Closing Gaps by Clustering Unseen Directions

G. Impoco, P. Cignoni, R. Scopigno
Istituto di Scienza e Tecnologie dell’ Informazione (1STI)
Consiglio Nazionale delle Ricerche
ViaMoruzzi 1, 56125 - Pisa, ITALY.
e-mail: impoco | cignoni | scopigno @ isti.cnr.it

Abstract

Although in recent years the 3D-scanning field has
reached a good level of maturity, it is still far from be-
ing perceived by common users as a 3D-photography ap-
proach, as simple as standard photography is. The main
reason for that is that obtaining good 3D models with-
out human intervention is still very hard. In particular,
two problems remain open: automatic registration of sin-
gle shots and planning of the acquisition session. In this
paper we address the second issue and propose a solu-
tion to improve the coverage of automatically acquired ob-
jects. Rather than searching for the next-best-view in order
to minimise the number of acquisitions, we propose a sim+
ple and easy-to-implement algorithm limiting our scope to
closing gaps (i.e. filling unsampled regions) in roughly ac-
quired models. Theidea is very simple: detect holes in the
current model and cluster their estimated normals in or-
der to determine new views. Some results are shown to
support our approach.

1. Introduction

Scanning 3D objects is not an easy task, even if the ac-
curacy and speed of current scanning technology improved
significantly. The accuracy of modern scanning devices (50
microns or better for triangulation-based scanners), their
spatial resolution (i.e. the mean distance between sampled
points, usualy in the range of 0.1-0.5 mm) and finaly
the sampling speed (100K-300K samples per second) are
considered to fulfill the requirements of most applications.
However, there are still bottlenecks slowing down the scan-
ning process. the time and user effort required to processthe
raw data in order to convert a set of range maps into an ac-
curate triangle mesh [1], and the difficulty of obtaining a
complete sampling of the requested object surface. Thefirst
bottleneck can be reduced by designing systems which au-
tomatise the post-processing phase by tracking the scanner

position (usually, using either computer-controlled gantries
or vision-based technologies) or by enhancing the post-
processing tools with a nearly automatic alignment process
[2]. The second bottleneck has been reported, among others,
by Marc Levoy on the base of his experience while scanning
alarge subset of the Michelangelo's statues [13]. He noted
that it is often hard to obtain a complete coverage of com-
plex objects’ surfaces, and the progressive coverage of mod-
els comes with an effort which isinversely proportional to
the sampled fraction.

The aim of the research presented in this paper is to au-
tomatise the scanning process, helping the user in the selec-
tion of the views to be taken. Planning the acquisition of a
complex object is a very hard task, assuming that no previ-
ous knowledge on the shape is known. We cannot |eave this
duty to the operator, since planning and optimising the ac-
quisition of 100-200 range maps can be difficult even for
an expert operator. Our goa is to design a system able to
scan efficiently (in terms of time required and compl eteness
of the surface sampling) any complex object, by making a
joint use of the basic intuition of the operator and the finest
planning and refining capabilities of a computer-based sup-
porting tool.

Thistopic has been extensively studied in literatureand it
isusually referred to as Next Best View (NBV) selection. The
goa of most of the previous NBV research isto determine,
given asingle scan or a set of already scanned intermediate
results, which isthe next best location and orientation of the
scanner. Whilelooking for the NBV, apreliminary choiceis
how do we define the optimality of a given view. Although
many authors select the minimal number of views as an op-
timality criterion, in our opinion thisisanon-critical param-
eter due to the acquisition speed of contemporary scanners
and the quality of current post-processing software (which
can manage hundreds of range maps). Moreover, data re-
dundancy can be used to reduce the effect of noise and
sampling inaccuracies. Therefore, the optimality of a scan-
ning set is mainly related to the completeness of the scan-
ning (percentage of surface sampled), and the mean glanc-



ing angle used to scan the surface, since most scanners give
high quality samples only when the acquisition direction is
nearly parallel to the surface normal.

Some of the previous approaches have aso focused on
how to determine afirst set of views, to be further improved
in asecond stage. To accomplish thistask we can either use
already known information on the object’s shape (e.g. the
available CAD model in quality inspection of manufactured
pieces), or by taking first an approximate model of the ob-
ject. The second approach is often implemented by using
a different acquisition device having a wider field of view,
increasing both the HW cost and the operative complexity
for the operator (he should be able to manage different sys-
tems). We believe that designing a preliminary acquisition
plan (which could be refined in a second stage) is very easy
even for amodestly-skilled operator. In practice, most of the
scanning tasks can be solved by choosing one of two differ-
ent approaches.

1. X-Y sweep. Thisisthetypical setup used to scan abas-
relief or a car body section. The characteristics of the
scanner are assumed to be known. Given the extent of
the object in a given projection plane, we can easily
partition the scanning space into n x m range maps, to
be acquired by aregular sweeping of the scanner along
the two directions on the projection plane. Scanner dis-
placement depends on the inter-scan overlapping fac-
tor (usually 0.7-0.8 the scan height and width).

2. Cylindrical sweep. The common approach to scan an
al-round object consists in the acquisition of a set
of cylindrical scans, obtained by rotating the scan-
ner around the object or by using a rotating platform,
which alows to move the object while the scanner is
steady. The number of shotsin acomplete rotation de-
pends on the mean diameter of the object and theinter-
scan overlap factor (usually 20-30%) and can be easily
computed. The vertical sweep factor and the number of
cylindrical acquisitions again depend on the inter-scan
overlapping factor and the object’s height.

In both the above cases, the initial view planning is a
matter of afew seconds. Obvioudly, very rarely thisends up
in a 100% complete acquisition, since it does not take into
account surface characteristics to guide further planning. In
fact, even if the above scanning strategies give arather well
distributed set of views, the presence of self-obstructing re-
gions on the surface can produce unseen regions (see Fig-
ure 1). However, aninitial rough planning is agood starting
point.

The approach proposed in this paper tries to improve
over this simple initial planning, by detecting the surface
regions that have not been covered by the initial scans. For
each of these potential holes, we estimate a set of surface
normal vectors (e.g. considering the supposed orientation
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Figure 1. An example of unseen regions origi-
nated from the presence of a self-obstructing
component of the shape. Thick lines indicate
unsampled surface sections.

of holes faces). A set of views which will improve consid-
erably the coverage factor is automatically generated on the
basis of a quantisation of the viewing direction space.

The remainder of this paper is structured as follows. Af-
ter abrief overview of the somewell-known planning strate-
gies (Section 2) and someinitial considerations (Section 3),
our approach is presented in Section 4. An extension that al-
lows to manage full sets of range maps is then discussed in
Section 5, and some results are presented in Section 6. Fi-
nally, some considerations and directions for future work
aredrawnin Section 7.

2. Related Work

Sensor planning can be defined as the problem of deter-
mining a sequence of sensing operationsto view the surface
of a given scene. Each sensing operation is a set of sensor
parameters such as viewing pose (i.e. position and orienta-
tion of the sensor), camerafocus and field of view, and envi-
ronment parameters such as controlled lighting conditions
(e.g. in BRDF acquisition). Most of the techniquesin liter-
ature do not take into account environment parameters and
assume fixed most sensor parameters. The focus is mainly
on the determination of a set of viewing directions, opti-
mising some given criteria and subject to a number of con-
straints. A common target criterion is the minimisation of
the number of sensing operations that alow the scene to be
completely covered.

Sensor planning has been addressed mainly by the com-
puter vision community as the problem of determining the
minimum set of viewing directions covering the whole ob-
ject’s surface. Following the approach of Maver and Bajcsy
[14] planning strategies can be classified according to how
much a-priori knowledge about the scene is available. If a
complete model of the scene is known in advance, the plan
can be computed off-line using the reference model. On the



other side, if no geometrical information is available prior
to the acquisition phase, the best we can do isto build up the
plan on-line step by step. This approach, known as the Next
Best View (NBV) problem, ismore popular in the computer
graphics community in the context of surface acquisition. A
third class of algorithms lies midway between the first two
in the sense that only partial information about the scene is
accessible.

When planning the acquisition of a 3D shape no prior
knowledge is given about the surface to be acquired. Some-
times the object to be acquired is assumed to be bounded
by a (often spherical or cylindrical) volume. The scanning
system is often constrained to lie onto the surface of the
bounding volume, thus reducing the number of degrees-of-
freedom (DOFs) of the viewing pose from six to two. This
may cause some viewable surface areas to become not mea-
surable by the system. The same may happen discretising
the set of viewpoints.

A common situation in which a model of the scene is
known a-priori is the case of industrial inspection of me-
chanical parts, where a CAD reference model is used to
verify the compliance of manufactured objects. Tarbox and
Gottschlich’'s algorithm [25] generates a plan based on the
reference model and then verifies it using a model of the
data acquisition system. Despite this off-line verification
phase, when the plan is executed it can still be incomplete
due to imperfections in the model of the acquisition sys-
tem. A further on-line planning phase is then performed
to fill in the holes. Three different planning algorithms are
proposed. The first one constructs the plan incrementally
by choosing the sensing operation that is able to sense the
largest portion of unseen surface area. A quality constraint
must be satisfied in order to consider asurface point measur-
able from a given viewpoint. Namely, if the angle between
the normal to the surface in the given point and the view-
ing direction (glancing angle) exceeds agiven threshold the
point is marked as non measurable from the current view-
point. A second procedure weights each point with respect
to its glancing angle in order to balance between a short
plan and a high quality reconstructed model. A third algo-
rithm employs a simulated annealing scheme to perform a
local search on the space of viewpoints.

One of thefirst algorithmsin the class of approacheswith
no a-priori knowledge was proposed by Connolly [5]. He
partitions a spherical bounding volume using an octree rep-
resentation. All octree nodes have alabel initialised as un-
seen. When a portion of the surface is scanned, the nodes
containing the sampled surface are labelled as seen and the
regionsin the portion of the conoid between the scanner and
the surface are labelled as empty. Two algorithms are pre-
sented to compute the NBV. In the “ planetarium” algorithm
the bounding sphere surface is sampled in a number of can-
didate viewpoints. Visibility of the surface for each candi-

date position is evaluated and the NBV is selected as the
viewpoint maximising the amount of unseen nodes. Thisis
a burdensome algorithm because computing the visibility
information requires ray casting through each octree node.
The“normal” algorithm counts the area shared by the faces
of nodes which separate empty and unseen regions. Con-
sequently, only six directions are possible. The NBV is the
direction maximising the shared area. Although this algo-
rithm is computationally much cheaper with respect to plan-
etarium, it isafairly naive approach.

Maver and Bajcsy [14] proposed a planning agorithm
tailored to alight stripe range sensor constrained to transla-
tions and limited rotations in a plane above the object. Oc-
cluded regions are represented as polygons. Viewpoint vis-
ibility constraints are computed from the polygon bound-
aries. Thisagorithm cannot be easily used with other scan-
ning configurations.

Whaite and Ferrie [26] developed a model-based ap-
proach in which a parametric model (superquadric) is fit-
ted to the currently sensed data. At each step the model can
be refined minimising the uncertainty in the model itself.
Since the uncertainty is strictly tied to how well the sensed
data fits the current model, the next operation is to scan the
region where data fits the model worst. The main limit of
this algorithm is the inability of simple parametric models
to accurately represent surface detail.

A general framework for viewpoint planning is pre-
sented by Pito [18]. His algorithm assumes that the scan-
ning volume is enclosed by a surface parameterised using
a representation called positional space, consisting of two
bi-dimensional scalar fields. This representation allows to
avoid the heavy memory requirements of an octree struc-
ture. The positional space encodesthe visibility information
for each candidate viewpoint. The viewpoint which max-
imises the unseen volume is chosen as the NBV. Although
Pito’'s framework can account for every possible bound-
ing volume, since the scanner is constrained to move on its
boundary, the volume shape should be tailored to every ob-
ject. As aconseguence, in practiceit is very difficult to ob-
tain afull six DOF sensor planning agorithm in this frame-
work.

All the approaches described above, in order to
avoid collisions between the scanner and the object, as-
sume that the scanner never enters a given bounding vol-
ume. Papadopoulos-Orfanos and Schmitt [16] presented
an approach which incorporates a path planning ago-
rithm for collision avoidance. They use a laser stripe scan-
ner mounted on a robot with three translational DOF.
The acquired data is used to guide both the sensor plan-
ning and path planning algorithms. They aso exploit the
geometry of the laser stripe scanner to obtain a more ef-
ficient space carving strategy, based on direct and indi-
rect shadowing (i.e. occlusions from the light source and to



the camera). The main drawback of this approach is that
the scanning system is not allowed to rotate around the op-
tical centre. This constrains severely the shape of scannable
objects.

Reed and Allen [19] encoded three planning constraints
as operations on sets. They consider the workspace vol-
ume as a set of points. The constraints are enforced onto
the workspace by applying set operators. Viewpoints are re-
garded as constraints. Since set operations may be compu-
tationally expensive, this approach isinefficient.

Scott et alii [21] worked out a multi-stage approach in
which a coarse model acquired in a stage is used to guide
scene exploration for the fine modelling of the next stage.
An a-priori base model is needed at thefirst stage. It can be
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Figure 2. A candidate NBV. Some planning al-
gorithms do not exclude out-of-focus surface
points when computing measurability from a
viewing direction.

as simple as a bounding volume. Virtualy any number of
stages can be used but in practice a choice of two should suf-
fice. The algorithm partitions the rough model into cavities,
holes and planar patches and for each patch a set of candi-
date viewpoints is generated. A user defined measurability
function is computed for each patch of the rough model. A
simple approximated set covering algorithm is employed to
select the views that together give the best sampling of the
whole surface. This algorithm does not constrain viewpoint
space, hence full six DOF plans can be generated if a suit-
able discretisation of the viewpoint space is done. However,
finding a good discretisation is not straightforward, since
we cannot assume that the scanning system can sense all
surface datain a given direction. Namely, a slope along the
direction of optical axis may be so steep that some points
would not be imaged at al. Hence, some points' measur-
ability from a given direction may be misrepresented. Fig-
ure 2 depicts an example in which this situation occurs. The
authors do not suggest any method to cope with this prob-

lem.

M odel-based object recognition and localisation isan ex-
ample of planning problem with partial a-priori knowledge.
Given a model of the object’s shape, its pose must be de-
termined. Here an approximation of the shape is known in
advance, but not the object’s pose. Most approaches in this
class follow a common scheme [10, 11]. A search is per-
formed in the space of poses employing the hypothesis-and-
verify paradigm. Hypotheses are formed regarding the ob-
jects' identities and poses, and assessed in compliance to
some metrics. New sensing operations are performed ac-
cordingly until a halting condition is met.

A good survey of view planning algorithms can be found
in [24]. For arecent survey see [22] which also provides an
alternative and effective classification.

3. Assumptions

Complex objects may have many protrusions and par-
tially occluded concavities. In order to fulfil the scan-
ning requirement (i.e. al the “viewable” surface should be
scanned [18]), a planning algorithm should allow the scan-
ner to be positioned and oriented in every possible way.
Planning algorithms that constrain the scanner to move on
a predetermined surface (e.g. a sphere centred on the ob-
ject centre of mass), may have forbidden positions in the
sixth-order pose space that are dependent on the algo-
rithm itself, rather than on objects’ features. That is why
they are doomed to fail in meeting the scanning require-
ment.

Our agorithm, being guided by occluding patches (see Fig-
ure 3), does not have any restrictions or forbidden re-
gions and, in principle, can sample all the surface view-
able by the scanning hardware. Actualy, a quantisa
tion of the pose space is carried out, but since the pose
space is quantised uniformly the “missing” surface patches
will be smaller and smaller as the quantisation step be-
comes finer. In the limit, no missing patches will be left.
Despite many of the methods proposed in literature keep an
eye on quality and completeness of the sampled model, re-
search in this field has put the stress mainly on the gen-
eration of short plans. As a result, surface coverage is
not always satisfactory. Moreover, many proposed so-
lutions are complex and memory-consuming. On the
contrary, our approach tries to maximise quality and cover-
age, rather than minimising plan length.

In the following we will make use of the expressions oc-
cluding contour and occluding surface (refer to Figure 3) to
indicate, respectively, the border of an occluding patch, and
the surface which spans between an occluded contour and
its projection onto the back surface.



Figure 3. Occluding Surfaces - A scan is taken from a direction orthogonal to the surface. In the left
image an occluding patch casts a shadow onto the back surface. The corresponding occluding con-
tour and occluding surface are shown in the middle. On the right the resulting clusters are displayed

together with the associated normals.

4. Improving the coverage factor of a single
range map

The proposed approach falls in the class of agorithms
with no a-priori knowledge. It attempts to build a plan to
sample unseen surface by finding a small number of views
covering the occluding surface. A minimum-quality con-
straint is enforced. This section dealswith alocal approach,
which can sample holesin a single range map. It isthen ex-
tended to a global method to scan more complex models
in Section 5. Figure 4 shows the steps common to both lo-
cal and globa agorithms. The hole location phase is the

Hole Location

Face Clustering

Viewpoints computation

Figure 4. Pipeline of the proposed algorithm.
The Hole Location step differs between local
and global solutions.

only step which differs between the two algorithms.
The local method relies on the following observation.
When a range map is acquired, the data occluded to the

CCD sensor liesinside aconoid bounded by occluding con-
tours. Thus, the occluding surface separates unseen volume
from volume known to be empty. Since, we know nothing
about the unseen volume except its boundary, our idea is
to exploit this minimal knowledge and use occluding sur-
faces as aguide for planning.

In order to compute occluding surfaces, unsampled re-
gions must be located in the model. The performance of
hole location is critical for the generation of good plans.
In our local method, hole location is view-dependent as it
operatesin Q%D. Namely, the boundaries of occluding sur-
faces are detected by searching for strong height jumps in
the range map. The range map is triangulated and triangles
associated to high-quality sampled regions are filtered out,
i.e. al but very skewed triangles are removed. The result-
ing mesh is the dual of a “good-looking” surface patch. In
this way we obtain a sort of hole map, consisting of al the
faces that are to be removed from the original mesh patch.
Notice that the faces of this hole map are nearly orthogo-
nal to the viewing direction.

The hole detection phase is preceded by a smoothing op-
eration on the raw data, regarded as a height field. This
step is fundamental in order prevent overly scattered nor-
mals in the hole surface. Since the hole surface is made up
of skewed triangles the distribution of triangle normals is
usually very noisy. Smoothing the raw data also attenuates
noise in boundary data, which could cause artifacts in the
hole surface. Smoothing is further discussed in Section 6.

Once holes have been located and a mesh representa-
tion has been computed for them, mesh faces are grouped
in clusters with respect to their normals. Each cluster repre-
sents al the faces that are measurable from a single direc-
tion. A representative direction is associated to every clus-
ter. A face belongs to a cluster if its distance from the rep-
resentative direction is within a given threshold. The dis-
tance measure we employ is simply the glancing angle. The



threshold value depends on a quality function of the scan-
ning system, which is usually directly related to the glanc-
ing angle. Noticethat here we are assuming that faces point-
ing inthe samedirection can be acquired inasingleshot, i.e.
they are inside the viewing cone of the scanner optics (Fig-
ure 2). This condition is met if we assume that the whole
object lies inside the scanning volume. Anyway, it can be
avoided if a constraint on maximum euclidean distance is
embodied in the distance measure used for clustering. A
method to account for thiswill be presented later in this sec-
tion.

The clustering algorithm we employed is in the spirit of
Octree Quantisation [9]. This is a simple method used for
colour quantisation in pal ette-based colour images. Suppose
you are given a colour table that can contain at most & en-
tries. When a new colour is added to the table, if there is
a free dot in the table then you are done. Otherwise you
have to make room for the new entry. This can be done by
merging some close neighbours into one cluster. A com-
mon colour is assigned to the cluster. An octree is used to
represent the RGB space. Colour components are the co-
ordinates within the octree. Exact colours are represented
as leafs of maximum depth, while intermediate nodes rep-
resent clusters. The deeper the level of a node, the fewer
the colours it represents. Every time the number of leaves
exceeds k, some leaves are merged. In order to generate
an equally distributed partition, the leaves of deepest level
which represent the fewest pixels are chosen. Once every
pixel has been added to the octree, the colour table is given
by the leaves. The mapping from colour indices to table en-
tries can be done simply by traversing the octree structure;
when a leaf is found its colour is returned. Since unit nor-
mals have only two degrees of freedom, we implemented a
sort of “quadtree quantisation” in 2D mapping azimuth and
elevation anglesto colours.

We chose this solution in place of morewidely used clus-
tering methods, such as k-means [23], because of its sim-
plicity. Even if k-means might give better results, we do not
need to be very accurate since our knowledge of the miss-
ing data (i.e. the occluding surfaces) isimprecise. Moreover,
the gain in accuracy would be at the expenses of running-
time. Face clustering algorithms have al so been proposed in
the computer graphics community [12, 8]. However, even
if they are simple and fast as well as Octree Quantisation,
they aretoo tied to mesh topology and can give incorrect re-
sults for our application (see Figure 5).

In order to adapt this algorithm to our purposes, we have
dlightly modified the termination condition and the criterion
to choose the next merging. Namely, we choose the nodesto
be merged taking into account not only the number of nor-
mals represented (encoded as colours), but also the glanc-
ing angle with respect to the representative view direction.
Since we are interested in finding the minimum number of

Figure 5. Face clustering methods: topology-
driven methods (on the left) generate a clus-
ter for each face, while octree quantisation
correctly gives two clusters (clusters are
shown in different colours - see colour plate).

clusters that cover the whole normal distribution, the num-
ber of leaves k must be as little as possible. The merging is
thus stopped when no more merging can be carried out with-
out violating a constraint on the maximum glancing angle.

Once we have clustered face normals, the directions as-
sociated to the clusters constitute a small set of viewing di-
rections covering the holes in the current model. To com-
pute the viewing positions, we take the centroid of the ver-
tices belonging to each cluster and displace it along the
viewing direction. The displacement is determined in or-
der to alow every face of the cluster to lie inside the imag-
ing cone of the scanner (Figure 2).

Now that a small number of viewpoints has been deter-
mined, their quality can be ranked with respect to the area
of unknown surface viewed. This is done by summing up
the area of the faces in each cluster. The viewpoint associ-
ated with a given cluster gets arank proportional to its area.
A minimum area constraint can be enforced to discard low-
ranked views.

A method to get rid of the assumption that the object
must lie inside the viewing cone of the scanner is as fol-
lows. For each vertex in the cluster the distance from the op-
tical centre can be computed. A histogram of the distances
isthen built. By examining the distance histogram distribu-
tion the cluster is split in as many sub-clusters as needed, in
order to scan each sub-cluster in asingle shot. However, this
method is tricky to implement and may produce some un-
necessary viewpoints.

Better results can be obtained by integrating a constraint
on maximum Euclidean distance in the distance measure
used for clustering. We do that simply by using the full Oc-
tree Quantisation algorithm in three dimensions. Namely,
when the algorithm tries to merge neighbouring nodes it
must check not only their orientation but also their linear
distance along the candidate viewing direction. This can
be thought as constraining the clusters to lie in a volume



bounded by two planes, that is exactly what we want to do.

5. Closing Gapson a Set of Range M aps

In Section 4 we showed how to estimate a set of suit-
able viewing poses to cover reasonably well unseen areas
of arange map, using only local information. In this section
we extend this approach, to find new views which allow to
improve the coverage factor of a given set of range maps.
The main idea remains the same: first, we identify those
areas of the intermediate reconstructed surface that do not
correspond to real surface patches (or to well-sampled sur-
face); then, we cluster the normals of these fake portions of
mesh; finally, we produce a new set of viewpoints and di-
rections, based on the information gathered. The main dif-
ference with respect to the local approach is the hole loca-
tion phase. The first step is to build a closed mesh start-
ing from a set of registered range maps. This is a well
known problem, for which many solutions have been pro-
posed [6, 20, 7, 4, 15]. For our experiment we have cho-
sen a variant of the Curless and Levoy’s volumetric recon-
struction approach [6], with volumetric diffusion hole fill-
ing [7]. It is worth noting that we are not interested in ob-
taining a highly accurate model at this stage, but only an
approximate reconstructed mesh appropriate for the detec-
tion of the un-sampled portions of the original mesh. For
this reason we can reconstruct the volume with alow sam-
pling rate (i.e. with avoxel width much larger than therange
maps inter-sampling distance). Working with a low resolu-
tion voxel set allows a more efficient execution of the vol-
umetric diffusion of the discretised distance field. Volumet-
ric diffusion allowsto close holes by expanding the distance
field on the unseen region as proposed in [7]. We take care
of computing a confidence value during the volumetric dif-
fusion and reconstruction processes that helps us to identify
the surface parcels that are originated by the field expan-
sion from those that originate form real data. Figure 7(a)
shows a model before fusion (image on the left) and the re-
sulting hole-free mesh reconstructed at low resolution (im-
age on the right). The colour on the reconstructed surface
maps the confidence value using the usual colour ramp: red
indicates to surface portions that were acquired with a low
confidence, are sampled in an insufficient way, or are asso-
Ciated to holes.

The unsampled portion of the mesh can be smply de-
tected by defining a threshold on the confidence value. The
remainder of the algorithm proceeds as explained in Sec-
tion 4: the normals of faces with an insufficient confidence
value are clustered and a set of new viewpoaints is gener-
ated from clusters’ representatives. Figure 7(b) shows the
hole map and directions resulting from clustering the low-
confidence faces of the mesh shown in Figure 7(a). The fi-
nal model is shown in Figure 7(c).

6. Experimental Results

We have tested our algorithm with both synthetic and
real data. In both cases the presented method has been able
to “suggest” good viewpoints to the user, thus obtaining a
better sasmpling of the objects’ surface. Figure 6 shows some
snapshots of each step of the local agorithm. Runs of the
global algorithm are depicted in Figure 7 and Figure 8.

As can be observed from Figure 6, some gaps were
missed by the local algorithm. This depends on the smooth-
ing phase. Namely, some holes were not detected due to
the view-dependent nature of thelocal hole location method
(i.e. only hole surfaces nearly orthogonal to the viewing di-
rection can be detected). Moreover, as discussed in Sec-
tion 4, strong height jumps in the range map are associ-
ated to hole boundaries. Smoothing range data attenuates
height jumps. In order to avoid to smooth out jump edges
wetried to employ an edge-preserving smoothing filter [17].
Thisdid not work well since preserving jump edges was ob-
tained at the expenses of an unsatisfactory removal of noise
in proximity of those edges, that is exactly what we are in-
terested in filtering out. Hence the only chance to remove
noise around edges, still being able to detect holes correctly,
is to adjust the threshold used to detect badly-shaped tri-
angles with respect to the smoothing parameters. In con-
clusion, the hole detection step needs an accurate steering
of the user and therefore makes this phase of the local ap-
proach not easily executable in an unattended fashion.

This problem is not present in the global approach, as
can be observed from Figure 7. The second approach isthus
a better choice to design a semi-automatic scanning system.
On the other hand, this approach is slower than the local
one and is also more memory-demanding. The burdensome
component isthe volumetric diffusion of the volumetric dis-
tance field. However since we can run it at areduced resolu-
tion the overall timings are affordable on modern PCs. The
examplesreported in Figure 7 and Figure 8 require acouple
of minutes, which is a fairly affordable time in the frame-
work of a complex acquisition session. For that reason, we
did not take care of keeping track of timings more precisely.

A comparison in terms of performances with other ap-
proaches is hard to carry out, since authors use different
models and the meshes processed (the initial incomplete
mesh and the final result) are usually unavailable. Moreover,
timings and memory requirements are often not presented.
We believe that our approach can run faster than many pre-
vious approaches since, for example, we do not have to fit
parametric modelsto fairly complex meshes[26] or to com-
pute polygonal regionsasin[14]. Moreover, our approach is
more memory-efficient than other approaches as we encode
the un-sampled surface with just a set of normal vectors,
rather than using a volumetric model [5] or any other repre-
sentation involving the storage of dense matrices[18, 21].



(a) Range data and rel ative meshes. To theright the range data
are smoothed using agaussian filter with o = 15. Jump edges
are highly attenuated in the smoothed mesh.

(b) Hole maps: different colours refer to different repre-
sentative normals (i.e. viewpoints). A spike is shown for
each viewpoint computed (see colour plate).

Figure 6. Some snapshots showing each step of the local method on real data.

7. Concluding Remarks

We have presented an algorithm that exploits some prop-
erties of what we called occluding surface to make full six
DOF sensor plans. Since a discretisation of the viewpoint
space must be carried out, a good sampling has to be found
in order to fulfil the scanning requirement. A-priori con-
straining the viewpoint space is not a good choice, since it
does not take into account object’s surface features and can
fail to cover complex shapes. This can be easily managed
if some a-priori knowledge of the object’s shape is avail-
able, but it isafairly difficult problem if only incomplete or
no information at al is given. Our approach tries to guess
“good” sensor poses with respect to the available informa-
tion, i.e. a single scan or a set of aready scanned range
maps. The space of normals to the surface parcels separat-
ing void and unseen volumes (occluding surface) is quan-
tised. New views covering unsampled regions are chosen
by partitioning the space of nhormals using a quality thresh-
old.

The approach presented is going to beincluded in the de-
sign of a semi-automatic robotised scanner (Digital Sculp-
tor Project, in cooperation with Scienzia Machinale sir.l.)
[3]. The aim of this project is to automatise the scanning
process using a robotic arm. The software system will sup-
port: the easy setup of any of the two scanning strategies de-
scribed in the introduction (X-Y or cylindrical sweeps), the
selection of further scans needed to get a satisfactory cover-

age factor, and finally the automatic alignment of the range
maps and reconstruction of the final model. The added cost
of the robotic arm is amortised by the fact that the over-
all system is designed to support first the semi-automatic
acquisition, and then the automatic reproduction on stone
or other materials (by replacing the scanner with a drilling
tool, and computing the required drilling paths on the re-
constructed 3D model).

The main drawback of our algorithm is that it does not
take into account self-occlusions; occlusions are supposed
to be generated only by protrusions and not by deep concav-
ities. This depends on our current implementation, which
does not consider self-intersection of the surface while de-
termining the best line of sight. Although some visibility
constraint could be enforced during the clustering procedure
(e.g. adding some line-of-sight occlusion detection based on
ray-tracing), we were not yet able to find a good way to do
so without undermining the simplicity of our method. Itisa
topic for future research.

We are al so experimenting a GPU-based approach which
takes advantage of common rendering techniquesin order to
evaluate the quality of candidate viewpoints [3].
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(a) Range maps before fusion and the resulting hole- (b) Hole map and directions resulting from clustering (c) The final model ob-

free mesh. The colour on the reconstructed surface hole map face normals. Each colour encodes a cluster. tained after the cor-
maps the confidence value using the usual color ramp: Spikes represent the viewing poses computed by our responding range
red indicates surface portions that were acquired with a agorithm, and are coloured of the same colour of the maps have been ac-
low confidence, are sampled in an insufficient way, or cluster they represent. quired and merged into

are associated to holes.

the model.

(d) Some snapshots showing the same model viewed from the bottom. A large hole has been detected and split into a number of distinct clusters.

The computed views are shown as spikes. The final model is also shown.

Figure 7. Snapshots showing each step of the global method. This model was acquired by means of

a rotating platform (see colour plate).
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