Class 1 cell: there is only one face parallel to a coordinate plane and there
exists only one edge l of the face not parallel to any coordinate axis;

• Class 2 cell: there is only one face parallel to a coordinate plane and there
exists only one edge l of the face parallel to a coordinate axis;

• Class 3 cell: there are only two faces parallel to coordinate planes (the edge
that does not belong to any of these two faces is denoted by l).

A

BC

D

A B
C

D

A
C

D

B

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 7. Types of tetrahedra generated by the subdivision.

Figure 7 depicts the three classes just described. Edge AB of tetrahedron
ABCD correspond to edge l. In each different case the midpoint of corre-
sponding edge l is selected as the dividing point. In Fig. 8 is shown the
entire subdivision process. After a few steps in which the cube subdivi-
sion is performed the cycle ends with 12 tetrahedra all belonging to Class
1 (Fig. 8c), that subdivided during step 3 produce tetrahedra belonging to
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(a) Starting step (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

Fig. 8. Cube subdivision by Zhou et al.

Class 2 (Fig. 8d) that subdivided again during step 4 of the subdivision pro-
cess produce tetrahedra belonging to Class 3 (Fig. 8e). After the subdivision
of Class 3 tetrahedra the configuration recursively returns to Step 2. It is
worth noting that each type of tetrahedra belongs to a different step of the
subdivision process and that the overall process has a cyclic behavior.

Third and last contribution is the one from Pascucci and Borgo that in-
troduces a subdivision schema recalling the one from Zhou et al. but that
differs deeply in the subdivision structure.

Refinement of Tetrahedral Grids: Pascucci Technique As for Zhou
et al. the starting point of Pascucci [13] techniques is the volume bounding
box, a cubic cell, divided in function of its center. The center of the box is
added to the volume and connected to all the 8 vertices forming 6 pyramids.
Pascucci do not divides the cube into tetrahedra instead he considers the
new entity formed by the six pyramids, generated by the subdivision, with
the pyramids generated by adjacent subdivided cubes (Fig. 10b). This new
entity corresponds to an hexahedral shaped cell characterized by a center
that corresponds to the center of one of the faces of the cube. The center
of the hexahedra is added to the volume and connected to all the 6 vertices
dividing the cell into six tetrahedra. This six tetrahedra correspond each to
the eighth part of different octahedral shaped cells whose centers correspond
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B

A

B

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 9. Cell types.

to the midpoints of the cube edges (Fig. 10c). The cell generated by the
subdivision can be grouped in three main classes:

• Class 1 cell: the cell is cube shaped;

• Class 2 cell: the cell is hexahedral shaped and can be oriented along x, y
or z axis;

• Class 3 cell: the cell is octahedral shaped and can be oriented along x, y or
z axis;.

Figure 9 depicts the three classes just described. Each cell is characterized by
a center that correspond to the midpoint of edge AB, longest edge of the cell.
The midpoint of AB is always selected as the dividing point and correspond
respectively to the center of the cube (Step 1 Fig. 9b), to the center of the
cube faces (Step 2 Fig. 9d) and to the midpoint of the cube edges (Step 3
Fig. 9f). In Fig. 10 is shown the entire subdivision process summarized in
three steps. The subdivision of Class 1 cells (Fig. 10a) produces cells belong-
ing to Class 2 (Fig. 10b) that subdivided again produce tetrahedra belonging
to Class 3 (Fig. 10c). After the subdivision of Class 3 cells the configuration
recursively returns to Step 1.
Like Zhou subdivision each type of cell belongs to a different step of the sub-
division process and the overall process has a cyclic behavior. The difference
between the two approaches relies mainly in the cell shape and in the way
a cell can be identified. Point worth noting of Pascucci approach is in the
fact that to characterize a cell (i.e. type, orientation and refinement level it
belongs to) he just need to know its center.

All the approaches presented work under a politics of per-vertex adding pro-
cess. The subdivision process is always recursive and ends when no more
refinement is needed or if all the vertexes belonging to the mesh has been
added. As mentioned before the regularity of the processes allows for an or-
ganization of the results in hierarchical data structure suitable of efficient
LOD’s extraction and adaptive traversal.
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(a) Starting step

(b) Step 1

(d) Step 3

(g) Step 6      Step 1

(c) Step 2

(e) Step 4

(f) Step 5

Fig. 10. Cube subdivision by Pascucci et al.
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4 Comparative Evaluation

A comparative evaluation of the two techniques is not straightforward. Both
approaches present strength and weakness on different sides. To perform an
effective evaluation we have then identified six main point of interest that
visualization techniques are required to satisfy in the best possible way.

– adaptivity: with adaptivity we indicate how well each approach is able
to produce different resolution representation of the initial model, which
either can be: (a) give a good approximation of the dataset shape or (b)
give a good representation of the field distribution encoded in the initial
pointset. Irregular techniques allow for better adaptivity due mainly to the
freedom in the choice of the best suitable pattern for refinement purpose.
In passing form high resolution to low resolution, and vice-versa, the area
on which irregular techniques needs to operate the update can be restricted
to a quite small number of tetrahedra. Regular techniques instead need to
propagate the change to a wider area because in most cases those type of
techniques allows for at most one level of difference in the refinement of
adjacent cells.

– flexibility: with flexibility we indicate to what extent each method allows to
change the parameters used to define the simplification criterion. This is a
critical feature for what concern the visualization of datasets with multiple
field values like, for example dataset coming from fluidodynamic simula-
tions, in which more than parameters (pressure, temperature) influences
the error-based refinement. Regular techniques suit better the possibility
of changing refinement constraints at dynamic level. The regular pattern
on which relies the overall refinement hierarchy allows if needed for fast up-
date of the hierarchy itself. In irregular techniques instead the construction
of the refinement “patterns” is error-driven so a changing in the refinement
parameters, at dynamic time, requires to start the all refinement process
from scratch.

– data access: with data access we indicate how well data can be organized
in memory to allow for efficient data access. Irregular techniques require
random access to the data on disk, on the contrary regular techniques can
be easily organized in memory in such a way that guarantees locality in
memory access especially during refinement actions known only at run-
time.

– space complexity: with space complexity we indicate how well data can be
organized in memory to allow for efficient storing. The adoption of a regular
schema obviously allows for an efficient representation of the schema itself.
With regular techniques it is possible to avoid an explicit representation
of the topology of the mesh or piece of mesh under refinement and often
also of the . Irregular techniques requires instead an explicit representation
also of the interdependency relationships that exists between the elements
that make up the multiresolution structure.
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Adaptivity Flexibility Data Access Space Complexity
Regular bad bad good good
Irregular good good bad bad

Two more point of analysis worth to be mentioned would be the implementa-
tion easiness and adaptability to different type of datasets. Referring to eas-
iness of implementation it would seem that implementation and debugging
of techniques based on regular approaches should be preferable nevertheless
reality shows to be different. As the depth of the refinement augment, even
on dataset Mega sized, the structural complexity of the refinement structure
grows exponentially both for the regular and irregular case making quite hard
any debugging attempt in both of the approaches. For what concern adapt-
ability irregular techniques show to be more flexible. Regular techniques in
fact performs well only on regular datasets and result to be difficult to gen-
eralize to irregular ones. Re-sampling an irregular dataset on a regular grid
is not convenient for several reason. It is common that the ratio between the
sizes of the smallest and the largest cell in such a dataset is about 1 : 10, 000,
and large cell may lay in any position across the domain. This would require
an adaptive re-sampling strategy that often makes it hard using standard
techniques peculiar to the regular case. Second most irregular datasets have
non-convex domains and the regular grid should properly contain the orig-
inal data domain. In this case the field has good chances to have a sharp
discontinuity cross the boundary of such domain since it is unknown outside
the boundary.

5 Conclusions

In this work we have addressed the problem of efficiently managing large
volume datasets using multiresolution structure based on regular and irreg-
ular techniques. We have presented the main contribution currently present
in literature and analyzed strength and weakness of both the approaches.
We have seen how irregular techniques, at expense of a more complex struc-
ture, suit better approximation and refinement of any kind of dataset while
regular techniques mainly allows for efficient refinement of regular datasets.
On their side regular techniques deals better with all the issues arising from
the necessity of working in out-of-core. The adoption of regular subdivision
pattern allows for efficient data organization to improve memory occupancy
and efficient access policy to secondary memory properties of prime impor-
tance in the visualization of very large datasets. Visualization results from
both techniques are considerable even if irregular techniques perform better
on adaptive refinement while regular techniques deals better with change of
critical refinement constraint. Both approaches have been resulted valid for
specific kind of problems it is still not possible to formulate a unique judge-
ment of quality that could prefer one approach against the other neither this
has ever been primary focus of this work.



Title Suppressed Due to Excessive Length 19

References

1. A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno, Multiresolution deci-
mation based on global error, The Visual Computer 13 (1997), no. 5, 228–246.

2. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, Simplifi-
cation of tetrahedral volume with accurate error evaluation, Proceedings IEEE
Visualization’00, IEEE Press, 2000, pp. 85–92.

3. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno, Multires-
olution modeling and rendering of volume data based on simplicial complexes,
Proceedings of 1994 Symposium on Volume Visualization, ACM Press, October
17-18 1994, pp. 19–26.

4. P. Cignoni, Paola Magillo, Leila De Floriani, Enrico Puppo, and R.Scopigno,
Memory-efficient selective refinement on unstructured tetrahedral meshes for
volume visualization, IEEE Transactions on Visualization and Computer
Graphics 8 (2002), no. 3, To appear.

5. P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Multiresolution model-
ing and visualization of volume data, IEEE Transactions on Visualization and
Computer Graphics 3 (1997), no. 4, 352–369.

6. L. De Floriani, P. Magillo, and E. Puppo, Building and traversing a surface at
variable resolution, Proceedings IEEE Visualization 97 (Phoenix, AZ (USA)),
October 1997, pp. 103–110.

7. L. De Floriani and E. Puppo, Hierarchical triangulation for multiresolution
surface description, ACM Transactions on Graphics 14 (1995), no. 4, 363–411.

8. L. De Floriani, E. Puppo, and P. Magillo, A formal approach to multiresolution
modeling, Theory and Practice of Geometric Modeling (R. Klein, W. Straßer,
and R. Rau, eds.), Springer-Velrag, 1997, (to appear).

9. M. Duchaineau, Murray Wolinshy, David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein, ROAMing terrain: Real-time opti-
mally adapting meshes, Proceedings of the 8th Annual IEEE Conference on
Visualization (VISU-97) (Los Alamitos) (Roni Yagel and Hans Hagen, eds.),
IEEE Computer Society Press, October 19–24 1997, pp. 81–88.

10. L. De Floriani, E. Puppo, and R. Scopigno, Level-of-detail in surface and vol-
ume modeling, IEEE Visualization ’98, 1998, Tutorial Notes #6.

11. R.J. Fowler and J.J. Little, Automatic extraction of irregular network digital
terrain models, ACM Computer Graphics (Siggraph ’79 Proc.) 13 (1979), no. 3,
199–207.

12. H. Hoppe, Progressive meshes, Proceedings of SIGGRAPH ‘96 (1996), 99–108.
13. V. Pascucci, Slow growing subdivision (sgs in any dimension: towards removing

the curse of dimensionality, (2002).
14. V. Pascucci and C. L. Bajaj, Time critical isosurface refinement and smooth-

ing, Proceedings of the 2000 IEEE Symposium on Volume visualization 2000
(T. Ertl, B. Hamann, and A. Varshney, eds.), IEEE Computer Society Technical
Committe on Computer Graphics, 2000.

15. A. Plaza and G.F. Carey, About local refinement of tetrahedral grids based on
local bisection, 5th International Meshing Roundtable (1996), 123–136.

16. J. Popovic and H. Hoppe, Progressive simplicial complexes, ACM Computer
Graphics Proc., Annual Conference Series, (SIGGRAPH 97), 1997, pp. 217–
224.



20 Rita Borgo, Paolo Cignoni, and Roberto Scopigno

17. E. Puppo, Variable resolution terrain surfaces, Proceedings Eight Canadian
Conference on Computational Geometry, Ottawa, Canada, August 12-15 1996,
pp. 202–210.
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