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Abstract

Barycentric coordinates are unique for triangles, but there are many possible
generalizations to convex polygons. In this paper we derive sharp upper and lower
bounds on all barycentric coordinates over convex polygons and use them to show
that all such coordinates have the same continuous extension to the boundary. We
then present a general approach for constructing such coordinates and use it to show
that the Wachspress, mean value, and discrete harmonic coordinates all belong to
a unifying one-parameter family of smooth three-point coordinates. We show that
the only members of this family that are positive, and therefore barycentric, are
the Wachspress and mean value ones. However, our general approach allows us
to construct several sets of smooth five-point coordinates, which are positive and
therefore barycentric.

1 Introduction

There are many applications of triangular barycentric coordinates. They are the starting
point for the representation of Bernstein-Bézier polynomials over triangles, leading to both
parametric triangular Bézier patches in computer-aided design and to piecewise polynomi-
als (splines) over triangulations, used in terrain modelling and the finite element method.
Barycentric coordinates are also useful for simply representing a point in a triangle as
a convex combination of the vertices, and frequently occur in computer graphics when
modelling geometry with triangular meshes.

In many of these applications, it would be useful to generalize barycentric coordinates to
convex polygons and this is the topic of this paper. Let Ω be a convex polygon in the plane,
regarded as a closed set, with vertices v1, v2, . . . , vn, n ≥ 3, in an anticlockwise ordering,
see Figure 1. We will call any set of functions λi : Ω → IR, i = 1, . . . , n, barycentric
coordinates if they satisfy, for all v ∈ Ω, the three properties

λi(v) ≥ 0, i = 1, 2, . . . , n, (1)

n∑
i=1

λi(v) = 1 (2)
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Figure 1: Notation for convex polygons.

and
n∑

i=1

λi(v)vi = v. (3)

This definition does indeed generalize triangular barycentric coordinates, for in the case
n = 3, Ω is the triangle [v1, v2, v3], and the properties (2) and (3) alone determine the three
coordinates uniquely, namely

λ1(v) =
A(v, v2, v3)

A(v1, v2, v3)
, λ2(v) =

A(v1, v, v3)

A(v1, v2, v3)
, λ3(v) =

A(v1, v2, v)

A(v1, v2, v3)
,

where A(u1, u2, u3) denotes the signed area of the triangle [u1, u2, u3]. For example, with
v = (x, y) and vi = (xi, yi), we have

A(v, v2, v3) =
1

2

∣∣∣∣∣∣
1 1 1
x x2 x3

y y2 y3

∣∣∣∣∣∣ .

The functions λ1, λ2, λ3 : Ω → IR are thus linear polynomials and non-negative and have
the Lagrange property, λi(vj) = δij.

Until very recently, much if not all work on generalizations to arbitrary n was restricted
to what are often now called the Wachspress coordinates [14],

λi(v) =
wi(v)∑n

j=1 wj(v)
, (4)

with
wi(v) = A(vi−1, vi, vi+1)

∏
j �=i−1,i

A(v, vj, vj+1). (5)

While Wachspress’s application was finite elements methods, Charrot and Gregory [2]
and Loop and DeRose [9] wanted coordinates for building n-sided Bézier patches for
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computer-aided design (see also Goldman [8]). Independently of Wachspress’s work, Loop
and DeRose [9] proposed the coordinates λi of (4) but with (5) replaced by

wi(v) =
∏

j �=i−1,i

A(v, vj, vj+1), (6)

and showed that they are barycentric (i.e. they satisfy the linear precision property (3))
in the case that Ω is a regular polygon. We note that the coordinates defined by (6) are
equivalent to Wachspress’s when Ω is a regular polygon because the areas A(vi−1, vi, vi+1)
in that case are equal. Charrot and Gregory [2] used the same coordinates with Ω a regular
pentagon (n = 5).

Later, Warren [15] brought Wachspress’s work to light and also generalized some of
Wachspress’s constructions to higher dimensions. However, we first learned about Wach-
spress’s coordinates through the paper by Meyer, Lee, Barr, and Desbrun [10], who inde-
pendently proved that these coordinates have the linear precision property (3) using the
equivalent local form,

wi(v) =
A(vi−1, vi, vi+1)

A(v, vi−1, vi)A(v, vi, vi+1)
. (7)

Recently, Warren, Schaefer, Hirani, and Desbrun [17] have generalized this latter approach
to convex polyhedra in arbitrary dimensions.

Wachspress coordinates have many nice properties, such as being affine invariant; they
are unchanged when any affine transformation T : IR2 → IR2 is applied simultaneously to
the points v1, . . . , vn and v. Specifically, if we express λi as λi(v; v1, . . . , vn) to indicate the
dependency on the vertices of Ω, we have

λi(Tv; Tv1, . . . , T vn) = λi(v; v1, . . . , vn). (8)

Wachspress coordinates are clearly smooth (C∞) and also rational polynomials in the
coordinates x and y of the point v = (x, y) with degree at most n − 2. Warren [16] has
shown that this is the least possible degree.

Then recently some new, smooth barycentric coordinates were constructed in [6]. With
λi as in (4), these so-called mean value coordinates are defined by

wi(v) =
tan(αi(v)/2) + tan(αi−1(v)/2)

‖vi − v‖ . (9)

Here, αi(v) denotes the angle in the triangle [v, vi, vi+1] at the vertex v; see Figure 1.
Though these coordinates are not affine invariant, they have the invariance (8) whenever
T is a similarity, i.e. a combination of translation, rotation, or uniform scaling. The
motivation and advantage of these coordinates is that they allow a vertex of a planar
triangulation to be expressed as a convex combination of its neighbouring vertices, i.e.,
they allow Ω to be non-convex, specifically star-shaped, provided v belongs to the kernel
of Ω. Mean value coordinates have been applied to surface parameterization in [6] and to
morphing of triangulations and polygons in [13]. Of course, under our assumption that Ω
is convex, the kernel of Ω is the whole of its interior Int(Ω), so the mean value coordinates
are well defined for all v in Int(Ω), but, as we will see, these coordinates extend in a natural
way to the boundary ∂Ω as well.
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Figure 2: Upper bound (a) and lower bound (b).

The fact that we now had two different sets of smooth barycentric coordinates for
convex polygons prompted us to investigate barycentric coordinates in more generality:
both to explore their general properties and to try to construct more coordinates with
desirable properties.

We begin in Section 2 by deriving sharp upper and lower bounds on each coordinate
function λi and use them to show that all barycentric coordinates which are continuous in
the interior Int(Ω), such as in (9), extend continuously to the boundary ∂Ω.

In Section 3 we give a general method for constructing barycentric coordinates. Then
specializing to 3-point coordinates, we show in Section 4 that the Wachspress, mean value,
and discrete harmonic coordinates [11, 4] are all related in the sense that they all belong to
an interesting one-parameter family of functions. We show, however, that the only mem-
bers of this family which are true barycentric coordinates (i.e. positive) are the Wachspress
and mean value ones. This motivates us to widen our net and to consider 5-point coordi-
nates in Section 5, and we succeed in constructing several new sets of smooth barycentric
coordinates. Some, like the Wachspress coordinates, have affine invariance and others, like
the mean value coordinates, extend to the kernels of star-shaped polygons. We complete
the paper with some illustrative numerical examples.

2 General properties

An important and easily derived property which Wachspress’s coordinates inherit from
barycentric coordinates over triangles is that they are linear along each edge [vj, vj+1] of
Ω and satisfy the Lagrange property λi(vj) = δij at the vertices. In what follows we will
show that all barycentric coordinates which are continuous in Int(Ω) extend continuously
to these same boundary values. We achieve this by deriving upper and lower bounds on
each coordinate function λi over Ω, which agree on the boundary ∂Ω. We also show that
these two bounds are sharp and we think this makes them interesting in their own right.

For each i ∈ {1, . . . , n}, let Li : Ω → IR be the continuous piecewise linear function
which is linear on each triangle of the form [vj, vj+1, vi], j �= i − 1, i, and has the values
Li(vj) = δij at the vertices of Ω; as in Figure 2a.

Conversely, let �i : Ω → IR be the function which is linear on the triangle [vi−1, vi, vi+1]
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and zero on Ω \ [vi−1, vi, vi+1], with �i(vj) = δij at the vertices; see Figure 2b.

Proposition 1 Let D be any subset of Ω and suppose the functions λ1, . . . , λn : D → IR
satisfy the three defining properties of barycentric coordinates, (1), (2) and (3), for v ∈ D.
Then, for i = 1, . . . , n,

0 ≤ �i(v) ≤ λi(v) ≤ Li(v) ≤ 1, v ∈ D. (10)

Proof. Any point v ∈ D, being a point in Ω, belongs to at least one triangle [vi, vj, vj+1],
j �= i − 1, i. The two properties (2) and (3) imply linear precision and since A(v, vj, vj+1)
is linear in v,

A(v, vj, vj+1) =
n∑

k=1

λk(v)A(vk, vj, vj+1) ≥ λi(v)A(vi, vj, vj+1),

the latter inequality due to the positivity property (1). This implies that

λi(v) ≤ A(v, vj, vj+1)/A(vi, vj, vj+1) = Li(v).

The opposite inequality, �i(v) ≤ λi(v), is trivial if v is outside the triangle [vi−1, vi, vi+1],
for then �i(v) = 0. So suppose v ∈ [vi−1, vi, vi+1]. Then, since A(v, vi+1, vi−1) is linear in v,

A(v, vi+1, vi−1) =
n∑

k=1

λk(v)A(vk, vi+1, vi−1)

= λi(v)A(vi, vi+1, vi−1) −
∑

k �=i−1,i,i+1

λk(v)A(vk, vi−1, vi+1)

≤ λi(v)A(vi, vi+1, vi−1)

which implies that

λi(v) ≥ A(v, vi+1, vi−1)/A(vi, vi+1, vi−1) = �i(v).

�

Letting D = Ω, and noting that Li and �i agree on the boundary ∂Ω, we have the
following consequence.

Corollary 1 If λ1, . . . , λn : Ω → IR is any set of barycentric coordinates then, for i =
1, . . . , n,

�i(v) ≤ λi(v) ≤ Li(v), v ∈ Ω. (11)

and
�i(v) = λi(v) = Li(v), v ∈ ∂Ω, (12)

and therefore λi is linear on each edge [vj, vj+1] and satisfies λi(vj) = δij.

A further consequence is that it is sufficient to define barycentric coordinates only in
the interior of Ω.
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Corollary 2 Suppose λ1, . . . , λn : Int(Ω) → IR are continuous and satisfy the three prop-
erties (1), (2) and (3) on Int(Ω). Then they are continuous barycentric coordinates in
the sense that they have a unique continuous extension to Ω and therefore satisfy (1), (2)
and (3) on the whole of Ω.

Proof. If w is any point in ∂Ω and w1, w2, . . ., is any sequence of points in Int(Ω) such that
limk→∞ wk = w, then since

�i(wk) ≤ λi(wk) ≤ Li(wk),

and
lim

k→∞
�i(wk) = lim

k→∞
Li(wk) = �i(w),

we have
lim
k→∞

λi(wk) = �i(w) = Li(w).

�

Thus from now on, if we construct continuous functions λ1, . . . , λn satisfying the three
basic properties (1), (2) and (3) in Int(Ω), we are justified in viewing them as continuous
barycentric coordinates on the whole of Ω.

The reader might now be wondering whether the functions L1, . . . , Ln themselves form
a set of barycentric coordinates and the same for �1, . . . , �n. However, a little thought
shows that this is not the case for n > 3. For example with n = 4, Ω a square, and v its
centre, we have Li(v) = 1/2 and �i(v) = 0 for all i = 1, 2, 3, 4 and so

∑
i Li(v) = 2 > 1 and∑

i �i(v) = 0 < 1.
Nonetheless, for each i = 1, . . . , n, the functions Li and �i are special because, as we

will show next, they are themselves i-th barycentric coordinates. We will call any function
λi : Ω → IR an i-th barycentric coordinate if it is the i-th member of some set of barycentric
coordinates λ1, . . . , λn : Ω → IR.

This immediately implies that Li and �i are the least upper bound and greatest lower
bound on λi in inequality (11).

Proposition 2 The functions Li and �i are i-th barycentric coordinates Ω → IR.

Proof. To see that Li is an i-th barycentric coordinate, let Ti be the triangulation consisting
of the n − 2 triangles [vj, vj+1, vi], j �= i − 1, i. Then let Li,1, . . . , Li,n : Ω → IR be the
continuous piecewise linear functions which are linear on each triangle in Ti and satisfy
Li,k(vj) = δkj. Then Li,1, . . . , Li,n are clearly a set of barycentric coordinates, because in
each triangle [vj, vj+1, vi], j �= i − 1, i, only Li,j, Li,j+1, and Li,i are non-zero and these
three functions are themselves barycentric coordinates with respect to [vj, vj+1, vi]. Thus
Li = Li,i is an i-th barycentric coordinate.

Conversely, let Si be any triangulation of Ω in which one of the triangles is [vi−1, vi, vi+1],
and let �i,1, . . . , �i,n : Ω → IR be the associated continuous piecewise linear functions, i.e.,
which are linear on each triangle in Si and such that �i,k(vj) = δkj. Then �i,1, . . . , �i,n

are also a set of barycentric coordinates and so �i = �i,i is therefore an i-th barycentric
coordinate. �

In fact all functions between the upper and lower bounds are i-th barycentric coordi-
nates.
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Proposition 3 A function λi : Ω → IR is an i-th barycentric coordinate if and only if

�i(v) ≤ λi(v) ≤ Li(v), v ∈ Ω. (13)

Proof. We have already shown that inequality (13) is necessary for λi to be an i-th barycen-
tric coordinate. To show that the inequality is also sufficient, note that it implies that

λi = (1 − α)�i + αLi

for some function α : Ω → IR with 0 ≤ α ≤ 1. But now, referring to the proof of
Proposition 2, let

λi,j = (1 − α)�i,j + αLi,j

for j = 1, . . . , n. It is easy to check that λi,1, . . . , λi,n form a set of barycentric coordinates
and since λi = λi,i, this means that λi is indeed an i-th barycentric coordinate. �

The above results lead to one further interesting property of barycentric coordinates for
convex polygons. Since the function �i is clearly convex as well as satisfying �i(vj) = δij, a
result of Dahmen and Micchelli [3] (see also [1]) shows that �i is the pointwise maximum
of all convex functions f on Ω which satisfy f(vj) = δij. Conversely, Li is concave and the
pointwise minimum of all concave functions f on Ω such that f(vj) = δij. Therefore

Proposition 4 Suppose λ1, . . . , λn : Ω → IR are barycentric coordinates. For each i, if λi

is convex then λi = �i and if λi is concave then λi = Li. So if λi is differentiable in Int(Ω)
then it is neither convex nor concave.

This last result confirms what we have seen in all our numerical examples. We tend to
see coordinate functions which are “saddle-like”, i.e. at each point the Hessian is indefinite.
This suggests letting λi be the unique solution to the Laplace equation

∆λi = 0,

subject to the Dirichlet boundary condition

λi|∂Ω = �i|∂Ω.

Using the maximum principle [12] and the fact that linear bivariate functions are harmonic,
it is easy to show that these harmonic coordinates λ1, . . . , λn constitute a set of smooth
barycentric coordinates with similarity invariance. Moreover, they clearly extend to any
polygon. However, since it appears that no explicit formula for these coordinates is known,
they are less attractive for computational purposes.

We make one final remark in this section. Though we are primarily concerned with
smooth coordinates, it can easily be checked that the piecewise linear functions

λi :=
1

n

n∑
k=1

Lk,i,

where the functions Li,j were defined in the proof of Proposition 2, are the shape-preserving
coordinates of [5], which are only C0.
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3 Construction of coordinates

We will now describe a general method of constructing smooth barycentric coordinates, and
in particular show that there are many sets of smooth barycentric coordinates other than
the Wachspress and mean value coordinates. We will only consider barycentric coordinates
λi which are invariant to similarities. In fact Wachspress coordinates are special in that
they have full affine invariance, i.e. they are in addition invariant to non-uniform scalings
(e.g. a scaling in just the x coordinate). However, in many applications, uniform scale
invariance is usually sufficient.

First we note that due to Corollary 2, we have only to find continuous functions λi

satisfying (1), (2) and (3) for points v in the interior of Ω, in order to construct continuous
barycentric coordinates on the whole of Ω. However, we wish to find coordinates which
are as smooth as possible in the interior. Next, we note that the normalization in (4) is a
common feature of many sets of barycentric coordinates. Clearly, if we can find functions
wi : Int(Ω) → IR such that

wi(v) > 0, i = 1, 2, . . . , n, (14)

and
n∑

i=1

wi(v)(vi − v) = 0, (15)

then the normalized functions λi in (4) are well-defined and satisfy (1), (2) and (3). For
convenience, we will call any set of functions wi : Int(Ω) → IR satisfying (15) homogeneous
coordinates. Our approach is to first give a very general formula for homogeneous coordi-
nates. Later we will search for special cases in which the coordinates are also positive. In
what follows we will define the three signed triangle areas

Ai(v) = A(v, vi, vi+1), Bi(v) = A(v, vi−1, vi+1), Ci = A(vi−1, vi, vi+1). (16)

We note that
Ai−1(v) + Ai(v) = Bi(v) + Ci, (17)

and that due to the convexity of Ω, we have Ai(v) > 0 for all v in Int(Ω), and Ci > 0,
but the sign of Bi(v) depends on which side of the line segment [vi−1, vi+1] the point v is
located; see Figure 1.

Proposition 5 Let c1, c2, . . . , cn : Int(Ω) → IR be any real functions. Then the functions

wi =
ci+1Ai−1 − ciBi + ci−1Ai

Ai−1Ai

, (18)

are homogeneous coordinates, i.e., satisfy Equation (15).

Proof. By expressing v ∈ Int(Ω) as a barycentric combination of vi−1, vi, vi+1, we have

Ai(v)(vi−1 − v) + Ai−1(v)(vi+1 − v) − Bi(v)(vi − v) = 0, (19)

or alternatively,

Di(v) :=
vi−1 − v

Ai−1(v)
+

vi+1 − v

Ai(v)
− Bi(v)

Ai−1(v)Ai(v)
(vi − v) = 0. (20)
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Thus any linear combination of the Di is also zero, i.e.,

n∑
i=1

ci(v)Di(v) = 0.

But this equation can be rearranged, by two changes of summation index, to be Equa-
tion (15) with weights wi given by (18). �

We have now further simplified our task. No matter which functions c1, . . . , cn we
choose, the functions w1, . . . , wn in (18) will be homogeneous coordinates. It remains to
choose c1, . . . , cn to ensure that the wi are also positive in Int(Ω).

As we will see later, the point about the particular form of (18) is that if each function
ci is chosen to depend only on vi and one or more neighbours on either side of vi (e.g. vi−1

and vi+1), then the function wi will also have a local dependence. However, there is really
nothing special about the form of the functions wi in (18); they can all be expressed in
this way.

Corollary 3 Any set of homogeneous coordinates w1, . . . , wn : Int(Ω) → IR can be ex-
pressed in the form of (18).

Proof. Let c1 and c2 be arbitrary functions Int(Ω) → IR and define c3, . . . , cn recursively
by

ci+1 = (Ai−1Aiwi + ciBi − ci−1Ai)/Ai−1, i = 2, . . . , n − 1. (21)

Now set

ŵi =
ci+1Ai−1 − ciBi + ci−1Ai

Ai−1Ai

, i = 1, . . . , n, (22)

and we claim that ŵi = wi for i = 1, . . . , n. That this holds for i = 2, . . . , n − 1 follows
immediately from (21). Moreover, Proposition 5 shows that the ŵi satisfy (15) and so

ŵ1(v)(v1 − v) + ŵn(v)(vn − v) = −
n−1∑
i=2

ŵi(v)(vi − v)

= −
n−1∑
i=2

wi(v)(vi − v) = w1(v)(v1 − v) + wn(v)(vn − v).

Since v1−v and vn−v are linearly independent vectors, we can equate coefficients, yielding
ŵ1 = w1 and ŵn = wn. �

Note that there is an alternative way of expressing wi in (18) which may be useful at
times. If we let

ri(v) = ‖v − vi‖,
and recall that αi(v) denotes the angle in the triangle [v, vi, vi+1] at v, then we have

Ai(v) = ri(v)ri+1(v) sin αi(v)/2,
Bi(v) = ri−1(v)ri+1(v) sin(αi−1(v) + αi(v))/2,
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and it follows that

wi =
2

ri

(
ci+1

ri+1 sin αi

− ci sin(αi−1 + αi)

ri sin αi−1 sin αi

+
ci−1

ri−1 sin αi−1

)
(23)

or, letting ai = ci/ri,

wi =
2

ri

(
ai+1 − ai cos αi

sin αi

+
ai−1 − ai cos αi−1

sin αi−1

)
. (24)

4 Three-point coordinates

Let us begin by setting ci = rp
i in (18), where p is any real number (positive or negative).

We then obtain an interesting one-parameter family of homogeneous coordinates

wi,p =
rp
i+1Ai−1 − rp

i Bi + rp
i−1Ai

Ai−1Ai

, (25)

which are C∞ in Int(Ω), and associated normalized functions

λi,p =
wi,p∑n
j=1 wj,p

, (26)

which are valid whenever the numerator is non-zero. Since each coordinate wi,p depends
only on vi−1, vi, and vi+1, we call the wi,p three-point coordinates. It is easy to see that
the functions λi,p are invariant to similarities. It may at times be helpful to use the angle
formulation (24) which gives

wi,p =
2

ri

(
rp−1
i+1 − rp−1

i cos αi

sin αi

+
rp−1
i−1 − rp−1

i cos αi−1

sin αi−1

)
. (27)

We next see how the Wachspress and mean value coordinates are two members of this
one-parameter family.

Proposition 6 The functions λi,0 are the Wachspress coordinates and the functions λi,1

are the mean value coordinates.

Proof. Recalling identity (17), if we let p = 0 in (25), we get

wi,0 =
Ci

Ai−1Ai

, (28)

which is equivalent to (7). If on the other hand we let p = 1, then Equation (27) implies

wi,1 =
2

ri

(
1 − cos αi

sin αi

+
1 − cos αi−1

sin αi−1

)
, (29)

which is equivalent to (9) up to the factor 2 that cancels out in the normalization (4). �
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We have now seen two choices of the exponent p which lead to barycentric coordinates
λi,p. An obvious question is whether there are other such choices. Before treating this gen-
eral question, consider next a third interesting choice, namely p = 2. From Equation (27),
we have

wi,2 = 2

(
ri+1 − ri cos αi

ri sin αi

+
ri−1 − ri cos αi−1

ri sin αi−1

)
, (30)

and using a little trigonometry, we find

wi,2 = 2(cot γi + cot βi−1), (31)

where βi−1 is the angle in the triangle [v, vi−1, vi] at corner vi−1 and γi the angle in the
triangle [v, vi, vi+1] at corner vi+1; see Figure 1. We recognize these homogeneous coor-
dinates, once normalized, as the discrete harmonic coordinates arising from the standard
piecewise linear finite element approximation to the Laplace equation studied by Pinkall
and Polthier [11] and Eck et al. [4]. We have therefore shown

Proposition 7 The functions λi,2 are the discrete harmonic coordinates.

However, as is well known, these coordinates are rarely barycentric coordinates for
they are rarely positive for an arbitrary convex polygon Ω. In fact, using the fact that
cot γi + cot βi−1 is positive if and only if γi + βi−1 < π (see [7]), we establish the following:

Proposition 8 If Ω is a convex polygon such that the discrete harmonic coordinates λi,2

are positive at all points in its interior then all its vertices v1, . . . , vn lie on a circle.

Proof. It is enough to show that every sequence of four vertices vi−1, vi, vi+1, vi+2 are
co-circular. Let Q denote the quadrilateral formed by vi−1, vi, vi+1, vi+2. From [7] we
know that

∑n
j=1 wj,2(v) is positive for any v ∈ Int(Ω). Therefore, since λi,2(v) is positive,

so is wi,2(v) and so γi + βi−1 < π. Letting v converge to vi+2, this means that the sum of
the two opposite interior angles of Q at the vertices vi−1 and vi+1 is at most π. Conversely,
since λi+1,2(v) > 0, letting v → vi−1 shows that the sum of the two other interior angles of
Q is also less than or equal to π. But this is only possible if both pairs of opposite angles
sum to exactly π in which case vi−1, vi, vi+1, vi+2 are co-circular. �

Somewhat curiously, it turns out that in this special circle case, the discrete harmonic
coordinates are in any case the same as the Wachspress coordinates. We first observed this
equivalence numerically but later found the following proof. As far as we know, this has
not been noticed before.

Proposition 9 If the vertices v1, . . . , vn lie on the unit circle around the origin, then

wi,2(v) = (1 − ‖v‖2)wi,0(v), v ∈ Int(Ω), (32)

and therefore λi,2 = λi,0.
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Proof. Fix v ∈ Int(Ω) and let r = ‖v‖. By rotational invariance we may assume that
v = (r, 0) and using polar coordinates we have

vi = (cos ϕi, sin ϕi)

for some ϕ1, . . . , ϕn. Then

r2
i = ‖vi − v‖2 = (cos ϕi − r)2 + (sin ϕi)

2 = 1 + r2 − 2r cos ϕi. (33)

In this particular representation we can write the triangle areas from (16) as

Ai = ((cos ϕi − r) sin ϕi+1 − sin ϕi(cos ϕi+1 − r))/2

Bi = ((cos ϕi−1 − r) sin ϕi+1 − sin ϕi−1(cos ϕi+1 − r))/2

and establish the identity

cos ϕi+1Ai−1 − cos ϕiBi + cos ϕi−1Ai = r(Ai−1 − Bi + Ai). (34)

Equations (25), (33) and (34) now imply

wi,2AiAi−1 = r2
i+1Ai−1 − r2

i Bi + r2
i−1Ai

= (1 + r2)(Ai−1 − Bi + Ai) − 2r(cos ϕi+1Ai−1 − cos ϕiBi + cos ϕi−1Ai)

= (1 + r2)(Ai−1 − Bi + Ai) − 2r2(Ai−1 − Bi + Ai)

= (1 − r2)wi,0AiAi−1

which is equivalent to (32). �

We have now seen that the coordinates λi,0 and λi,1 are barycentric, i.e., positive, for
all convex polygons Ω while the coordinates λi,2 are in general not. We will next prove the
somewhat remarkable result that the exponents p = 0 and p = 1 are the only exponents
for which the coordinates λi,p are positive for all convex polygons. To this end it will help
to consider for the moment the more general three-point coordinates

wi,f =
f(ri+1)Ai−1 − f(ri)Bi + f(ri−1)Ai

Ai−1Ai

(35)

where f : (0,∞) → IR is an arbitrary function. We give a classification of all C2 functions
f for which the coordinates wi,f are positive inside all convex polygons.

Proposition 10 Suppose f belongs to C2(0,∞). Then the homogeneous coordinates wi,f

in (35) are positive in Int(Ω) if and only if f satisfies the conditions

(i) positivity: f(r) > 0,

(ii) monotonicity: f ′(r) ≥ 0,

(iii) sublinearity: f(r) ≥ rf ′(r),

(iv) convexity: f ′′(r) ≥ 0.

12



Proof. Assume first that f satisfies conditions (i) to (iv). Using the two Taylor series

f(ri±1) = f(ri) + (ri±1 − ri)f
′(ri) + (ri±1 − ri)

2f ′′(η±)/2,

with η± some point between ri and ri±1, we find

wi,f = wi,0(f(ri) − rif
′(ri)) + wi,1f

′(ri)

+
(
(ri+1 − ri)

2Ai−1f
′′(η+) + (ri−1 − ri)

2Aif
′′(η−)

)
/(2Ai−1Ai)

≥ wi,0(f(ri) − rif
′(ri)) + wi,1f

′(ri)

which clearly is positive because wi,0 and wi,1 are always positive in (35) and the two factors
cannot both be zero at the same time.

We will now show that conditions (i) to (iv) are necessary by creating a series of
counter-examples. Let ri = r, ri−1 = s, ri+1 = t be positive and αi−1 = αi = α for some
α ∈ (0, π). Then we have Ai−1 = rs sin(α)/2, Ai = rt sin(α)/2, and Bi = st sin(2α)/2 and
the convexity condition Ci > 0 holds as long as

cos α <
r

2

(
1

s
+

1

t

)
. (36)

We further see that wi,f ≤ 0 is equivalent to

f(r) cos α ≥ r

2

(
f(s)

s
+

f(t)

t

)
. (37)

If f does not satisfy (i), then there exists an r > 0 with f(r) ≤ 0 and (36) and (37) hold for
s = t = r and any α. If f does not satisfy (ii), then there exist some s > r with f(s) < f(r).
Now we choose t = s and α such that cos α = (1 − ε)r/s. Then, (36) and (37) hold if ε is
sufficiently small. Condition (iii) is equivalent to the property (∂/∂r)(f(r)/r) ≥ 0. Thus if
f does not satisfy (iii), then there exist some r > s with f(r)s > f(s)r and (36) and (37)
hold for t = s if α is sufficiently small.

Consider now the function g(r) = rf(1/r) with g′′(r) = f ′′(1/r)/r3. If f does not
satisfy (iv) then there exists an r > 0 with f ′′(r) < 0 and g′′(1/r) < 0. There also exists
an h > 0 such that g(1/r) > (g(1/r − h) + g(1/r + h))/2, or equivalently,

f(r)

r
>

1

2

(
f(s)

s
+

f(t)

t

)

with s = r/(1− rh) and t = r/(1 + rh). Clearly, (36) and (37) hold for this choice of r, s,
and t and sufficiently small α. �

We now use the necessity conditions (i) to (iv) to show the uniqueness of the Wachspress
and mean value coordinates.

Corollary 4 The only members of the one-parameter family of homogeneous coordinates
wi,p which are positive for all convex polygons are the Wachspress and mean value coordi-
nates.
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Proof. We show that the only choices of p for which f(r) = rp satisfies conditions (i) to (iv)
of Proposition 10 are p = 0 and p = 1. We must have p ≥ 0 in order that f ′(r) ≥ 0. We
cannot have 0 < p < 1 because we need f ′′(r) ≥ 0. Thus either p = 0 or p ≥ 1. But we
cannot have p > 1 for this would violate the condition that f(r) ≥ rf ′(r). �

It follows that the Wachspress coordinates are the only ones from the one-parameter
family wi,p which are both positive and affine invariant in any convex polygon and that the
mean value coordinates are the only ones which are positive in the kernel of any star-shaped
polygon.

There are other choices of functions f that satisfy the conditions of Proposition 10, such
as the function f(r) = 1 + r. However, it appears to us that the only choice of f which
gives coordinates with uniform scale invariance is f(r) = rp. Without this invariance we
do not think the coordinates would have much value. We are not able to prove this but it
seems to us that the only way to get scale invariance is when we have homogeneity, i.e.

f(αr) = g(α)f(r), (38)

for some function g. Then if both functions f and g are differentiable, we can differentiate
this equation with respect to α and let α = 1, giving

rf ′(r) = g′(1)f(r).

This first order differential equation has the general solution

f(r) = µrp,

with p = g′(1) and µ an arbitrary constant which would cancel out in the normalization (4).

5 Five-point coordinates

We have now seen that the Wachspress and mean value coordinates are the only barycentric
coordinates among the three-point coordinates of the previous section. But somewhat
surprisingly it turns out that there are whole families of barycentric five-point coordinates,
i.e. for which wi depends on the five vertices vi−2, . . . , vi+2. Such coordinates result from
functions ci in (18) which depend only on the three vertices vi−1, vi, vi+1. In order to show
the positivity of these coordinates, recall from (18) that wi > 0 if and only if

ciBi < ci+1Ai−1 + ci−1Ai (39)

and that this inequality is trivially satisfied if Bi ≤ 0, provided ci > 0.

Proposition 11 For any real value µ with 0 ≤ µ ≤ 1, the choice

c1
i,µ = 1 + µ

Ci

Ai−1 + Ai

(40)

gives positive homogeneous coordinates w1
i,µ.

14



Proof. For any admissible µ we have 1 ≤ c1
i,µ ≤ 1 + Ci/(Ai−1 + Ai) for all i = 1, . . . , n and

c1
i+1,µAi−1 + c1

i−1,µAi − c1
i,µBi ≥ Ai−1 + Ai −

(
1 +

Ci

Ai−1 + Ai

)
Bi =

C2
i

Ai−1 + Ai

> 0

if Bi > 0. �

Note that the associated barycentric coordinates λ1
i,µ have full affine invariance and

generalize the Wachspress coordinates because λi,0 = λ1
i,0. Moreover, these coordinates are

clearly rational polynomials and it is easy to show that their degree is at most 2n − 1 but
in agreement with [16] greater or equal to n − 2.

We further remark that the constant µ could be replaced for each i = 1, . . . , n by any
function µi : Int(Ω) → [0, 1]. For example, all three choices

µi =
2Ai−1Ai

(Ai−1 + Ai)2
, µi = sin

(
Ai−1Ai

(Ai−1 + Ai)2
π

)
, µi =

Ci

1 + Ci

(41)

depend only on the three vertices vi−1, vi, vi+1. So all of them yield 5-point barycentric
coordinates and the first two have full affine invariance.

Two further families of five-point coordinates are based on the following sufficient con-
dition for the positivity of homogeneous coordinates.

Lemma 1 Suppose that the functions ci in (18) satisfy ci ≥ ri for all i = 1, . . . , n and

ci <
ri+1Ai−1 + ri−1Ai

Bi

(42)

for all i for which Bi > 0. Then all the homogeneous coordinates w1, . . . , wn in (18) are
positive in Int(Ω).

Proof. If Bi > 0 then (39) is clearly implied by ci+1 ≥ ri+1 and ci−1 ≥ ri−1 and (42). �

In what follows it will be more convenient to rewrite (42) in terms of the angles αi,

ci < ri
sin αi−1 + sin αi

sin(αi−1 + αi)
(43)

and remember that Bi > 0 is equivalent to αi−1 + αi < π.

Proposition 12 For any real value µ with 0 ≤ µ ≤ 1, the choice

c2
i,µ = ri

(1 + µ)(sin αi−1 + sin αi)

sin αi−1 + sin αi + µ sin(αi−1 + αi)

gives positive homogeneous coordinates w2
i,µ.

Proof. Since
sin(αi−1 + αi) < sin αi−1 + sin αi,

it is easy to show that c2
i,µ ≥ ri for all i, and

c2
i,µ < ri

sin αi−1 + sin αi

sin(αi−1 + αi)

for αi−1 + αi < π. �
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Proposition 13 For any real value µ with 0 ≤ µ ≤ 1, the choice

c3
i,µ = ri

cos(µ(αi−1 − αi)/4)

cos(µ(αi−1 + αi)/4)
,

gives positive homogeneous coordinates w3
i,µ.

Proof. A simple calculation shows that if

c(µ) = ri
cos(µ(αi−1 − αi)/4)

cos(µ(αi−1 + αi)/4)
,

then

c′(µ) = ri
αi sin(µαi−1/2) + αi−1 sin(µαi/2)

4 cos2(µ(αi−1 + αi)/4)
≥ 0

with strict positivity for µ > 0. Therefore, c(µ) ≥ c(0) = ri and

c(µ) < c(2) = ri
sin αi−1 + sin αi

sin(αi−1 + αi)

in the case that αi−1 + αi < π. �

Note that both families generalize the mean value coordinates since λi,1 = λ2
i,0 = λ3

i,0

and likewise extend to the kernels of star-shaped polygons. Again we could replace µ for
each i = 1, . . . , n by any function µi : Int(Ω) → [0, 1], for example, any of the three choices
in (41).

6 Examples

Let us now study some numerical examples for the different barycentric coordinates that we
have discussed in this paper. We compare on the one hand the affine invariant Wachspress
coordinates λi,0 and their generalization λ1

i,1 and on the other the mean value coordinates
λi,1 and their generalizations λ2

i,1 and λ3
i,1. In all the examples we visualized the contour

lines of the coordinate functions at intervals of 0.05, ranging from 0 to 1.
The first example in Figure 3 shows the results for some regular polygons. The different

coordinate functions are very much alike except that the affine invariant coordinates tend
to have more densely spaced contours near the corresponding vertex, i.e. their derivative
is larger. This behaviour becomes even more apparent in the top row of Figure 4. This
second example displays two coordinate functions for the irregular hexagon with vertices
v1 = (4, 2), v2 = (3.6, 4), v3 = (0, 3), v4 = (1, 0.5), v5 = (3.2, 0), v6 = (4, 1).

From both examples we conclude that this phenomenon occurs for a coordinate function
λi whenever the angle of the polygon at the corresponding vertex vi is very obtuse. We stud-
ied this effect by taking as a polygon the square with vertices v1 = (−1, 1), v2 = (−1,−1),
v3 = (1,−1), v4 = (1, 1) and one additional vertex v5, first at (0, 1.1), then at (0, 1.01).
The top two rows of Figure 5 show the coordinate functions for v5 in both cases. It seems
that the Wachspress coordinate λ5,0 converges to the lower bound �5 (see Section 2) as the
angle at v5 approaches π and that the derivatives of λ5,0 near v5 thus become arbitrarily
large. The latter also seems to be the case for the generalized Wachspress coordinate λ1

5,1.
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Wachspress
5-point

Wachspress mean value
5-point

mean value I
5-point

mean value II

λi,0 λ1
i,1 λi,1 λ2

i,1 λ3
i,1

Figure 3: Coordinate functions for some regular convex polygons.

On the other hand, the mean value coordinates and their generalizations are more robust
against obtuse angles and their derivatives seem to be bounded. Both statements also
seem to hold for the neighbouring coordinate functions as shown in the bottom two rows
of Figure 5.
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