
� ���������	�
��
�	����� ����
��� ��
��

R. Borgo1, R. Scopigno1, P. Cignoni1 and V. Pascucci2

a Visual Computing Group, Consiglio Nazionale delle Ricerche
b Center for Applied Scientific Computing Lawrence Livermore National Laboratory

ABSTRACT

The increasing rate of growth in size of currently available datasets is a well known issue. The possibility of developing fast
and easy to implement frameworks able to visualize at least part of a tera-sized volume is a challenging task. Several tech-
niques have been proposed in recent years ranging from simplification to wavelet analysis. Subdivision methods have been
one of the most successful techniques applied to the multi-resolution representation and visualization of surface meshes.
Extensions of these techniques to the volumetric case presents positive effects and major challenges mainly concerning the
generalization of the combinatorial structure of the refinement procedure and the analysis of the smoothness of the limit
mesh. In this paper we address mainly the first part of the problem, presenting a framework that exploits a subdivision
scheme suitable for extension to 3D and higher dimensional meshes. We introduce a technique that combines the flexibility
of a progressive multi-resolution representation with the advantage of a recursive subdivision scheme. The main contri-
butions of the paper are: (a) a progressive algorithm that builds a multi-resolution surface by successive refinements so
that a consistent representation of the output is always available (b) a multi-resolution representation where any adaptively
selected level of detail is guaranteed to be consistently embedded in 3D space (no self-intersections).

1. INTRODUCTION

Projects dealing with massive amounts of data need to carefully consider all aspects of data acquisition, storage, retrieval
and navigation. The recent growth in size of large simulation datasets still surpasses the combined advances in hardware
infrastructure and processing algorithms for scientific visualization. The cost of storing and visualizing such datasets is
prohibitive, so that only one out of every hundred time-steps can be really stored and visualized. By 2004 ASCI will enable
physics simulations on massively parallel computers (100 TeraFLOPS computers) generating upwards of 10 TeraBytes per
hour with a potential total output of several petabytes per simulation. As a consequence interactive visualization of results
is going to become increasingly difficult, especially as a daily routine from a desktop. High frequency of I/O operations
start dominating the overall running time. The visualization stage of the modelling-simulation analysis activity, still the
ideal effective way for scientists to gain qualitative understanding of simulations results, becomes then the bottleneck of the
entire process. Such a problem poses fundamentally new challenges both to the development of visualization algorithms
and to the design of visualization systems.

In this panorama starting from the point that it is no more possible to rely on fundamental assumptions on memory layout
to speed up the access time, because of datasets too large to be kept in main memory or stored on a local disk, there is a
need at system level to design the visualization process as a pipeline of modules able to process data in stages creating a
flow of data that need themselves to be optimized globally with respect to magnitude and location of available resources.
To address these issues new data-streaming techniques have been proposed mainly concerning progressive processing and
visualization. Techniques relying on subdivision paradigms to generate approximations of minimal sizes, with respect to
given error bounds, have made great progresses especially in the surface mesh visualization field. Unfortunately gener-
alization of such techniques to the volumetric case is not always straightforward. The more commonly used techniques
currently refer to tensor product schemes whose high rate of refinement and lacks of good extensions to general cases,
like unstructured meshes, limits their use in fundamental application areas like solid modelling, scientific visualization and
mesh generation.

In this paper we present a new progressive visualization algorithm where an input grid is traversed and implicitly organized
in a hierarchical structure (from coarse level to fine level) and subsequent level of detail are constructed and displayed to
improve the output image. We uncouple the data extraction from its display allowing for a subdivision of the workload
between different processes. The scheme allows us to render at any given time partial results while the computation of the
complete hierarchy makes progress. The regularity of the hierarchy allows the creation of a good data-partitioning scheme

 (a) (e) (d) (c) (b)

 (a’) (b’) (c’) (d’) (e’)

Figure 1. 4-8 recursive subdivision. (a-e) Classical longest edge bisection of a rectilinear grid. (a’-e’) Equivalent
�

2 subdivision where
pairs of adjacent triangles are merged into one square.

that allows us to balance processing time and data migration time. We restrict our attention to the case of meshes computed
as isocontours of 3D scalar fields. Scientific 3D data (large physically based simulations, CT/MRI medical scans) are
visualized using isosurfaces. Employment of multi-resolution data-structures for the output surface is a must for being able
to achieve fast visualization performance and interactive response time. The approach introduced in this paper works as
follows: to guarantee visual consistency we use a refinement primitive that updates a local portion of the output so that a
consistent output mesh is maintained at any given time. This trick allows for asynchronous termination of the computation
within a small constant delay, moreover the refinement operation is guaranteed to be performed within a small volumetric
cell c and therefore the surface inside the cell is maintained persistent that guarantees a correct embedding of any adap-
tive mesh extracted at run time. Our approach right now focuses on the case where the multi-resolution representation of
the volumetric data is based on the edge bisection refinement rule widely used in mesh generation. 25, 26 For rectilinear
volumetric input such a subdivision correspond to an adaptive hierarchical approximation. We select a set of cells inter-
secting the isocontour value and organize them in subsequent levels corresponding to different levels of refinement of the
isocountour, each node corresponding to an atomic cell, cells can be grouped together in arbitrarily dimensioned bunches
and sent to multiple processors to be elaborated. The final result becomes then a compositing, through graphics library that
operates in distributed environments like WireGL, of the contribution of each bunch of cells coming from each one of the
processors. In the next paragraph we analyze details and results of the developed paradigm.

2. PREVIOUS WORK

The topic of this paper concerns mainly multi-resolution surface generation, trend where several efforts have been made.
The main contributions cover an area that goes from high quality surface simplification schemes to mesh refinement
techniques.

Simplification Techniques. The simplification techniques existent in literature can be grouped into three basic cate-
gories: vertex removal,28 edge contraction,13 and triangle contraction.10 Numerous methods have been proposed that
coupling the efficiency of these primitives with the use of different error metrics 3, 6 have allowed for the construction of
high quality simplified objects. Multi-resolution representation of input data can be achieved through the application of
simplification techniques maintaining a history DAG of the decimation process applied. The selective traversal of this
representation allows for fast construction of adaptive levels of detail. 14

Wavelet Analysis. Wavelet functions have been employed in the design of multi-resolution surface generation. Main
advantage of the multi-resolution analysis at the basis of the wavelet approach is that it immediately gives a compact
hierarchical multi-resolution data-structure with guaranteed error bounds. Unfortunately the set of meshes that can be
processed is limited, requiring sometimes remeshing of the input. Hybrid approaches can be designed to take advantage
from the quality of wavelet analysis maintaining the generality of a simplification scheme. 18 The general framework of
wavelet analysis is formalized independently of the intrinsic/embedding dimension of the geometric object. This allows
for example to achieve multi-resolution representation and analysis for volumetric data. 27

(b)

Ff

(a)

c1 c2

p1 p2

Figure 2. 3D cell refinement from tier 0 tier 1. (a)The two cells c1 and c2 in tier 0 . Their centers p1 and p2 are marked with two crosses.
Their adjacency facet f is highlighted in gray. (b) The cell F of tier 1 (in gray) is the union of the pyramids p1� f and p2� f .

Mesh Refinement. Other approaches in the meshing community have regarded subdivision methods for adaptive re-
finement of triangular meshes. Rivara’s edge-bisection approach is one of the simplest and most flexible of these. A
unique subdivision template26 is used to recursively subdivide the cells of 2D meshes until a given adaptivity constraint is
achieved. This implicitly yields a multi-resolution data-structure built starting form a coarse representation of the input.
The approach generalizes immediately to 3D tetrahedralizations 25,33 and to higher dimension by performing the refinement
process from the lower dimensional simplices of the mesh to the higher dimensional.

Subdivision Schemes. Using a recursive subdivision scheme one automatically achieves a hierarchical multi-resolution
representation. This enables for example multi-resolution editing techniques. The quality of the generated meshes is de-
pendent from the subdivision mask used. For triangular domains Loop 20 provides an approximating subdivision scheme
converging to a surface that is C2 almost everywhere. The exception is at extraordinary vertices, that do not have exactly
six incident edges where the continuity decreases to C 1. The butterfly subdivision scheme8 converges to an interpolating
surface that is C1 everywhere except for extraordinary points with exactly three or more than seven incident edges. A
modified version34 has been proposed that converges to a C 1 surface everywhere. For subdivision of quadrilateral domains
two approaches have proposed: the Catmull-Clark scheme 2 and the interpolatory scheme by Kobbelt16 to build smooth
approximations of a coarse mesh. Bierman et al.1 have improved the normal control mechanism for Catmull-Clark and
Loop subdivisions. Subdivision schemes have been also used to build smooth vector fields. 31

The approach we focus on belongs to the class of Subdivision Schemes. First introduced by Pascucci, 24 has been further
developed by Gregorski et al..11 Characteristics of the approach adopted is to respond well to three big issue typical of
multiresolution approaches: vertex proliferation (mainly dependent on the subdivision mask adopted), efficient extraction
of the refined surface, rendering in time-critical environment. Typical of tensor product refinement schemes, that normally
increase the number of vertices by a factor of 8, vertex proliferation is an important issues especially when dealing with
datasets of large size: as the dimension d of the mesh grows the complexity of the scheme augments leading to prohibitive
refinement rates. The first to address this issue has been Kobbelt17 with his

�
3-subdivision where the number of vertexes

is increased at a slower rate than previous approaches. Velho et al. 30 and Duchaineau et al.7 improved this approach with
a different scheme definable as a

�
2 subdivision scheme (2D version of the algorithm at the base of our framework). For

what concern efficient isocontouring the basic isocontour computation algorithm 21 is known to be inefficient since it wastes
time exploring empty regions of the underlying volumetric data. Geometric space indexing 32 is sufficient to achieve a sub-
stantial speedup . Span space indexing techniques can provide further improvement with nearly optimal 19 or even optimal
speedup.5 The insufficient results achieved even with such optimal techniques require to use more flexible approaches 9,12

that allow to use the multi-resolution representation of the volumetric data to extract an adaptive level of detail for the out-
put. The lack of an actual multi-resolution representation for the output limits the practical use of such schemes especially
for large datasets since a substantial amount of computation may be required when adaption between different levels of
resolution needs to be recomputed frequently. General solution to the problem of rendering in a time-critical environment
have also been explored.15 Such optimization techniques solve the “hard deadline” problem for high quality hierarchies if
the time available is known in advance but do not consider the asynchronous termination problem or the case of dynamic
change of the represented object.

The subdivision scheme at the base of our subdivision paradigm has taken into account several of the issues just pre-
sented: for what concern vertex proliferation our refinement scheme roughly doubles the number of vertices independently
of the intrinsic dimension of the input mesh. For what concerns the capability of rendering in time-critical environment

c1

c4 c5

c2

f1

f4

f3

f2

F3

F2

F1

F4

(a) (b) (c) (d)

Figure 3. Cell refinement from tier 1 to tier 2. (a) Four cells c1�c2�c3 and c4 of tier 0 share, in pairs, the facets f1� f2� f3 and f4. The
edge e is shared by all facets f1� f2� f3 and f4. (b) Each facet fi generates a cell Fi. (c) Each cell Fi is decomposed into four pyramids
only two of which are selected. The selected pyramids are those containing the edge e. (c) All the pyramids containing e are merged
together to form the cell E of tier 2.

a consistent representation of the output is always available as long as a coarse representation of the input is given. For
efficient isocontouring, the hierarchy is built only with cells intersecting the isocontour: no empty regions are visited, each
level of the hierarchy correspond to a uniform level of resolution of the mesh, the hierarchy can be traversed to perform
adaptive refinement of the input mesh. The following section describes in details the mathematical rules at the base of our
refinement algorithm.

3. SUBDIVISION SCHEME DESCRIPTION

The refinement scheme at the base of our framework has been introduced by Pascucci. 24 It follows the edge-bisection
refinement introduced by Rivara26 and proposed under a different approach by Velho and Zorin, 30 known as 4-8 subdi-
vision or

�
2 subdivision. The techniques in these papers focus primarily on the case of surface subdivision and not the

volumetric case. Figures 1 (a-e) show the subdivision scheme for a rectilinear grid. The base mesh is a squared mesh
divided into triangles by bisecting each square at the middle of one of the two diagonals; the diagonal selected for the
bisection is considered as “main diagonal”. Each generated triangle is subdivided, at each refinement step, at the middle of
its longest edge. The 4-8 subdivision rule follows these rules and adds an averaging step that repositions the vertices on the
surface. To maintain the same combinatorial subdivision structure the scheme obliges to bisect, in each triangle, the oldest
edge, i.e. the one that was not altered in the previous refinement step (that is always one and only one). Figures 1(a’-e’)
show the subdivision strategy applied to quadrilateral elements. 7 Each refinement is performed inserting a point at the
center of each square/rhombus and splitting the diamond into four triangles. Each pair of triangles adjacent along an old
edge are merged into a new square/rhombus.

In the next section we show how this procedures can be generalized to the volumetric case. We propose the edge-bisection
refinement scheme from a new point of view based on a set of simple rules that characterize consistently the decomposition
of a grid in simplices together with the recursive refinement of the derived simplicial mesh. The result is a new naming
scheme that allows to represent an adaptive simplicial mesh with a very low memory foot print.

3.1. 3D Subdivision Scheme

As proposed in24 we organize the subdivision process into levels and tiers. Each level l has four tiers, form 0 to 3, where
tier 3 of level l is coincident with tier 0 of level l � 1 . This naming convention is used to maintain the comparison with
classical tensor product subdivisions that would refine directly a mesh from tier 0 of level l to tier 0 of level l�1. In our
scheme each refinement is a transition from tier i to i�1. At tier 3 the level is increased by one and the tier is reset to 0.
We denote cells, facets, edges and vertices of the generated grid with the symbols c i� fi�vi.

Figure 4. Cell refinement from tier 2 to tier 3.

3.2. Subdivision Rules

In this section we analyze the geometrical aspect of our subdivision scheme. The terms used (like “centers” and “dia-
monds”) are to be considered in a combinatorial fashion, given more to provide an intuitive idea of the described structure
than referring to their actual geometrical meaning (e.g. with the term “center” of a cell/face we indicate the relation between
a point and the cell/face it belongs, it does not necessarily correspond to its actual geometric position). The subdivision
schema is similar to the 2D case described above. The only inconvenient is that augmenting of one level augments, as
direct consequence, the subdivision process of one step (in the 4-8 subdivision square-shaped cells, i.e. basic case or tier
0, are obtained after the second refinement step) indicated as tier 3. In the following paragraphs we will analyze each
refinement step in details.

From tier 0 to tier 1. For each cell ci in the input mesh its center pi is selected. The cell ci having n facets is decomposed
into n pyramidal cells by connecting the center p i with all its facets. Let’s denote by p� f the pyramid built by connecting
p with a facet f . For each pair of cells ci�c j, adjacent along a facet f , a new cell F is created by merging the pyramid
pi� f with the pyramid p j� f :

F � �pi� f �� �p j� f �� with f � ci� c j�

Figure 2 shows the construction of F from c1 and c2.

From tier 1 to tier 2. Consider a cell F of tier 1 and its center q. Let g i be the facets of F that do not belong to tier 0
(for non-sharp F all the facets are of tier 1). We decompose F into a set of pyramids each given by q�g i. If F is a sharp
cell, its center qk is coincident with the center of its facet f of tier 0. In this way we handle directly boundary cases and
2-dimensional sharp features. Each pyramid q�g i contains exactly one edge e j of tier 0. After each tier 1 cell is split all
the pyramids incident on the same edge e are merged into a cell E. All the cells built in this way form the mesh of tier 2.
Figure 3 shows the construction of one cell of tier 2. The coarse mesh has four cells all incident to an edge e (Figure 3a).
Four cells of tier 1 are built by merging pairs face pyramids (Figure 3b). Each tier 1 cell is then decomposed into four
pyramids, of which we select only two incident to e (Figure 3c). The eight pyramids selected (two per cell) are finally
merged into one cell E of tier 2, (Figure 3d).

From tier 2 to tier 3. As in the previous two steps one determines the center r of any cell E. Each cell E is then
partitioned by joining r with each facet of E. As usual, for sharp cells the point r should be considered as the center of e
and is shared among all the cells around e. The last merging step is among cells that are incident both to a vertex v and a
cell center p. During this last merge step all the spurious edges introduced during the refinement procedure are removed.
Figure 4 shows the construction of one cell of tier 3 from a cell of tier 2.

3.3. Refinement Characterization

Cells generated by our subdivision techniques can be easily characterized.

DEFINITION 3.1. A diamond is a cell that can be combinatorially partitioned into a set of simplices all sharing an edge,
called axis of the diamond. We show that all the cells generated by our scheme are diamonds. To satisfy this property we
only need each facet of the base mesh to be a polygon.

PROPOSITION 3.1. Consider a complex C where all the 2D cells are simple loops. If we use C as the base mesh, the
subdivision generates only diamonds cells.

Proof. Since all the facets of the cells in C are simple loops, all the cells generated at the first tier of the subdivision
procedure are either pairs of pyramids or single pyramids (for sharp features). In the first case the axis of the diamond is
the edge connecting the apices of the two pyramids. In the second case the axis connects the apex of the pyramid with the
center of its base.

At the second tier the cells are diamonds by construction since they are just a set of tetrahedra merged along a common
edge: the axis of the diamond. At the third tier each cell is the set of tetrahedra sharing the edge connecting the center of a
coarse cell with one of its vertices. This edge is the axis of the diamond.

The first interesting aspect of this subdivision scheme, is that given a mesh representation model it can be organized
hierarchically in terms of embedded entities that we call diamonds. By construction, the topology of such hierarchy is
implicit to the diamonds themselves: each cell/diamond is a unique and independent nucleus that stores in itself all the
information needed. From its center, characterized by three index �i� j�k�, it is possible to derive tier, type, orientation and
refinement level it represents. Through simple mathematical rules it is possible to identify its sons. The overall mesh is
in fact seen as a collection of geometric primitives (the diamonds) that for the regularity of the subdivision criteria need a
very low footprint to be represented. The mesh can be seen as a collection of embedded diamonds, every point of the mesh
can be reached following our subdivision scheme. Traversals of the mesh by means of our diamond hierarchy allows the
extraction of all the mesh related information: mesh data, range and approximation error. Another point worth noting is
that diamonds as entities do not really exists, only their centers exists. Through the center it is possible in fact to derive
diamond shape (that is type and orientation) and vertexes position with just a couple of unitary operations. The regularity
of the diamond shape allows in fact to gather the diamond vertexes simply adding a δ constant to the center coordinates,
diamond vertexes are needed only for sons generation. In case of regular grids the constant is fixed for each type of dia-
mond and dependent in magnitude to the level of refinement reached (easily derivable from the coordinates of the center).
Overworking these properties we have developed a Progressive Subdivision Paradigm (PSP) oriented to the visualization
of large dataset. The following section describes the implementation details of our PSP algorithm and data-structures.
We have focused our initial efforts on the refinement of regular grid nevertheless the framework has been designed to be
independent of the kind of input mesh.

4. PSP FRAMEWORK

The Progressive Subdivision Paradigm (PSP) framework corresponds to a level-of-detail approximation of a regular data
volume. Each level consists of a set of uniformly represented diamond-entities generated through recursive subdivision of
the volume and fusion of adjacent items following a merging “diamond-generation” schema. Any kind of traversal of the
multiresolution framework generates an approximation of the object volume corresponding to an error-based simplification
of the volume itself. The simplification may respond to view-dependent and adaptive constraints and allow for speeding
up the rendering process of the volume data.

Our multiresolution framework can be seen as a two phases process:

� Pre-processing Phase: where some auxiliary information (data, range, approximation error) are extracted;

� Rendering Phase: where the mesh is traversed, at run-time, to extract the model under appropriate constraints (view-
dependent, adaptiveness, error-based criteria).

In the present context the pre-processing phase comprehend: volume subdivision for extraction of all the data and their
organization in tables. The rendering phase consists instead of traversal of the mesh and isocontour extraction following
appropriate approximation criteria. Input of the framework is a regular volumetric dataset extended when needed to even
dimension i.e. �2N �1�� �2N �1�� �2N �1�.

4.1. Pre-Processing Phase

Following the subdivision schema the pre-processing phase correspond to a formalization of the dataset with our subdi-
vision schema. Initially the volume is subdivided through a per-vertex adding process. The initial step consists of the
subdivision of the bounding volume introducing the vertex corresponding to the center of the bounding box itself, each
successive step picks up new vertexes from the original volume and adds them continuing the subdivision process until all

D10 D1nD11

D20-0 D20-1 D20-6D20-3 D2n-6D21-0D21-6

offset0
offset5offset4offset3offset2offset1

HT[1][l]

HT[2][l+1]

0

. . . .

. . . .

. . . .

.
(a)

 .
. .

 .
. .

isovertexes

 .
. .

 .
. .

pointers to sons

center coordinateHT_node

(b)

Figure 5. Example of the two level hierarchy tree HT for level l and l+1:(a)representation of two level (l and l+1 respectively) of the
hierarchy tree (b)internal structure of a node of the hierarchy tree HT.

vertices are added. Vertexes are added at each step following a breadth first priority (BFP) policy: the same subdivision
step is implemented for all the diamonds in the same level before the next step is taken. Through the subdivision process
we extract the data embedded in the volume and calculate the range belonging to each diamond (with range we identify
the min and max field values contained in a diamond). In a successive step we traverse the volume in depth first order to
compute the approximation error belonging to each diamond (i.e. maximal inaccuracy generated when we represent the
field in the interior of the diamond by interpolation of field values on the diamond vertexes). These results are organized
in tables as described in the following paragraph.

4.1.1. Data Organization

In the implementation of our framework we have decided to organize all of the information inferable from the mesh repre-
sentation model in tables. We end up with three main table: data, range, field. Each table has dimension �2 N �1�� �2N �
1�� �2N �1� that is equal to the dimension of the volume, and with access key equal to a function of the �i� j�k� indexes
of each diamond center. Filling of data and range tables can be done during the volume subdivision, a simple min/max
routine assures the nesting of the min/max ranges. Because volume subdivision is performed following a BFP policy, the
complexity of the filling step is equal to the complexity of a breadth first visit of a tree, that is linear in the number of
cells/nodes. Therefore at subdivision step l�1 we need to have in memory only the diamonds belonging to level l, those
diamonds are discarded as soon as level l�1 is completed.

Computing the approximation error is a bit more complex. An explicit representation of the hierarchy is needed to compute
the error accuracy. The error metric we adopt assures an overestimation of the error introduced by the approximation but
requires to be able to move easily from sons to fathers; because, by construction, diamonds share sons (i.e. a diamond of
level l�1 is generated by the fusion of parts of diamonds of level l), computing father/son relation is not straightforward,
though possible. We have decided to give easiness of implementation top priority, at least for now, for this reason only
during error calculation the hierarchy organization is made explicit with a tree like data-structure. It consists of a Diamond
Tree (DT) where each diamond of the same type and resolution shares level with its diamond siblings. Each node of the
diamond tree stores only the indexes of the diamond center and pointers to its sons. A depth first traversal of DT allows
for the calculation of the error. Results are stored in a �2 N �1�� �2N �1�� �2N �1� table with the same characteristics as
the data and range tables.

A fourth flag table is used to keep track of those diamonds that have been already visited. This information is needed
at runtime and at runtime it is filled, its use will be explained in detail in Section 4.2.1.

4.2. Rendering Phase

Extraction and refinement of the isosurface are executed at runtime performing traversals of the mesh representation model.
Starting from the diamond cell of center �2 �N�1��2�N�1��2�N�1�� (coincident with the bounding box of the entire model)

14

15

18
19

23
11

10

6

2

6

11
1918

10
14

15

23

2

9

4

8

0

21

17

13

12

16

4

21

9 13

0

12

16

17
8

v0

v6 v6

v0

Figure 6. Isovertex inheritance for a tier1 diamond from its two tier0 diamond fathers. The diamond inherits exactly 12 vertexes, 8 from
each father but 4 in common on the shared face.

we proceed generating, following our subdivision rules, the sons needed. The mesh can be traversed following a breadth
first policy, to obtain a rough but homogeneous approximation of the original dataset, or a depth first policy allowing for
selective refinement of the original dataset. The mesh traversal does not touch all the dataset cells (i.e. not all the cells
are visited). Only those cells intersecting the isosurface (active diamonds) are visited and eventually refined (i.e. only
their active sons are generated through subdivision). Isosurface extraction is performed during the traversal. Each active
diamond is visited, the isosurface it intersects is extracted and sent to the renderer, if refinement is needed the cell is further
subdivided to generate its active sons and then discarded, or simply discarded if no further refinement is needed.

Discrimination between active and non-active diamonds is possible simply referring to the range of isovalues corresponding
to the diamond (stored in the min/max table). Refinement of a diamond is decided in function of error metrics. The
isosurface is extracted even if further refinement is needed, this allows us to keep always a consistent version of the model
available and to render at any given time partial results while the computation makes progress.

To avoid redundant visits of the same diamond (we recall that a diamond has more than one father, so we can reach a
diamond from different journeys) we make use of a sort of “flag table” with the same characteristics (dimensions, access
criteria) as the data, range and error tables mentioned in Section 4.1.1.

4.2.1. Isosurface Extraction

The 3D mesh partitions subdivides the region of space of interest in diamonds. To perform the extraction we subdivide
each diamond cell, belonging to the level of refinement required, into tetrahedra. In this way we have a piecewise linear
representation of the scalar field F �x� necessary to compute an isocontour using the marching tetrahedra algorithm. Each
isocontour is updated within a single tetrahedron and then composed to update the global isosurface within the set T of all
tetrahedra around the bisection edge. As the edge-bisection algorithm makes progress new function values are added and
a more detailed definition of the function F �x� is obtained.

Isosurface Extraction: Inheritance. The recursive subdivision produces, by construction, a set of “partially” embedded
diamonds, partially because only a portion of a diamond is embedded in each of its fathers and a diamond embeds only
a portion of each of its children. This special embedding allows for each diamond to share with its fathers and sons part
of the isocontour it intersects. Essentially fathers and sons diamonds shares isovertexes between each other. To exploit
this property and to avoid redundant calculation we have decided to try to support the inheritance of shared vertexes
between diamonds: fathers pass to sons vertexes in common. Because there is no explicit representation of the hierarchy
produced by the subdivision process (as mentioned in Sect 3.3 the topology of the refinement hierarchy is implicit to the
cells) to support vertex inheritance we need to explicit the hierarchy for at least two levels of refinement: the one of just
refined diamond (i.e. diamonds belonging to refinement level l), and the one of diamonds generated by the refinement
(i.e. diamonds belonging to refinement level l � 1). The two hierarchy levels are organized in tree-like data-structure,
of only two level, called Hierarchy Tree (HT). Each node in HT stores diamond center, computed isovertexes and sons
position; fathers shares sons between each other but it is easy to avoid duplication of sons simply exploiting the Flag Table:
if diamond d j of indexes �i� j�k� is inserted in HT at position p j (we do not to store the level because it is inferable from
i� j�k) we insert the value d j in position �i� j�k� of FT, this information allows us to determine if d j is an active diamond,
that is, has been already created and visited, and in case which position in HT it occupies. Figure5 shows an example

10242

51225122

51225122

2562256225622562

2562256225622562

2562 2562

25622562 2562 2562

2562
2562

. . .

.

.

.

.

.

(a)

(b)

Figure 7. Data partitioning scheme of a 2D datasets of 10242:(a) Partitioning of the datasets in 16 blocks of 2562, each block can be sent
to a different processor, colored vertexes are the only vertexes for which the error is not computed, colored vertexes can be considered
like root of the block they belong to; (b) corresponding position in DT of each block-root node, they all belong to the first three level of
DT.

of such structure. The HT structure is used only at runtime. Supporting inheritance has gains and loss, loss in terms of
memory overhead, gains in terms of speeding up of the rendering process avoiding useless calculations. Advantages and
disadvantages this choice are analyzed in sections 4.2.3 and 5.

4.2.2. Error Metrics

To measure the error introduced by approximating the rendered model with low resolution level of details we adopt two
different error metrics: field space error4 �δ� and screen space error �ρ�. Our field space error measure is an overestimation
of the field space error computed between successive levels of refinement. By construction the field error can be considered
as an upper bound of the error introduced by ending the refinement process at level l instead of level l�1. The field space
error is computed traversing the hierarchy DT from bottom to top in the pre-processing phase. The error of a diamond is
the maximum between its internal error and the error of its sons, this guarantees a correct propagation of the object space
errors during pre-processing.

View-dependent algorithms project object space errors onto the screen generating a screen space error ρ�δ�. Screen space
error is simply a factor that amplifies the object space error. It can be computed in function of the distance along the view
direction of the objects from the point of view. The most simple metric of this form can be written as:

ρi � λ
δi

�pi� e� (1)

The projected error decreases with the distance from the viewpoint. If we consider the perspective projection onto a plane:
λ� w

2tan ϕ
2

, where w is the number of pixels along the field of view ϕ. Equation 1 correspond to a projection onto a sphere

and not onto a plane, so a more appropriate choice for λ would be λ� w
ϕ . After this the error space ρ is compared against

a user-specified screen space error tolerance. In computing our screen space error we follow the approach adopted by
Lindstrom and Pascucci.23 We compute the bounding sphere B i of ray ri of each diamond di and consider active all the
cells inside Bi that satisfy:

�
1
k
δi� ri�

2
� �pi� e�2

where k � τ
λ constant during each refinement.

Dataset Size Pre-processing Time (sec.)
Hipip 64�64�64 3�9 secs
Hydrogen 128�128�128 10�5 secs
Bonsai 256�256�256 32�65 secs

Table 1. Computational time required for the pre-processing phase of the algorithm. Performances computed over the HIPIP dataset
�643�, the IDROGEN-ATOM dataset �1283� and the Bonsai dataset �2563� .

4.2.3. Memory Occupancy and Overheads

In our strategy we have decided to store all the mesh related information in tables. We have four main table: data (IT), field
value range(MT), error (ET) and flag (FT). Each of them has size equal to the size of the mesh grid: �2 N �1�� �2N �1��
�2N �1�. Tables requires storage and computational time for filling. Let’s us analyze both aspects in detail:

Storage Field values and errors are data that needs to be stored besides any type of implementation. Range is an informa-
tion needed to be able to perform efficient isocontouring and, especially when dealing with large meshes, the possibility to
discard cells, not intersecting the isocontour, means lots of computational time saved during mesh traversal. Moreover the
regularity of the structures in which those data are stored and the methods used for accessing the data makes them suitable
for partitioning and distribution on the type of resources available. Part of the memory is occupied by the Diamond Tree
that we need to create for computing the error approximation (but just in the pre-processing phase). This structure is used
only during the pre-processing phase, never at run-time, and after the error calculation is completed it can be discarded.
Two main points are worth noting: necessity and complexity of introducing this data structure. The diamond tree is actually
needed because of the error metric adopted (Sect 4.2.2) that requires to easily move from bottom levels to top levels of
the hierarchy. In the present context we can guarantee, keeping the hierarchy representation implicit to each diamond, an
easy top-down traversal of the hierarchy but not an equally easy traversal bottom-up. At least for the present results we
have decided to give easiness of implementation top priority allowing for explicit hierarchy construction only during the
pre-processing step. We made such decision considering the complexity introduced by DT in terms of memory occupancy
and time complexity when working with large amount of data. In DT we store the least possible amount of information
(only center coordinates, 3 short for each center, and pointer to the sons, 8 short in the worst case for each diamond), for
hierarchy construction, due to the regularity of the subdivision, DT can be easily partitioned in blocks of smaller size. Each
block can be distributed to different processors each of which can perform independently the error calculation. As shown
in Fig 7 a good data-partitioning scheme can distribute evenly each block, leaving out from the error calculation only the
block vertexes that by themselves correspond to the first levels of the hierarchy tree DT, levels that can be easily traversed.

Computational Time Table filling is one of the heaviest operations we perform, for this reason it is restricted to the
phase of pre-processing. The only table “filled” at run time is FT, this table is not really filled at run time but only some
of its value are updated during the hierarchy traversal. The regularity of the subdivision mask applied and the organization
of the information in Tables allows us at run-time to keep everything implicit in the diamond cells that require a very low
footprint to be represented (3 short). To access data in the tables we needs only the center coordinates of the diamond
we are interested and is performed in constant time. The introduction of vertex-inheritance support causes as immediate
drawback an overhead in memory requirements for what concerns the two level hierarchy structure HT. Nevertheless the
introduced overhead is worth compared to the gain in terms of computational time saved. To be more specific the memory
requirements of HT is equal to: 3 short for the center, 24 short for the shared vertexes, 8 short for pointers to sons for a
total of 70 bytes. This 70 bytes must be multiplied by the number m of diamonds belonging to the level under refinement.
The average value of m depends on the level of subdivision and the percentage of cells containing the isosurface we are
searching (around 10-20% of the total). From the point of view of computational time saved introducing this overhead
we avoid to recalculate for each diamond all the isosurface vertexes it contains limiting the computation to those vertex
not in common/inherited from the fathers reducing the operation of interpolation of a factor of 3. Each diamond needs
to recalculate only the isovertexes laying on split or “new” edges introduced by the subdivision peculiar to that level. In
this way a tier0 diamond needs to calculate only 8 new isovertexes (instead of 26), a tier1 diamond needs to calculate
only 6 new isovertexes (instead of 18) and a tier2 diamond needs to calculate only 10 new isovertexes (instead of 34).
Passing the inherited vertexes from father to son can be done with three operations each of unitary cost (O�1�). The first

Dataset Resolution IsoSurface Extr. (w/ Inh.) IsoSurface Extr. (w/o Inh.)
60% 0�1 secs 0�3 secs.

Hipip (64�64�64) 85% 0�4 secs 1�0 secs.
100% 0�9 secs 2�5 secs.
60% 0�4 secs 1�0 secs.

Idrogen-Atom (128�128�128) 85% 1�5 secs 4�6 secs.
100% 3�9 secs 11�7 secs.

Table 2. Computational time required for the run-time phase of the algorithm. Performances computed over the HIPIP dataset �643� and
the IDROGEN-ATOM dataset �1283�

operation consists, given a diamond of level l, in locating exactly the position of each diamond son in the l�1 level of the
hierarchy and put the father’s values in the isovertex record local to the son (operation of unitary cost because stored in FT
). The order in which the vertexes should be inherited is known for construction, that is, because of the regularity of the
subdivision we always know which son inherits which vertex (see figure 6). Results show (see Section 5) that, supporting
inheritance, the computational time needed for the isosurface extraction is reduced by a factor of 3. Each operation of
interpolation requires a constant number of arithmetic operations involving sum, subtraction, multiplication and division,
for very large datasets the overall computational time saved it is shown to be worth the overhead.

Computational Behaviour Following the proofs provided in 22 our algorithm shows an optimal behaviour for the compu-
tation of large isocontour keeping to a reasonable factor the overhead induced by the computation of small ones. As far as
the hierarchy construction proceeds we end up with a mesh organized into a tree-like structure with the coarse level having
size O�1� and the finest level having size O�n�. We know from construction that every cell in the hierarchy intersects the
isocontour in a constant number of simplices (line segments in 2D, triangles in 3D), from this follows that no isocontour
can have size larger than O�n�. For convention we define large an isocontour of dimension Θ�n� and small an isocontour
that is o�nh�,�h � 0, h constant, we also approximate the tree-like structure with a binary tree approximation that does not
influence the purpose of the proof.

THEOREM 4.1. Given an isocontour of output size k � Θ�nh�, for some constant h � 0, the corresponding hierarchy
generated by the progressive isocontouring algorithm has size Θ�k� for h � 1 and has size O�klogk� for h � 1.

Proof. The hierarchy tree is a complete balanced tree where the finest resolution has size Θ�n�. Hence the height of the
input hierarchy is logn�O�1�. Since the progressive isocontouring algorithm (i.e. the process that deals with the isosurface
extraction and progressive construction of the output) produces one level in the output hierarchy for each level in the input
hierarchy the height of the output hierarchy is also log n�O�1� � 1

h logk�O�1�. For h � 1 this implies that the overall
output hierarchy has size O�k logk�. 	
Basically then for non-small contours the output is a balanced tree which is optimal for large contours.

THEOREM 4.2. Given an isocontour of size k � Θ�nh�, for some constant h � 0, the time necessary to compute the
isocontour is Θ�k� for h � 1 and has size O�klogk� for h � 1.

Proof. Follows immediately from the previous Theorem and from the fact that the progressive isocontouring algorithm
generates an output tree of l nodes in l steps of constant time each. 	
For large contours the computation time is linear in the size of the finest output resolution and hence optimal. Otherwise a
logarithmic penalty factor is introduced by the traversal of the input hierarchy.

THEOREM 4.3. Given an isocontour of size k, the corresponding hierarchy size and computation time is O�k logn�.

Proof. From the same observation of Theorem 4.1 it derives that the height of the output tree is logn�O�1�. Hence
the hierarchy’s overall size is O�k logn�. As shown in Theorem 4.2 the computation time is just proportional to the overall
size of the output. 	

Figure 8. Steps in a progressive isosurface computation from the volumetric IDROGEN-ATOM dataset, left to right.

Figure 9. Steps in a progressive isosurface computation from the volumetric HIPIP dataset, left to right.

5. RESULTS

Our algorithm has been implemented in C�� and developed on both SGI and Windows platforms. Results have been
carried on a PC on a Windows 2000 Server platform, AMD Athlon processor, 528Kb RAM, NVIDIA GeForce2. We
computed the performance of the algorithm on three datasets: Hipip, IdrogenAtom and Bonsai of sizes 64 3, 1283 and 2563

respectively. Table 1 shows the time in seconds for the pre-processing phase (tables filling, DT hierarchy construction
procedures and object space error measurement). Table 2 shows the time in seconds for the Isosurface extraction for
different values of resolution required. Results obtained with introduction of inheritance support are compared to results
obtained with a “plain” version of the algorithm. Fig. 8 and 9 show progressive refinement of Hipip and IdrogenAtom
obtained applying our algorithm with the inheritance paradigm active.

6. DISCUSSION AND FUTURE WORK

In this paper we have introduced a progressive algorithm and data structures for time-critical and memory-critical isosurface
extraction. Providing a set of local rules for continuous geometric transitions (geomorphs) of one level of resolution
into the next we keep the same advantages of a hierarchical data structure without the overhead of keeping explicit the
hierarchy structure. Our approach guarantees the generation of non-self intersecting surfaces while extracting adaptive
levels of detail from the multi-resolution surface representation. Exploiting the subdivision scheme properties we can
guarantee optimal time performance in isosurface extraction in spite of a minimal memory overhead (inheritance support).
The regularity of the scheme makes our approach well suited for the design of an efficient run-time data partitioning and
distribution algorithm to reduce the local memory requirement and overwork distributed environment potentiality currently
only approached. Our present work regards performance testings of our paradigm to datasets of large size, our future work
will regard the application of our technique in distributed environments and the development of data-partitioning schemes
optimal for our framework.

REFERENCES
1. Henning Biermann, Denis Zorin, and Adi Levin, Piecewise smooth subdivision surfaces with normal control, Proc. of the Computer

Graphics Conf. 2000 (SIGGRAPH-00), ACM, July 23–28 2000, pp. 113–120.
2. E. Catmull and J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Computer-Aided Design (1978),

350–355.

3. A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno, Multiresolution decimation based on global error, The Visual Computer
13 (1997), no. 5, 228–246.

4. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, Simplification of tetrahedral meshes with accurate error
evaluation, IEEE Vis. ’00 (VIS ’00), IEEE, October 2000, pp. 85–92.

5. P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Optimal isosurface extraction from irregular volume data, Proceedings of the
Symposium on Volume Visualization (New York), ACM Press, October 28–29 1996, pp. 31–38.

6. J. Cohen, D. Manocha, and M. Olano, Simplifying polygonal models using successive mappings, IEEE Visualization ’97 (VIS ’97)
(Washington - Brussels - Tokyo), IEEE, October 1997, pp. 395–402.

7. B. Gregorski Duchaineau and K.I. Joy, Smooth centroid bintree subdivision surfaces with local wavelets, Tech. report, 2001,
UCDavis Technical Report.

8. Nira Dyn, David Levin, and John A. Gregory, A butterfly subdivision scheme for surface interpolation with tension control, ACM
Transactions on Graphics 9 (1990), no. 2, 160–169.

9. Klaus D. Engel, Rüdiger Westermann, and Thomas Ertl, Isosurface extraction techniques for web-based volume visualization,
Proc. of the 1999 IEEE Conference on Visualization (VIS-99), ACM, October 25–29 1999, pp. 139–146.

10. Tran S. Gieng, Bernd Hamann, Kenneth L. Joy, Gregory L. Schussman, and Isaac J. Trotts, Constructing hierarchies for triangle
meshes, IEEE Transactions on Visualization and Computer Graphics 4 (1998), no. 2, ISSN 1077-2626.

11. B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K.I. Joy, Interactive view-dependent rendering of large IsoSurfaces,
Proc. IEEE Vis. 2002, IEEE, October 27– November 1 2002, pp. 475–484.

12. Roberto Grosso and Thomas Ertl, Progressive iso-surface extraction from hierarchical 3D meshes, Computer Graphics Forum
(David Duke, Sabine Coquillart, and Toby Howard, eds.), vol. 17(3), Eurographics Association, 1998, pp. 125–135.

13. H. Hoppe, Progressive meshes, Proceedings of SIGGRAPH ‘96 (1996), 99–108.
14. Hugues Hoppe, View-dependent refinement of progressive meshes, SIGGRAPH 97 Conference Proceedings (Turner Whitted, ed.),

Annual Conference Series, ACM SIGGRAPH, Addison Wesley, August 1997, ISBN 0-89791-896-7, pp. 189–198.
15. James T. Klosowski and Claudio T. Silva, Rendering on a budget: A framework for time-critical rendering, Proc. of the 1999 IEEE

Conference on Visualization (VIS-99) (N.Y.), ACM, October 25–29 1999, pp. 115–122.
16. L. Kobbelt, Interpolatory subdivision on open quadrilateral nets with arbitrary topology, Computer Graphics Forum (Proc. EU-

ROGRAPHICS ’96), 15(3), 1996, Eurographics ’96 issue, pp. 409–420 (en).
17. Leif Kobbelt,

�
3 subdivision, Proceedings of the Computer Graphics Conference 2000 (SIGGRAPH-00) (New York) (Sheila

Hoffmeyer, ed.), ACMPress, July 23–28 2000, pp. 103–112.
18. Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel, Interactive multi-resolution modeling on arbitrary meshes,

SIGGRAPH 98 Conf. Proc., ACM, Addison Wesley, July 1998, pp. 105–114.
19. Y. Livnat, H. W. Shen, and C. R. Johnson, A near optimal isosurface extraction algorithm for structured and unstructured grids,

IEEE Transactions on Visual Computer Graphics 2 (1996), no. 1, 73–84.
20. Charles Loop, Smooth spline surfaces over irregular meshes, Computer Graphics 28 (1994), no. Annual Conf. Series, 303–310.
21. W. E. Lorensen and H. E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, SIGGRAPH ’87 Conf.

Proc., Computer Graphics, Volume 21, Number 4, July 1987, pp. 163–170.
22. V. Pascucci and C. Bajaj, Time critical isosurface refinement and smoothing, Proceedings of the ACM/IEEE Volume Visualization

and Graphics Symposium 2000 (New York), ACM Press, 2000, pp. 33–42.
23. V. Pascucci and P. Lindstrom, Visualization of terrain made easy, Proceedings Visualization 2001 (T. Ertl, B. Hamann, and

A. Varshney, eds.), IEEE Computer Society Technical Committe on Computer Graphics, 2001.
24. Valerio Pascucci, Slow growing subdivision (sgs) in any dimension: Towards removing the curse of dimensionality, EUROGRAPH-

ICS 02 Conference Proceedings, Annual Conference Series, EUROGRAPHICS, sept 2002, pp. 451–460.
25. A. Plaza and G.F. Carey, About local refinement of tetrahedral grids based on local bisection, 5th International Meshing Roundtable

(1996), 123–136.
26. M.-C. Rivara and C. Levin, A 3-d refinement algorithm suitable for adaptive and multi-grid techniques, Comm. in Appl. Numer.

Meth. 8 (1992), 281–290.
27. Ricardo Sánchez and Marcelo Carvajal, Wavelet based adaptive interpolation for volume rendering, IEEE Symposium on Volume

Visualization, IEEE, ACM SIGGRAPH, 1998, pp. 127–134 (en).
28. William J. Schroeder, Decimation of triangle meshes, Proceedings of the Spring Cray Users Group Conference (33rd Spring

CUG’94) (San Diego, CA), March 1994, G-E, pp. 87–91.
29. O. G. Staadt, M. Gross, and R. Weber, Multiresolution compression and reconstruction, Proceedings of IEEE Visualization 1997,

IEEE, 1997 (en).
30. Luiz Velho and Denis Zorin, 4–8 subdivision, Computer-Aided Geometric Design 18 (2001), no. 5, 397–427, Special Issue on

Subdivision Techniques.
31. Henrik Weimer and Joe Warren, Subdivision schemes for fluid flow, Siggraph 1999, Computer Graphics Proceedings (Los Angeles)

(Alyn Rockwood, ed.), Annual Conference Series, ACM Siggraph, Addison Wesley Longman, 1999, pp. 111–120.
32. Jane Wilhelms and Allen Van Gelder, Octrees for faster isosurface generation, ACM Transactions on Graphics 11 (1992), no. 3,

201–227.
33. Yong Zhou, Baoquan Chen, and A. Kaufman, Multiresolution tetrahedral framework for visualizing regular volume data, IEEE

Visualization ’97 (VIS ’97) (Washington - Brussels - Tokyo), IEEE, October 1997, pp. 135–142.
34. Denis Zorin, Peter Schroeder, and Wim Sweldens, Interpolating subdivision for meshes with arbitrary topology, SIGGRAPH 96

Conf. Proc., ACM, August 1996, pp. 189–192.

