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A new algorithm for the integration of par-
tially overlapping range images into a tri-
angular mesh is presented. The algorithm
consists of three main steps: it locates the in-
tersections between the range surfaces and
a reference grid chosen by the user, then
merges all nearly coincident and redundant
intersections according to a proximity cri-
terion, and, finally, reconstructs the merged
surface(s) from the filtered intersection set.
Compared with previous methods, which
adopt a volumetric approach, our algorithm
shows lower computational costs and im-
proves the accuracy of the surfaces pro-
duced. It takes into account the quality of
the input measurements and is able to patch
small holes corresponding to the parts of the
3D scanned object that were not observed by
the acquisition device.
The algorithm has been tested on several
datasets of range maps; graphical and nu-
meric results are reported.
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The need for 3D digital models of real objects is
rapidly increasing in many applications, from re-
verse engineering to the authoring of 3D virtual
worlds. An increasing availability of 3D scanning
devices has responded to this need. The selection
of range scanners currently offered in the market
is wide not only in terms of manufacturers but also
the different technologies used (active vs. passive de-
vices, casting laser light or structured normal light),
scanning resolution and accuracy, and cost. 3D scan-
ning a real object is not as easy as taking a photo-
graph; the construction of a 3D digital replica re-
quires a set of sequential and correlated phases:
3D scanning: The proper input step. Range sensors

capture 3D surface measurements with respect to a
2D image plane. For each view of the object a 2.5D
range image is obtained.1 Multiple view range im-
ages are required to capture the entire surface of
the object.

Data registration: The range data are aligned to
transform all the measurements into a common
Euclidean space.

Data fusion (or merge): All the data are merged into
a single 3D surface model. In this phase, the small
holes resulting from the fact that parts of the in-
put model are invisible to the acquisition sensor or
the small topological anomalies due to acquisition
noise must be corrected.

Other processing steps could be directly connected
to the creation of the 3D digital model depending on
the complexity of the object to be acquired, the re-
quirements of the target application, and the quality
of the final model. These further activities are not
correlated or sequential, but they can be very impor-
tant for the acquisition process and/or for improving
the final product.
Acquisition planning: The selection of the optimal

set of views for the acquisition of the object is im-
portant. The availability of a semiautomatic tool
for the identification of the next views to capture
the whole surface would simplify and speed up the
entire process.

Surface properties acquisition: In many applica-
tions, the acquisition of the geometry of the object
is not sufficient to build a digital model. Color
and texture information have to be collected and
mapped onto the object surface [3, 11, 29].

1 A range image contains the depth information of each image
point in the viewing direction (direction toward the sensor).
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Model simplification and detail preservation: Range
scanners return a huge number of samples, and,
as a consequence, heavy, noninteractive models
are built. The simplification of the geometric com-
plexity of the surfaces is considered a mandatory
step and should be able to manage huge triangle
meshes [6]. Simplification often leads to a loss of
pictorial and geometric (high-frequency) details;
appropriate texture and bump mapping techniques
have to be developed to overcome these hitches,
which can seriously affect the quality of the digital
model [5].

All the activities previously summarized require
high processing times and/or heavy manual inter-
vention. Nowadays, the software pipeline between
the 3D range scanning and the final digital models is
doubtless the bottleneck for so-called 3D photogra-
phy: solutions for some of the stages above are still
missing, some stages are not sufficiently fast, and
the overall complexity of the software needed makes
the process still excessively complex for potential,
non-CG-expert users.
In this work we are concerned with the data fusion
step. We present a new algorithm for the simultane-
ous fusion of multiple, partially overlapping range
images. Our algorithm first locates the intersections
between the range surfaces and a reference grid; the
grid resolution is generally chosen by the user, who
selects a grid cell size related to the scanning reso-
lution. The grid is not explicitly represented because
we do not store or maintain distance values on the
grid nodes, as is usual for most volumetric methods.
In the second step the method merges all nearly co-
incident and redundant intersections, according to
a proximity criterion that depends on the grid reso-
lution and also taking into account the quality asso-
ciated with the different parts or observations of the
input range maps. Finally, the algorithm reconstructs
the merged surface(s) from the filtered intersec-
tion set, adopting a recently defined approach called
Marching Intersections (MI) [28], which is the re-
ciprocal of the classical Marching Cubes (MC) [20]
technique: for each (implicit) cell of the grid, the MC
configuration is not determined by the configuration
of the cell vertices but directly from the disposi-
tion of the active intersections on the cell edges. The
topology of the surface section is retrieved from the
standard MC lookup table and geometry comes for
free because we hold, by construction, the intersec-
tions of the surface with the cell edges.

Due to the regular reference grid superimposed on
the input scene, our algorithm adopts a volumetric
approach. However, compared with other algorithms
of this class, we claim that our proposal produces
surfaces that are more accurate with respect to the
ideal union of the input range maps, and it is more
efficient in terms of processing time and memory
usage.
The rest of the paper is organized as follows. We first
summarize the related work in Sect. 2. We then de-
scribe our proposal in Sect. 3. Experimental results
are presented in Sect. 4, and our conclusions are re-
ported in Sect. 5.

2 Related work

Papers dealing with the problem of surface recon-
struction from range images very often classify the
different algorithms proposed in the literature into
two large groups: methods working on unorganized
sets of 3D points and methods operating on 2.5D
range images. The first algorithms are often consid-
ered a generalization of the latter ones.
The methods starting from unorganized or scattered
3D points [21] assume that: (a) given a point p, its
n nearest surface neighbors can be located by find-
ing its n nearest 3D neighbors, (b) the density of data
points should be quite uniform over the surface, and
(c) the points are measured with the same accuracy.
According to Soucy and Laurendeau [31], these as-
sumptions are too restrictive for using these methods
to integrate sets of multiple range images.
On the other hand, the algorithms working on range
images can take advantage of the connectivity re-
lationships between the observations and of the
reliability of the measurements according to the
characteristics of the scanning device. These meth-
ods are aware of the fact that parts of the input
scans overlap and the data are possibly affected by
calibration or registration errors. Moreover, even
though some of the existing algorithms directly op-
erate on range points, the construction of a 3D
range surface starting from a 2.5D range image is
quite simple. This construction, based on a step dis-
continuity constrained triangulation algorithm [15],
turns out to be easily feasible also in the cases
of a nonuniform data distribution. For these rea-
sons we do not include in our short review of re-
lated methods algorithms operating on scattered
3D data [21].
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Three main approaches have been proposed for the
integration of range images:

Mesh integration: Range surfaces (or images) are in-
tegrated by removing the redundant parts. These
methods are generally indicated as interpolat-
ing methods because the vertices of the resulting
mesh(es) are a proper subset of the vertices of the
input range surfaces.

Volumetric fusion: A regular grid is ideally superim-
posed on the 3D scene; a scalar value is associ-
ated with each node of the grid, generally a signed
(possibly averaged) distance between the node
and the 3D surface(s). Finally, a surface fitting al-
gorithm (e.g., Marching Cubes [20]) is used for
the reconstruction of the zero-distance surface(s).
In most cases, the vertices of the output mesh(es)
only approximate the input range surfaces; for this
reason volumetric methods are generally called
approximate methods.

Deformable models: The 3D object model is ob-
tained from the dynamic deformation of a simple,
topologically equivalent 3D surface. The initial
object shape is deformed until it reaches the equi-
librium state.

Mesh integration algorithms adopt very different ap-
proaches, but they are generally characterized by
high computational costs and by the need to perform
postprocessing smoothing operations due to the inte-
gration of data suffering from possible imperfect reg-
istration. Examples of mesh integration algorithms
are as follows.
Ratishauser et al. [27] integrate triangular meshes by
completely retriangulating overlapping areas. Since
the triangulation is in 3D, special care must be taken
to ensure the mesh does not fold over itself.
Turk and Levoy [34] merge overlapping triangulated
meshes using a zippering approach. The overlap-
ping meshes are eroded and the boundary correspon-
dences are reconstructed by means of operations in
3D space. A local 2D constrained triangulation is
then used to join the mesh boundaries.
Soucy and Laurendeau [31, 32] describe an algo-
rithm based on Venn diagrams to individuate a par-
tition of the surface of an object by finding areas of
overlap of the acquired range meshes. For each dis-
joint part, a virtual viewpoint is defined and a nonre-
dundant integrated triangulation is obtained. Finally,
all these local triangulations are connected to yield
a global integrated one.

The algorithm by Pito [24] identifies, for each cou-
ple of input meshes, all the triangles that sample the
same surface patch; the algorithm keeps only one of
them – the one acquired with the highest confidence.
The redundant triangles are removed, and neighbor-
hood relationships are established between the re-
maining patches.
Häusler and Karbacher [13] perform vertex inser-
tion, gap bridging, and surface growth operations
to merge the input meshes. Merging is followed by
edge swap operations to obtain more balanced trian-
gulations. The authors do not supply many details on
the merge process, but they stress a new postprocess-
ing smoothing filter. This filter, based on the concept
of local surface curvature, turns out to be particularly
useful in cases of registration error.
More recently, Bernardini et al. [2] presented an al-
gorithm working on range data instead of range sur-
faces. The data are not completely scattered because
for each point the knowledge of a normal to the sur-
face is assumed. Starting with a seed triangle, the
method pivots a ball around each edge on the current
mesh boundary until a new point is hit by the ball.
The edge and the point define a new triangle that is
added to the mesh. Interestingly, not all of the input
points necessarily become vertices of the integrated
mesh, and this reduces the noise of the range data.
As regards the volumetric fusion approach (origi-
nally introduced by Hoppe et al. [16] for surface re-
construction from unorganized points), the reference
work is the paper by Curless and Levoy [8]. We pro-
vide more details about this algorithm because we
will often refer to it in the subsequent discussion.
A volume space is defined encompassing all of the
range data. Each node of the grid holds the average
of the distances between the node and the range maps
close to it along the sensor line of sight. Distances
are signed, representing the positions of the nodes
with respect to the range surface, and weighted. The
weight allows one to take into account the reliability
of the data based on the characteristics of the acqui-
sition sensor. In the mentioned work, the weight is
also used to limit the number of voxels written in the
range map-to-volume conversion process: only the
voxels close to (both sides of) the range maps are
initialized. This reduces the number of active voxels
in the volume and limits possible interference be-
tween far surfaces. To reduce memory use, Curless
and Levoy represent the volume dataset by means
of a run length encoding (RLE) scheme. The possi-
ble holes in the resulting isosurface, due to the fact
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that parts of the model are invisible to the acquisi-
tion sensor, are plugged a priori (i.e., directly into the
volume) by means of a space carving technique. All
the voxels are initialized as unseen voxels. The scan
conversion of the the range maps writes the visible
voxels. All the voxels lying between a visible voxel
and the sensor are marked as empty voxels. The iso-
surface separating unseen and empty voxels is the
surface plugging the holes.
Roth and Wibowoo [30] use a very similar approach,
but they achieve further reductions in computational
costs by adopting hash data structures to address oc-
cupied voxels and linked lists for an efficient traver-
sal of the volume.
Pulli et al. [25] build an octree starting from a set of
registered range maps. The leaves of the octree can
be external, internal, or on the boundary of the ob-
ject. The returned meshes are obtained by generating
triangles between the external nodes and those on the
boundary. Output surfaces are smoothed by the use
of Taubin’s algorithm [33].
Wheeler et al. [36] represent the volume by means
of an octree; distances are not averaged but just sam-
pled from a subset of plausible input range maps
(consensus surfaces). In this way most of the prob-
lems due to the presence of noise in the input data are
avoided.
To limit the costs of the representation of large vol-
umes, Hilton and Illingworth [14] use a multires-
olution geometric fusion algorithm. A hierarchical
discrete volumetric structure for implicit surface rep-
resentation with bounded error is introduced. This
approach constructs a low-resolution discrete repre-
sentation in smooth regions of the surface and a high-
resolution one in regions of high surface detail.
Also, the algorithms adopting a volume fusion ap-
proach present high computational costs, mainly due
to the initialization of the distance volume. Volumet-
ric algorithms are not as precise as mesh integration
ones (approximation of the integrated meshes), but
they are definitely more robust (for example, in re-
turning watertight surfaces).
Chen and Medioni [7] presented one of the first
fusion algorithms based on a deformable model ap-
proach. An inflating balloon model (initially
a sphere) is adaptively inflated starting from a set
of registered range images. The process terminates
when the sphere reaches the shape of the object to be
reconstructed.
In [12], the initial shape is obtained by means of
a volumetric approach with a very low resolution

of the distance grid. The deformable model is pro-
gressively refined by means of adaptive subtriangu-
lations and deformations. These latter are obtained
by means of springs that move the vertices toward
the real surface and keep the triangulation regularly
shaped.
Other methods using similar approaches can be
found in [9] and [1].
The algorithms adopting a deformable model ap-
proach have the advantage of avoiding difficult in-
tegration of misaligned surfaces; on the other hand
they have high computational costs, they do not ad-
mit changes in the starting topology during the defor-
mation step, and they can produce self-intersections
in the case of closely spaced features.
With respect to the taxonomy introduced above, the
algorithm we propose in this paper belongs to the
volumetric fusion class. However, we do not con-
struct an intermediate implicit function based on the
distance between each node of the grid and the near-
est point on the object surface, reducing computa-
tional times, and we do not even need to explicitly
represent the reference grid, reducing in this way the
memory needed.
A last observation about related work: the algo-
rithm is mainly based on the processing of Hermite
data, i.e., points of intersection of the range surfaces
with the 3D reference grid and associated normals.
Hermite data have been used recently for feature-
sensitive reconstruction of implicit surfaces [18, 19,
35] from volume datasets. While in the referred pa-
pers Hermite data are used together with the 3D
distance field representing the implicit surfaces, in
our solution Hermite data avoid the need to build and
maintain a volume grid.

3 A new volumetric algorithm
for merging range surfaces

The input data of our merging algorithm are triangu-
lar range surfaces with the following characteristics:

• Input range maps were previously registered [4,
26] and are thus defined in a single Euclidean
space.

• The range surfaces have been obtained by means
of a step discontinuity constrained triangulation
algorithm: a continuous surface between adjacent
measurements is assumed if their distance is less
than a constant threshold [15].
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• A direction is associated with each triangle of the
input surfaces; this information, which discrimi-
nates between the interior and the exterior of the
object, is simple to obtain because during the ac-
quisition of the data each range map is actually a
2.5D height field between the sensor and the ob-
ject itself. A signed range surface helps to avoid
the fusion of intersection pairs corresponding to
close but distinct surfaces (the surfaces, for exam-
ple, that bound a very thin section of the scanned
object).

• According to Curless and Levoy [8], a weight
representing the quality of the observation is as-
sociated with each input measurement. This pa-
rameter takes into account both the residual error
of the registration and the error inherent in the
scanning data. With respect to the Curless and
Levoy method, we do not use the weight to pre-
vent the distance function from extending indefi-
nitely in either direction. Our quality parameters
effectively take into account the reliability of the
data.

• The simple overlapping of all the range maps
does not necessarily constitute a watertight model;
this is because complex objects could present
small surface sections that cannot be reached by
the scanning sensor.

As briefly summarized in the introduction, the al-
gorithm locates the geometric intersections between
the range images and the virtual 3D reference grid
chosen by the user, it merges the corresponding inter-
sections belonging to different range maps, and, fi-
nally, it reconstructs the merged surface(s) by means
of the Marching Intersections (MI) algorithm. These
three main steps are detailed in Sects. 3.1–3.3 be-
low. Section 3.4 presents some solutions to cope with
possible ambiguities and small holes generated by
a missing sampling of the acquisition sensor.

3.1 Range map discretization

The discretization step consists in detecting all the
intersections between the range surfaces and the ref-
erence grid. To simplify the computations, all the
geometric coordinates of the input range data are im-
mersed in the space of the selected grid; the goal of
this scaling transformation is to have all the grid lines
lying on integer values; this improves the efficiency
of the computations and the management of the in-
tersections between the input meshes and the grid
edges.

The choice of the grid size should be clearly re-
lated to the spatial resolution of the scanning de-
vice, which is not always precisely known. A sim-
ple heuristic [30] consists in extracting a sufficiently
large set of 3D points from the set of range maps,
finding the nearest neighbor point to each of these
observations, and finally setting the voxel size to
three times the average of these minimum interpoint
distances. This ensures that each voxel grid element
will likely contain at least one data point.
The discretization of the input range images occurs
on a per-face basis. For each input triangle, its axis-
aligned bounding box is determined, and then three
different conversion steps are performed. For each
scan conversion step, we compute the intersections
between the triangle and the orthogonal set of grid
lines. This process leads to the construction of the 2D
dynamic data structures XY , X Z, and ZY containing
the intersections between all the input faces and the
corresponding grid lines.
The entry (i, j) of the 2D pointer data structure XY ,
for example, refers to the list of intersections be-
tween the input range surfaces and the grid line par-
allel to the Z axis and passing through the point
[i, j, 0]. A 2D example of the discretization process
is shown in Fig. 1.
Each intersection is represented in the dynamic data
structures by means of a record in the form

ic nm sg dr w

where:
ic is the numeric value (intercept) of the intersec-

tion. For the XY data structure, for example, the
field holds the z component of the intersection;

nm is a bit set representing the name of the range
map(s) the observation belongs to. The size of
the bit set is equal to the number of input range
maps. This implies that multiple range maps
may share the same intersection and also allows
the efficient management of data fusion or dele-
tion operations implemented by means of bit set
operators;

sg is the sign of the observation; if we suppose we
are walking along the grid line onto which the
intersection has been individuated, a “+” sign
means that we are entering the object, a “−”
means we are leaving it;
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Fig. 1. A 2D example of the discretization process. The two input range curves (top) and the two dynamic data structures
collecting the vertical (bottom left) and horizontal (bottom right) intersections of the range curves with the lines of the chosen
regular grid

dr is the direction field. This field holds the compo-
nent, along the grid line the intersection belongs
to, of the normal to the originating face;2

w is the weight associated with the quality of the
corresponding surface sample. The value is ob-
tained by linear interpolation of the weights of
the vertices of the originating triangle.

At the end of the scan conversion process, each list is
sorted with respect to the intersection value. Sorting
ensures fast detection of nearby intersections and fast
search for specific intervals.
It must be remarked that the geometric primitives
forming the input range surfaces are read sequen-
tially from secondary memory: there is no need to
store all of the range maps in main memory or to
maintain topological or connectivity information.
This means that, due to the compact representa-
tion of the XY , X Z, and YZ pointer data structures
and the relative shortness of the intersections lists
they subtend, the size of the input surfaces and the
number of partially overlapping maps can really be
very high. The space complexity in our case is di-
rectly dependent on the surface area of the range
maps, instead of being proportional to the mesh vol-
ume.

2 In our implementation, sg is actually stored as a sign of the dr
field.

The intersection lists are now ready for the fusion of
the nearby intersection pairs and for the reconstruc-
tion of the integrated surface(s).

3.2 Merge process

The aim of the second phase of the algorithm is
twofold: first, to fuse the multiple range maps dis-
cretized in the previous step by merging the cor-
responding intersections; second, to arrange the in-
tersection data structures in a Marching Cubes [20]
compliant manner, i.e., in such a way that a MC-
like surface reconstruction algorithm could be suc-
cessfully applied. Even though the intersection data
structures do not explicitly represent a grid, it is
quite easy to reconstruct the virtual cells of the grid
by simply locating the corresponding edges in the
XY , X Z, and YZ data structures. Arranging the data
structures in a MC-compliant way means, for ex-
ample, to ensure the existence of no more than one
intersection on each virtual cell edge.
The two basic operations that allow us to pursue this
goal are the data fusion and removal actions.
Fusion. The fusion operation performs the proper
merge step of redundant intersections. Fusion oc-
curs between pairs of consecutive intersections ly-
ing on the same grid line. It takes into account
the quality of the measurements, the actual dis-
tance between the originating range maps, and the
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2 3

Fig. 2. The fusion of intersection pairs is performed along the grid lines (thick lines) rather than on the minimum distance
directions (dashed line)
Fig. 3. An example of fusion of two intersections belonging to different range maps

maximum merge distance (maxdist) selected by the
user.
While the choice of the reference grid should only
depend on the resolution of the scanning sensor, the
choice of the maximum merge distance has to take
into account the residual registration error.
In the merge phase, all the intersection lists are ex-
amined: we fuse each couple of consecutive inter-
sections i1, i2 belonging to different range maps
(nmi1

⋂
nmi2 = ∅), with concordant signs (sgi1 =

sgi2), if their distance d̄(i1, i2) is shorter than the
maximum merge distance

d̄(i1, i2) = | ici1 − ici2 |
d̄r(i1, i2)

≤ maxdist (1)

with

d̄r(i1, i2) = wi1dri1 +wi2dri2

wi1 +wi2
. (2)

The term d̄r(i1, i2) in the previous expression takes
into account the fact that fusion is performed along
the grid lines rather than on minimum distance direc-
tions (Fig. 2).
The fusion operation implies the cancellation of i1
and i2 from the data structure and the creation of
the new intersection ir in which the intercept field
(icir ) is given by the weighted average of the cor-
responding fields, the name is nmir = nmi1

⋃
nmi2,

the sign sgir is concordant with the signs of i1 and
i2, and the direction drir = d̄r(i1, i2) as defined in
Eq. 2. According to Curless and Levoy [8], also the
quality field (w) is incrementally updated. The sim-
ple operation described corresponds to merging two
concordant surfaces that cross the same virtual cell
edge (Fig. 3).
A slightly different behavior is demonstrated by
a fusion operation that occurs on intersections ly-
ing on the same grid axis but belonging to different
virtual cells. In these cases, the fusion operator per-
forms a shift of the intersections toward the new
average location. During this shift, whenever we
pass from a virtual cell to another, a couple of new
artificial intersections is inserted on all the perpen-
dicular edges the intersection touches. An example
is shown in Fig. 4. Each new intersection is ini-
tialized with intercept value undefined (we only
know the cell it belongs to), name equal to the
name of the originating intersection, sign compat-
ible with the sign of the originating intersection,
and direction of movement and quality value set to
null.
The insertion of new intersections ensures the con-
sistency of the data structures by simulating a dis-
cretization step (i.e., detection of intersections with
the grid lines) for those surfaces that slightly change
their position due to the merge process.



156 C. Rocchini et al.: The Marching Intersections algorithm for merging range images

4

5

Fig. 4. Moving an intersection. If an intersection moves from a (virtual) cell to another, then a couple of artificial intersec-
tions is inserted on all the perpendicular (virtual) edges the intersection touches during its movement. From a graphical point
of view the movement of the central intersection (left) leads the curve to touch the perpendicular edges (right; see newly
inserted white dots)
Fig. 5. Example of the removal of two consecutive and discordant intersections belonging to the same range map

Whenever a new intersection is generated, the algo-
rithm analyzes the other intersections on the same
virtual edge to verify if a removal operation (de-
scribed below) can be applied. Most of the new inter-
sections are removed in this way. The locations of the
artificial intersections that survived is determined by
a simple interpolation method.

Removal operation. The removal operation is per-
formed on the currently updated grid edge, i.e., each
edge where a new intersection has been created.
Moreover, all the grid edges undergo this opera-
tion before the merge process starts; this ensures
that high-frequency details are removed and aims
at transforming the intersection data structures in
a MC-compliant set.
During the initial removing phase all the intersection
lists are analyzed. A removal action is performed on
each pair of intersections i1 and i2 that lie on the

same cell edge (that is, if �ici1� = �ici2�), belong to
the same range map, and have discordant signs. As
shown in Fig. 5, this operation corresponds to the re-
moval of the high-frequency details in a range map.
In this case, the range map bit index that i1 and i2
have in common (nmic = nmi1

⋂
nmi2) is subtracted

by the examined intersections (nmi1 = nmi1 −nmic
and nmi2 = nmi2 − nmic). The intersections whose
name field is empty are definitely removed from the
structure; otherwise, they maintain their position in
the lists, and the intercept, sign, and direction fields
are unchanged. Depending on the resulting name
field value, two, one, or no intersections are phys-
ically deleted. A complete step of the (2D) merge
process, in which fusion and removal operations are
performed, is shown in Fig. 6.
Unfortunately, the fusion and removal operators are
not sufficient to ensure that no more than one inter-
section lies on each virtual edge, as shown in the
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Fig. 6. Complete merge step. Two horizontal intersection pairs lying on the same virtual cell are merged (uppermost and
lowermost pairs). The other two pairs belong to different virtual cells, and therefore their merge generates new intersections
(denoted by diamonds); these form new pairs that are either merged or removed because of discordant directions

following table in which the relationships between
two generic intersections i1 and i2 belonging to the
same edge are discussed.

sgi1 = sgi2 sgi1 �= sgi2

nmi1
⋂

nmi2 = ∅ fusion anomaly

nmi1
⋂

nmi2 �= ∅ anomaly removal

The cases in which an anomaly is detected come
from (possibly small) malformations of the original
range maps. In these situations, the algorithm main-
tains more intersections on a virtual edge and post-
pones their handling to the surface reconstruction
step. Explicitly storing the index of the correspond-
ing range map(s) in the name bit set field allows for
the easy resolution, during the reconstruction step,
of the possible ambiguities by analyzing the corre-
sponding range maps. Details are given in the follow-
ing section.

3.3 Surface reconstruction
via Marching Intersections

At the end of the merge process our data structures
contain the signed intersections between the inte-
grated surface and the lines of the reference grid.

Therefore, we can start the surface reconstruction
step.
The basic idea of the Marching Intersections
(MI) [28] reconstruction method is very simple: the
reconstruction of a 3D surface is completely defined
if all the signed intersections of the surface with the
lines of a regular grid are known. The main step
of MI is shown in Fig. 7: the reconstruction of the
surface parcel contained in a virtual cell of the ref-
erence grid. As described in Sect. 3.1, the initial
scale transformation performed on the range maps
allows the nodes of the grid to lie on integer coor-
dinates (i, j, k, . . . ); given a virtual grid cell it is
therefore easy to find the intersections lying on its
edges.
The MC-like classification of the vertices of a vir-
tual cell can be obtained easily from the analysis
of the intersections existing on its edges. If an edge
contains an intersection, then the classification of its
vertices depends on the orientation of the intersec-
tion, i.e., the value of the sign field sg (Fig. 7). For
each classified (i.e., interior/exterior) cell vertex v,
the classification of the adjacent vertex v′ on an inci-
dent edges e is concordant with v if no intersections
exist on e or discordant if a single intersection exists
with direction compatible with the class of vertex v.
If the intersection configuration along the current
cell edges are MC compatible, then we return the
corresponding 8-bit binary code. This code allows us
to access the standard MC lookup table and to recon-



158 C. Rocchini et al.: The Marching Intersections algorithm for merging range images

Fig. 7. Reconstruction of a virtual cell and of the corre-
sponding triangular patch performed by the MI method
(from left to right, top to bottom), starting from a signed
intersection on an edge

struct the encoded triangular patch. In our algorithm,
we use a MC lookup table that solves the problem
of ambiguity in the reconstruction of the triangular
patch internal to a grid cell [22].
Different traversal strategies have been proposed for
visiting the cell grid in surface fitting. The classic
MC approach is in general implemented by adopt-
ing an iterative slice-based visit of all the cells of
the volume. Another solution visits the cells follow-
ing a propagation approach [17], tracking the sur-
face from an initial seed cell. This solution has ad-
vantages (e.g., it allows one to produce output en-
coded in triangle strips), but it implies the handling
of a huge stack for the addresses of the active cells to
be visited (with impact on space and time efficiency).
Moreover, a propagation approach is more effective
if the output surface is guaranteed to consist of just
one component.

The algorithm we designed performs an iterative
visit of the intersection lists, which is somehow simi-
lar to the slice-based MC visit. We visit, in sequence,
the three data structures XY , X Z, and YZ; for each
structure, we analyze the entries from left to right
and from bottom to top. We do not have to maintain
a trace of the processed cells because we adopt the
following visiting strategy:

• Visit the XY structure; for each intersection, we
process the corresponding cell (searching for pos-
sible intersections in the X Z and YZ structures).

• Visit the X Z structure; for each intersection, we
process the corresponding cell (searching for pos-
sible intersections in the XY and YZ structures)
only if it does not contain intersections in the XY
structure (because in that case it has been pro-
cessed in the previous step).

• Visit the YZ structure; for each intersection, we
process the corresponding cell only if it does not
contain intersections in the other XY and X Z
structures (because in that case it has been pro-
cessed in the previous steps).

All the intersections used in the reconstruction phase
(i.e., the intersections being now vertices of some tri-
angle in the integrated mesh) are marked. Moreover,
the surface fitting process can fail on some cells (see
next subsection); MI stores the addresses of these
cells in an auxiliary structure for further processing.

3.4 Solving anomalies and closing holes

The use of the MI algorithm permits one to re-
construct most of the integrated surfaces. However,
a noncorrect configuration can be obtained on some
cells due to multiple or nonexisting intersections on
some cell edges. A 2D example of an irregular cell
is shown in Fig. 8, where the scan conversion of the
boundary of a range map produces an anomalous in-
tersection that survives the merge process. Moreover,
missing intersections can be produced in the case of
small holes contained in the surface (frequently pro-
duced by the range scanner as a result of parts of
the model being unseen by the acquisition sensor).
In our experiments the percentage of cells that, af-
ter intersection merging, present a correct pattern of
intersections and that can be directly reconstructed
is between 86% and 94% depending on data qual-
ity, number of range maps, and residual registration
error.
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Fig. 8. The boundary of a range surface can generate anomalous intersections (e.g., the circled intersection, which remains
isolated after some intersection merging actions)

All virtual cells that contain intersections and have
not been safely reconstructed by MI in the previous
step are processed as follows:

• If all the intersections on the cell edges are
marked (i.e., they have been already used for
the reconstruction of the surface in the adjacent
cells), then the cell is considered to cover part of
a hole on the object surface; all the edges of the
triangles generated in neighbor cells that lie on
faces of the current cell are inserted into an aux-
iliary edge list that encodes the boundaries of the
holes.

• If the cell holds some unmarked intersections and
we have multiple possible MC configurations, we
test their compatibility with respect to the config-
urations of the adjacent cells. If just one config-
uration is acceptable, then this is the solution; in
the case of more than one acceptable configura-
tion, the analysis is postponed in order to verify
whether the ambiguity of neighboring cells can
be resolved. If a complete analysis of the ambigu-
ous cells does not produce any correct configura-
tion, then these cells are treated as parts of holes.

The last phase of the algorithm regards closing holes.
The edges inserted into the appropriate list are an-
alyzed: starting from a seed edge, the boundary of
a hole is reconstructed by simply connecting edges
with compatible extremes. The hole is then triangu-
lated by means of a simple 3D extension of a 2D
triangulation algorithm [23]. The only hypothesis is
that the boundary of the hole is simple and not self-
intersecting. This hypothesis is not too strong if the

data to be processed are multiple and accurately se-
lected range maps.

4 Experimental results

The algorithm proposed has been tested on several
datasets of range maps. It is one of the algorithms we
currently use in our projects for the automatic acqui-
sition of 3D artistic objects. In this context, we have
chosen some examples from the Stanford 3D Scan-
ning Repository3 and the data of a gypsum copy of
the Ippolita Maria Sforza’s bust carved by Francesco
Laurana. Some of these examples have already been
used for the demonstration of other integration al-
gorithms, and this allows us to compare our method
with other existing algorithms.
The results obtained are shown in Table 1 for the
datasets Stanford Bunny, Stanford Dragon, Stanford
Happy Buddha, and Ippolita M. Sforza. For each
dataset we have extracted the integrated surface us-
ing two different resolutions of the virtual reference
grid. The tests have been carried out on a Windows
2000 PC with an Intel Pentium IV 2.53-GHz pro-
cessor and 1 GB RAM. The times reported are in
minutes:seconds and include I/O operations.
Figure 9 shows the obtained results from a graphical
point of view.
Based on these results, great emphasis has to be
given to the time efficiency of our proposal. The
algorithm by Curless and Levoy [8] takes 56 and

3 http://www-graphics.stanford.edu/data/3Dscanrep/
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Table 1. The results obtained by the integration of the three datasets (Bunny, Dragon, and Happy Buddha) from the Stanford 3D
Scanning Repository and from the reconstruction of the Ippolita Maria Sforza’s bust by Francesco Laurana. Times include I/O
operations. For each dataset, two different grid resolutions have been selected

# Input # Output Time Memory
Dataset # Scans Triangles Grid size Triangles (mm:ss.d) Usage (Mb)

Bunny 10 690 534 109×107×84 79 150 00:01.3 3
333×338×266 797 497 00:23.1 30.5

Dragon 71 3 681 894 271×226×162 184 423 00:12.9 20.5
612×511×367 1 054 846 01:45.0 151

Happy 58 5 985 189 224×329×135 312 200 00:21.3 19
Buddha 564×831×340 2 331 421 04:07.0 140
Ippolita 29 10 211 802 246×264×153 313 313 00:07.4 36

M. Sforza 530×569×331 1 472 153 01:01.0 170

47 min on a 250-MHz MIPS R4400 processor for the
integration of the Dragon (grid size 712 ×501×322)
and Happy Buddha (407×957×407) datasets, re-
spectively. If we include a scaling factor to make
these times comparable to the times obtained on
a more modern architecture, our solution still main-
tains higher efficiency because the computation of
intercepts on the grid lines is faster than the computa-
tion of distances along a viewing line. Moreover, our
times include the triangulation of small holes. The
computing times of the method of Curless and Levoy
rise considerably when the space carving modality
is selected to perform hole filling; the times reported
for the same two datasets are in fact 257 and 197 min.
Note that the space carving technique used by Cur-
less and Levoy is more powerful than our solution
because it permits one to correctly fill also very large
holes that do not have a simple boundary. Unfortu-
nately, its computational cost is very high, and so
less expensive techniques [10] have been developed
recently.
Our method also turned out to be comparable to the
performance of the Ball Pivoting technique proposed
by Bernardini et al. [2]. In this case the compari-
son cannot be done on the basis of a common grid
size, and so we tried different virtual cell sizes to
obtain a comparable number of triangles in the out-
put meshes. For the Bunny dataset, for example, Ball
Pivoting produces 710K triangles in 132 s (I/O +
CPU times) on a 450-MHz Pentium II Xeon PC. Our
method generates a mesh composed of 800K trian-
gular faces in 23 s.
Table 1 shows that the computational complexity of
the method is strictly related to the number of (vir-
tual) cells in the output MI data structure rather than
to the number of input range maps or input triangles.

The low memory consumption of our algorithm is
also shown in Table 1. It depends on the adopted
reference grid resolution. In particular, space com-
plexity can easily be limited to being linear in the
number of the vertices of the integrated mesh (i.e.,
the number of intersections at the end of the merge
process). For comparison purposes, Ball Pivoting re-
quires 43 MB on the Bunny dataset, 114 MB on the
Dragon dataset, and 163 MB on the Buddha dataset.
Results on space consumption are not reported for
the volumetric method of Curless and Levoy [8];
they only say that the run length encoding represen-
tation adopted allows for the reduction of memory
size to 5%–10% of the rough volume representation.
Memory requirements could be further reduced by
integrating the range maps in an iterative way rather
than performing a simultaneous fusion. Another
memory saving approach could be to divide the log-
ical volume into slabs (to be operated separately) and
then to simply integrate the resulting meshes.
We stated in Sect. 3.4 that: (a) most of the integrated
surface is generated during the first application of the
MI algorithm, (b) a small number of triangles is gen-
erated with the combinatorial analysis of the cells
with ambiguous configurations, and (c) some trian-
gles are produced by the triangulation of the bound-
aries of the holes (true unseen parts of the model
or unsolved ambiguous situations). Empirical results
relative to the Bunny mesh are presented in Table 2.

5 Conclusions

We have presented a new and efficient algorithm
for the integration of range images. Based on a vol-
ume approach, the main characteristics of the meth-
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Fig. 9. Some views of the reconstructed models. From left to right, top to bottom: Stanford Bunny (a grid size of 142×
134×104 was used), Stanford Dragon (612×511×367), Stanford Happy Buddha (106×264×176), and Ippolita M. Sforza
(530×569×331)

Dataset Resolution % case a % case b % case c

Bunny 109×107×84 98.62 0.72 0.66
333×338×266 98.28 1.12 0.60

Table 2. Percentage of the reconstructed mesh faces pro-
duced in the three phases by the MI algorithm. a Faces
produced by direct reconstruction. b Faces produced after
combinatorial analysis of adjacent cells. c After hole filling

ods are: (a) the location of intersections between the
range images and the reference grid rather than the
computation of distances in a voxel space and (b) an
efficient solution for surface reconstruction.
A main point of this solution is the improved ac-
curacy with respect to previous approaches. In
fact, our solution first of all computes the intersec-
tion between the input meshes and a set of grid
lines; second, it merges corresponding intersec-
tion pairs (which means, in some cases, evaluat-
ing the geometrical coordinates of the correspond-
ing point, taking into account the quality of the

merged intersections); finally, the output surface
is produced by reconstructing the mesh topology
from a per-cell analysis of the intersection config-
urations. With respect to other voxel-based meth-
ods, we do not resample mesh geometry (taking
into account voxel-based distances); this means
that instead of performing a double conversion step
(from boundary to voxel space, and again from
voxel space to boundary), the geometry returned
by MI is obtained by the precise computation of
intersections between input meshes and the re-
construction grid; interpolation is limited to the
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mutually overlapping sections of the input range
maps.
Our algorithm has proved to be an efficient solu-
tion, both in time and space complexity. Analogously
to other voxel-based solutions, the size of the out-
put mesh depends on the size of the 3D grid used
in resampling and reconstruction. This is an advan-
tage common to all voxel-based solutions because
the user can produce representations at a different ac-
curacy and size, according to the selected grid reso-
lution. Moreover, the output mesh is in general more
compact than the one produced by integration-based
methods (e.g., the Ball Pivoting technique [2]), even
when a high resolution grid is used, because the mu-
tually overlapping sections are fused. The resulting
size of the fused mesh is in general much lower than
the total size of the input range maps.
Another problem common to many integration-
based methods is the possible C1 discontinuity that
may be produced in the output mesh on the border
of adjacency between different range maps. Abrupt
staircase discontinuity (due to small registration er-
rors or inaccuracies) may be easily produced by all
methods based on the retriangulation of the set of
surface samples. Blending corresponding overlap-
ping sections of the input range maps mitigates this
possible data inaccuracy.
Another important aspect is the capability of a given
fusion method to manage attribute data that can be
defined on the input range maps. An example is
color data produced by many 3D scanners as an at-
tribute of each geometrical sample. Managing color
with a voxel-based fusion approach is not straight-
forward: for each voxel we generally have a distance
value from the surface that may depend on many
surface samples. One possibility is to resample the
color attribute after the output mesh has been pro-
duced, but this means that for each output vertex we
should maintain a trace of the corresponding orig-
inal range map(s). Conversely, simplicity of color
management is an important characteristic of MI:
for each intersection, computing the corresponding
color is straightforward, and color can be managed
in the same manner in which we manage geometry
(i.e., use weighted composition of both geometry and
color for each pair of merged intersections).
On the other hand, the intensive use of the algorithm
since its first implementation (2001) has highlighted
the limits of the proposal as summarized below.
The MI algorithm is more accurate and faster than
the volumetric approaches based on distance fields,

but it is certainly less robust. Its lower robustness
mainly depends on the presence of noise in the input
data rather than on the choice of the maximum merge
distance or the grid size. While the latter parameter
can be easily fixed from the sampling density and
the residual registration error, noisy data – generally
border faces in the range maps with the wrong ori-
entation – generate non-MC-compliant cell configu-
rations and therefore many holes. Finally, robustness
can also be reduced by a nonproper implementation
of the range map discretization process. An inaccu-
rate rasterization could generate wrong placement of
some intersections in the virtual cells.
The ability of the algorithm in closing holes is lim-
ited to simple, non-self-intersecting boundaries. The
triangular mesh closing the hole is intended to be pla-
nar.
Small parts of the reconstructed surfaces can be de-
pendent on their position in the grid: if two close
intersections with opposite signs belong to the same
virtual cell, then they are considered high-frequency
detail and removed from the structure. If the same in-
tersections belong to different cells, then they are not
removed.
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