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Abstract

Off-line rendering techniques have nowadays reached an astonishing level of realism
but pay the cost of long computational times. The new generation of programmable
graphic hardware, on the other hand, gives the possibility to implement in realtime
some of the visual effects previously available only for cinematographic production.
We describe the design of an interactive system which is able to reproduce in realtime
one of the crucial sequences from the short movie “The Parthenon” presented at
Siggraph 2004. The application is designed to run on a specific immersive reality
system, making possible for a user to perceive the virtual environment with a nearly-
cinematographic visual quality. In this paper we present the principal ideas of the
project, discussing the design issues and the technical solutions used to implement
the realtime demo.
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1 Introduction

Realtime and off-line rendering have always been considered two separate worlds,
since it is usually very hard to mix the astonishing level of realism obtained in
movies with the user control available in videogames. In the last few years, however,
many examples of offline-to-realtime conversion have been presented, mostly due to
improvements in video card technology.

A couple of years ago the ICT Graphic Lab of the University of Southern California
started a project aimed at performing the 3D acquisition of the Parthenon building
and of all its carved decorations with the aim of building up a complete virtual
reconstruction of the building in its current and original shape [19]. A collaboration
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between the Visual Computing Lab (VCLab) of ISTI-CNR and the ICT Graphic
Lab started in the early phase of the project, since ICT choose the VCLab tools [2] to
process the raw scan data. The most spectacular outcome of the Parthenon Project
has been for sure the short movie presented at the Electronic Theatre at Siggraph
2004. The objectives of this work is to reproduce in realtime a crucial sequence of the
short movie: the time lapse sequence which shows the Parthenon during the passing
of a whole day, from dawn till dusk. This sequence shows the interaction between the
changing sun and sky against the building geometry, originating complex lighting
effects and bringing out the surface details.

The aim of the demo we have designed for an immersive VR platform is to convey
the same level of realism of the Sequence computed offline, reproducing the correct
interaction between the light and the building and thus giving to the viewer a feeling
of presence. Some peculiar characteristics of the work can be summarized as follow:

Complex Shading: the idea behind this work is not to find tricks that can produce
“plausible” results, but to find an approach which allows to compute a realistic
lighting even in a realtime environment.

HDR: High Dynamic Range calculation is considered essential to convey a suffi-
cient level of realism, especially when we are interested in outdoor scenes. Sun
intensity can be over five orders of magnitude brighter than the sky and clouds,
giving a dynamic range very difficult to manage. Working on color with only
8-bit-per-channel would result in excessive loss of visual details.

Immersive Stereo: running the demo in an immersive environment will greatly
enhance the experience. The VR platform used allows both to manage interaction
in a very natural way, reacting to user movements and supporting a very large
displaying surface (by retroprojection), rendering the scene at a scale much closer
to reality.

The use of virtual reality to better present cultural heritage artifacts and envi-
ronment is quite an old trend [4,16] and cultural heritage applications have been
the standard demos for many virtual theaters or CAVE-like systems.More recently,
the need for improved realism in this kind of VR applications has been addressed
by many research projects which focused on improved geometric models and more
sophisticated use of textures [7,20]. But using good geometry and textures is not
sufficient to convey a sense of presence, adding a good modelling of the illumination
is another basic ingredients [17]. How to add more advanced illumination models in
interactive VR environments is still an open research topic.

A requirement of the project was that the interactive visualization should be imple-
mented in the framework of a specific virtual reality environment, called FlatWorld.
FlatWorld is a peculiar system, based on retroprojected walls, which simulates a
room with openings (virtual windows) over the external world. The need to develop
the application for this specific environment introduced some constraints, described
in the following sections.
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Fig. 1. Available data. The 3D model of the Parthenon building, acquired with TOF
scanning and divided in multiple chunks (one of these chunks is rendered in white);
the texture atlas used for the highlighted chunk, which encodes the recovered surface
albedo, and the texture-mapped chunk; finally, HDR images of the sky dome.

2 Available ingredients

The interactive demo has been designed by using the 3D data gathered during the
Parthenon project. Working on the same data used to produce the Siggraph movie
was a wonderful opportunity to focus on the rendering techniques, since this data
has proven to be accurate and complete, as shown in the Siggraph movie.

Obviously, the core of the interactive demo is the 3D model of the parthenon. This
model has been acquired using a time of flight scanner and then completed with
some elements modeled with standard tools (the latter were needed to complete
parts which were hard to be acquired because of occlusions). The model has been
divided in multiple chunks during its generation, to help managing the large amount
of data.

Another important data for a realistic rendering is the surface characterization,
since the knowledge of the reflection properties of each part of the building makes it
possible to compute a physically plausible illumination. For the Parthenon dataset,
an accurate description of reflection characteristics was available. First of all, the
general BRDF of the building surface has been measured. Then, the surface albedo
has been recovered for the two short sides (the other two sides of the Parthenon
were occluded by the scaffolding installed for restoration purposes), using an inverse
rendering method [5].

However, to obtain a realistic illumination of the building during the entire day
sequence, it is necessary to have a faithful representation of the light sources; in
this outdoor scene, the two major sources of light are the sun and the rest of the
skydome. A day-long sky dataset has been acquired using HDR imaging techniques
[18], where a High Dynamic Range skydome image is available for every minute
in the day. Moreover, for each image, the sun position and intensity have been
detected, producing a concise directional light representation for each minute of the
day. This dataset has been used in the movie rendering to illuminate the scene; the
sun is the major light source but, to obtain a realistic illumination, also the rest of
the skydome has been taken in account.

To render the Parthenon movie with a high level of realism, a physically accurate

3



rendering engine is needed. The Arnold rendering engine [8] was used to render The
Parthenon movie. It implements a Monte Carlo-based global illumination algorithm
able to produce images with a very high realism. Moreover, coming as a library, it
is completely configurable and it is possible to add plugins to manage custom data
or to write shaders which implement new surface behaviors. Obviously, it was not
possible to directly use the same engine in a realtime system because of the high
computational cost; to render the movie, one hour was necessary to compute each
frame. However, this rendering engine can be used to calculate part of the shading
equation and the results can be used in the realtime demo.

A design constrain for the interactive demo was that it should run on the Flat-
World System [14,13], a virtual reality environment focused on training. In film
and theatrical productions, sets are constructed using modular components called
flats. FlatWorld utilizes a digital flat system. A digital flat is basically a large retro-
projective display; the actual setup is a room with two active walls and the user it’s
free to move inside this room, looking at an outside world displayed on those walls.

3 Design of the Rendering Method

Our interactive demo should represent both the direct and indirect illumination:
the main effect of direct illumination is the production of hard shadows and base
lighting, while indirect illumination smoothes up the effect introducing additional
light bounces and taking in account light coming from all the skydome. Since the
different nature of the two components we decided to employ two different algo-
rithms for the computation: one able to generate precise shadows, the other able to
produce diffuse effects.

The mostly static nature of the scene suggested that the best approach was to
precalculate as much as possible the invariants in the illumination equations and
just complete the calculation at runtime when all data is available. Hardware shaders
seemed to be the perfect choice for this kind of task since it is possible to implement
efficiently the lighting calculation. Moreover, the processing power of GPUs will
steadily increase in the immediate future (faster than CPU grow), providing a better
frame rate and the possibility to add more complex effects. Precomputing shadows
is also a good way to limit the geometry to be drawn each frame: using shadow maps
or shadow volumes would require all the occluding geometry to be drawn (even the
non directly visible parts); obviously, a subsampled version of the occluders can be
used but this would affect shadow precision. Conversely, by precomputing shadows
we use the whole dataset for shadow calculation, but only a small part of the
geometry will be rendered and shaded by the realtime application. The same holds
also for indirect illumination, since light bouncing between geometric elements is
determined using the whole dataset, but only the data related to the realtime model
will be stored and processed at runtime.

The direct lighting algorithm should firstly discriminate between shadowed and lit
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areas, this has been done with a variation of the interval mapping technique
(described in the GPU Gems book [9]). Dynamic shadows are normally a difficult
task, but in this case the only direct light source in the scene is the sun that is a
directional light, easier to manage with respect to a local point source; moreover, its
location in every minute of the day is well known. It is therefore possible to regularly
sample the daytime and to calculate the shadows for each of the sun position in the
timeline. There is no need of storing all the shadows in the scene, since the only
rendered shadows will be the ones casted onto the visible geometry. The idea is to
encode for each part of visible geometry which are the time steps that geometry
will be illuminated directly by the sun or, conversely, the ones it will be covered
by shadows. At runtime, each vertex will be tested to know its state with respect
to the current time. Lit areas will be illuminated using a Lambertian illumination
calculation, which helps simplifying the computation without affecting too much
the final visual quality, since the measured Parthenon BRDF proved to be quite
close to a Lambertian surface.

The diffuse calculation is based on spherical harmonics [10]. Spherical harmonics
basis are a way to encode a signal over a sphere and in our case the signal to
be encoded is the sky image probe. The initial step is to calculate for each part
of the geometry the lighting contribution from a particular harmonic; then the
lighting condition is encoded using the harmonic basis. To compute the lighting at
realtime, for each part of the geometry the influence coefficients are multiplied by
the sky dome encoding for that particular time position and added up. Spherical
harmonic lighting is nowadays a very popular technique to calculate lighting [11,15];
the algorithm used in the our interactive system is a standard implementation

The two light contributions are added up obtaining the amount of light reflected by
the surface. This value is then modulated by the surface albedo to obtain the color
value of that surface point.

4 Hardware Implementation of the Shading Process

All the lighting calculation are based on vertices and this choice is justified by the
following arguments. The model has a very high resolution, so lighting calculated
just on the vertices produces high quality results; then, given the very complicated
model topology, it’s very hard to produce a good (and compact) texture parame-
terization.

As stated before, the lighting process is divided in two steps; firstly the direct
lighting component will be calculated, then the indirect contribution will be added.
As introduced in the previous section, sun direction and intensity is know at each
time of the day; to compute direct lighting on a surface point it’s only necessary
to know if that vertex receives light or not in the specific time. Therefore, together
with each object vertex we store a bit mask containing a bit for each time step in
the day, representing the lighting condition (1 for light or 0 for shadow) of that
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particular vertex in that particular time. Lighting is therefore:

Ldirect = Lambertian if mask[current time] = true
Ldirect = 0 if mask[current time] = false

For indirect illumination, the light contribution in each vertex is the sum for each
harmonic of the influence coefficient (how much the vertex is affected by that har-
monic) multiplied by the current sky encoding (how intense the sky is on that
harmonic).

Lindirect =
∑4

i=1 Coeffi ∗ SkySHi

The shading algorithm has been implemented firstly using OpenGL Shading Lan-
guage, for testing the algorithm in a sample program and then converted to HLSL
to be used in the GameBryo engine; the conversion is quite straightforward and
involves almost only changing names of intrinsic functions and data types.

Hard shadowing is the first step of the lighting process. For each vertex is necessary
to know if in the current time that point is in light or if it is under shadow. The
status of the vertex is determined by accessing the shadow mask ant testing the
appropriate bit. The binary mask is implemented using floating values, because
floating points variables are native in graphics hardware while integer (normally used
as bitmask) are just emulated. Each float (in the standard IEEE implementation)
has a 23 bit mantissa that can be used to store 23 binary samples; the mask is
composed by 4 float, giving a total of 92 samples. More sample could be stored in
a single float (for example, using the float sign) but that will cause problems in
the hardware shader since it would be necessary to discriminate particular cases.
According to our specific sky dataset, the first time the sun is visible is at 6:52 and
it remains visible until 17:44. Using the 92 samples encodable in the four floats it is
possible to cover the time from 6:57 to 17:34 having 7 minutes lapse between each
sample. Each vertex has 4 floating point values containing the shadow mask; since
each float contains 23 samples the bit we need can be found as bit N1 of float N2
with N1 = CurrentTimeIndex mod 23 and N2 = CurrentTimeIndex div 23. To
avoid calculating those values for every vertex the two indexes are computed in
the program and passed down as constants. Binary operations are not implemented
into shaders, therefore the old trick of ”divide and check the rest” is used to extract
the bit value: ((mask[N2] / 2*N1) mod 2) returns 1 if the bit is set, 0 otherwise.
After this step the light value for the vertex is set to 0 (if in shadow) or to the
standard Lambertian lighting value (if in light) calculated as:

DirectL = LightIntensity * max(dot(VertexNormal,LightDir), 0.0f)

Given the direct lighting contribution, we have to add the diffuse component com-
puted using the spherical harmonics. Each vertex has 4 float which represent the
amount of influence the spherical harmonic base has on that vertex; this is used as a
multiplication factor for the sky probes encoded as spherical harmonics. The light-
ing contribution of each harmonic to a particular vertex is obtained by multiplying
the influence factor by the spherical harmonics encoding of the sky (basically, an
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HDR RGB value) and summing it up to the direct lighting previously calculated:

Directlight.r += vert_sh[0] * sky_sh_encode[0].r;
Directlight.g += vert_sh[0] * sky_sh_encode[0].g;
Directlight.b += vert_sh[0] * sky_sh_encode[0].b;
. . . . . . [omissis harmonics 1-2-3] . . . . . . .

Only the first four harmonics are used into our interactive system; in other publi-
cations nine harmonics are used to obtain a more precise representation of the high
frequency shading variations. However, in our case, we are using this kind of tech-
nique to calculate just half of the lighting; at this point the high frequency direct
illumination is already calculated and we just need introduce low frequency indirect
lighting.

At the end of this process we have the final light value incoming in that vertex. This
value is then passed down toward the fragment shader. In this way the lighting
values calculated on the vertices are interpolated across the faces of the model;
this produces a smooth and plausible effect, under the hypothesis that the base
geometry is tessellated with sufficient density and that the user will never approach
too close to the geometry. In our case the geometry is dense and the usual view specs
makes each triangle project on 3-4 pixels area on the FlatWorld display. Using a
less detailed model, would require moving the computation from the vertex to the
pixel/fragment, therefore requiring to encode all the needed parameters on a texture
map (and thus a parameterization will be needed).

In the fragment shader the light value is multiplied by the surface albedo, producing
the final color of the fragment. Up to this point all the computation has been
performed using floating point values, it’s now time to get from HDR to values in
the [0..1] interval for the final rendering. The color is multiplied by the exposure level
(calculated as 2stops) coming as a shader constant from the application and clamped
in the [0..1] interval. Gamma correction is then applied to match the monitor (or
videoprojector) response.

5 Offline Parameters Calculation

As stated before, the main idea behind the interactive system is to precalculate all
the invariants: all the shading computation is based on different parameters that
have to be computed offline. This parameters can be divided in two groups: vertex
attributes and lapse attributes. Vertex attributes are stored in each vertex of the 3D
model and used during computation, they appear as variables in the vertex (and
fragment) programs since they are model-dependant. Lapse attributes represent
the light condition in a particular time of the day and they are generated from the
skydome probes.

To precalculate the invariants of lighting equation, it is necessary to have an imple-
mentation of the lighting process that can be used to compute lighting “up to” a
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Fig. 2. Examples of real-time shading; note how the shadows moves precisely over
the geometry (top-let and bottom-left images) and how the HDR lighting calculation
allows to adjust the exposure to better percieve details (images on the right) which
are under shadows in the images on the left.

specific point and then retrieve the partial result. The Arnold rendering engine is
the tool used to produce “The Parthenon movie; it is completely configurable since
it is basically a library of functions. To render the offline movie, custom programs
have been implemented to manage the data format used for the Parthenon model,
the material shaders and the lighting environment. Beside its accuracy, another
important feature of the Arnold engine is that it can be used to produce just the
shading of a particular point on the scene geometry. Using the Arnold library is
therefore possible to build a program that, given in input the scene, computes for
each vertex of the geometry the various values we are interested in. The use of the
Arnold engine to precalculate the lighting values is not only justified by a code reuse
policy (no need to rewrite complex lighting computations) but it also guarantees
that the shading results will be coherent with respect to the ones presented in the
offline movie.

5.1 Illumination parameters

Two different kind of values are required to compute the direct light contribution:
the shadow mask and the sun position and intensity.

Shadow mask. The mask represent the lighting state of the vertex during the
day. To calculate these values (for each vertex and for each sun position), the
Arnold rendering engine has been used in “probing” mode. The scene with all
the geometry has been initialized as doing a normal rendering, then for each sun
position we calculated the irradiance of each vertex in the final model using a
single ray with no light bouncing; vertices with an irradiance equals to 0 are in
shadows. As an alternative, any ray tracing implementation would work fine since
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Fig. 3. Shadows precalculation: for each sun position, the scene is rendered in the
Arnold Engine. In this case the engine works like a ray tracer, to determine if each
single vertex is receiving light in that time of the day.

in this phase it’s only important to know if the vertex can see the light source or
not.

Sun position and intensity. This is the most intuitive data and comes directly
from the processing of the HDR sky probes. In each skydome image, the sun has
been detected as the brightest light source; its position has been determined as
the centroid of the brightest pixels, the various position during the day have been
fitted to a curve to reduce position detection errors due to clouds occlusion. The
sun intensity (and color) has been determined as the mean value of the brightest
pixels. To have more details on this process, refer to the HDR sky acquisition
paper [18]. For each time position there are 3 float to encode the normalized
direction [XYZ], and 3 float for the high dynamic range color [RGB].

Again, two different values are required to compute the indirect light contribution:
the spherical harmonics vertex response and skydome spherical harmonics encoding.

Spherical harmonics response. Spherical harmonic basis describes a signal over
a sphere; using that signal as a skydome light source to illuminate an object it is
possible to measure how much each vertex is affected by the lighting. This value,
a float for each basis, is used to modulate the spherical harmonic encoding of the
real skydome. Again, the Arnold engine in probing mode was used, rendering a
scene with no direct light sources and using the spherical harmonics as skydome.
This time, light scattering has been included in the computation, using four level
of recursion. For each vertex in the model, 4 signed floats are generated.

Skydome spherical harmonics (SH) encoding this value is a representation
of the sky using the first four SH basis. In theory it is the sphere integral of the
multiplication of the sky by the spherical harmonic; practically it is computed as
the weighted sum for all pixel of the multiplication of the sky probe image by the
spherical harmonic image. For each harmonic basis there are 3 floats, basically a
signed HDR color value.
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Fig. 4. Diffuse lighting precalculation. On left, the Spherical Harmonic base used for
lighting with positive and negative values encoded in red and green. On the right,
by illuminating the scene using the harmonic as a skydome light source it is possible
to see how much each part of the object is influenced by this harmonic. (beware:
the contrast of the right image has been raised to better perceive the differences).

5.2 Geometric Model Setup

The original Parthenon model was too big to be used directly into a real time
application: even at a medium resolution the polygon number exceed 10 million
triangles. A smaller model was required to grant a realtime frame rate. The 3D
model used for the rendering of the movie is composed by different elements:

• the ground, obtained by 3D scanning, stored as a single file and textured;

• the temple, obtained by 3D scanning, which is divided in various chunks (cor-
responding to a regular voxel-based space subdivision); only the front and rear
facades are textured;

• filling geometry, modeled with a CAD system to fill gaps in the scanned data,
encoded with a single file.

Since the image resolution available in the Flatworld system is 1024x768 for each
wall, an over-detailed geometry will be useless. Moreover, the Flatworld goal is to
simulate a window over a real environment trough the walls of the visualization
room. The room has to be statically placed into the scene and the user will look out
from one virtual window, having the possibility to move inside the room. The Flat-
world system has been designed for military simulation and training applications,
such as the ones where a soldier is in a building and observe the external environ-
ment (buildings, other actors). This restricts the set of possible view position and
directions that the tracked user can generate by moving in the interior space. There-
fore, it is not necessary to have a model which should look good from all possible
viewpoints, like in a standard browsing/manipulation framework, but just a model
that looks good from the viable viewpoints. For this reasons our first task was to
choose a position for the virtual Flatworld room (on top of the Acropolis), in such a
manner that it should have been possible to see from the virtual window the whole
Parthenon at an adequate distance and from a sufficiently low position, to convey a
sense of greatness. Part of the sky and of the ground should be visible too to show
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the changing of the day and the shadows movement. We choosed a position on the
west side, offset towards north, looking more or less at the same area covered by
the movie; this also because this is the area with a better 3D scanning coverage.

Fig. 5. The 3D model after reduction and culling; even if the model is not complete
(left) it contains all the elements that are visible from the FlatWorld environment
(right, the view from the center of the room).

The Parthenon model has then been divided in different areas, according to the
distance from the room position, the geometry chunks contained in each part have
been merged together using different resolutions, to have a high detailed geome-
try in front of the camera and a less detailed triangulation in the parts farther
away. We adopted this static LOD approach since the specific characteristics of the
virtual reality environment, Flatworld, did not allowed us to use more efficient and
sophisticated multiresolution approaches [3]. The filling geometry, modeled in Maya
to close the holes in the scanned geometry, required also some modifications. This
added geometry was good for offline rendering, but problematic for our shading al-
gorithms because it is composed by very large triangles and self-intersecting parts.
For this reason, the geometry has been recursively splitted into smaller triangles
to have a more uniform triangulation and the redundant and self-intersecting parts
have been eliminated. These processing steps were needed due to the characteristics
of the 3D model. Scanned models are very accurate, but at the same they are usually
not topologically clean and highly incomplete, requiring an intense processing.

At this point we had a simplified model, however this model still had too much
geometry (2 Million triangles) for our realtime constraints. By exploiting the char-
acteristics of our constrained virtual window system (the model will be viewed from
a virtual window and with a freedom of movements of a few cubic meters) we further
reduced the size of the geometry by purging those model faces which will always be
back-facing or occluded from all possible points of view in the Flatworld space. A
ray tracing algorithm has been used to detect those back-facing or occluded faces.
The size of the model was reduced to 700,000 triangles, low enough to be rendered
in a real time context but still enough to convey a very precise geometry when
displayed on the Flatworld screen.
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6 Interactive system implementation

Building a single task interactive application, with the possibility to use every bit
of the host machine and without coding restriction, can produce very good results,
but also the code implemented will not be usable in conjunction with other tasks
or inside more structured programs. In our case, part of the initial specifications
was the need to integrate the demo in the FlatWorld framework. The idea was
to implement the demo as some sort of architectural “stage” in a way such that,
afterwards, more elements (people, animals, special effects) could have been added.

Beside its hardware setup, the core of the FlatWorld system is an application frame-
work able to manage the various elements of the immersive system: head tracking
system, sound, lighting and so on. This framework is based on a commercial Di-
rectX based game engine called GameBryo [12]. The skeleton of the demo program
was already available: a simple application able to render a scene graph and accept
input from keyboards, game controllers and the tracking system. The real problem
was to integrate all the data and processing requested in a way that was suitable
using the GameBryo engine, efficient and still open to future extensions.

Geometry. The geometry has been imported in the GameBryo engine using multi-
ple OBJ file, since it is impossible to have such a large object in a single GameBryo
node. This because each geometric node is converted in an high performance in-
dexed buffer on the video card memory and, due to hardware limitations, the size
of those buffers is limited to 20k triangles.

Shader data. The shader data is stored in the video memory, in the same objects
where geometry is stored. All data is loaded at startup and transferred to the video
card; in this way no further updates are necessary at runtime, all animation is
done just changing the shader parameters.

Sky data. The sky behind the Parthenon is a rough sphere geometry textured us-
ing the sky image dataset. Even if 92 samples are acceptable to show the shadows
moving on the objects, for the sky this is quite a poor time resolution since the
clouds move much faster than the sun. For this reason, in the FlatWorld demo we
used 184 sky maps (two for each time position); this means that during time flow
there are two kind of transitions. In odd transition it’s only the sky that changes,
in even transition the sky and the shadow changes.

Beside pure rendering, the main activity inside the application is to change the
time-dependant data, updating the shaders with the new frame constants; this is
done by a class called TimeLapseNavigator. The lapse navigation object contains
the lapse attributes (sun intensity and position, SH sky encoding, exposures) for
each time position. When the time position is changed (automatically or by user
command) the shader frame constants are updated using the corresponding data.

Interaction with the demo is quite simple: at the start the viewpoint is set to the
center of the virtual room and can be modified using a keyboard, a game controller
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or using the tracking system. The demo starts in automatic time flow mode, the time
advance automatically throughout the day lapse, completing a cycle in more or less
30 seconds and then starting again (the speed can be specified in the configuration
file). This behavior can be interrupted (and then resumed), stopping the demo in
a particular time position; time position can be moved forward and backward with
just a gesture (using a floating wireless mouse). Exposure is automatically adjusted
to a “good” level in the automatic mode but can be tuned up or down with another
gesture.

Fig. 6. Screenshots of the Realtime Demo. Time flows from dawn to dusk, shadows
moves across the building and the overall hue of the scene changes according to the
sky illumination. The shots are taken from different positions, each time nearer to
the building.

The current system implementation, despite the complex lighting calculation, re-
sulted quite fast; in stereo, with head tracking, it’s able to run at 12 frame per
seconds (or at 24 fps on a single monitor). The host machine is a Pentium4 3Ghz
with 1GB of ram and a GeForce FX6800 Ultra; the most important part of the
machine is obviously the video card, since is where all shading computation is done.
The memory footprint of the demo is only 200 MB and the CPU is not completely
saturated by the application; this makes if possible to add more elements to the
scene, such as dynamic actors.

Regarding the resulting realism, even if the lighting calculation implemented in the
demo is just an approximation, many of the lighting effects that appeared on the
offline movie are still visible. The shadows are precisely represented, the sky color
(yellow in the morning and red on evening) influences the overall hue of the building
very realistically and the HDR rendering gives the user the possibility to change
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the exposure to bring out different range of details.

7 Conclusions and Future Work

In this paper we presented the development of a realtime version of the time lapse
sequence from the short movie The Parthenon. We discussed some technical prob-
lems related to the size of the dataset and complexity of the lighting computations
required; to solve this problems, we presented methods to make a scanned 3D model
more adequate for realtime rendering applications and we described lighting algo-
rithms based on the separation between direct/indirect light and extensive precal-
culation. We showed how to use existing rendering engine to precalculate lighting
invariants and how to implement those shading algorithms using modern GPUs.
The resulting techniques have proven to be accurate (in terms of rendering results)
and affordable (in terms of time) for realtime applications. Moreover, being the al-
gorithm execution restricted to hardware shaders, we showed how this computation
has been integrated inside an existing application framework.

Some experiments have been devoted to add to the demo some HDR related effect,
e.g. glow, but without much success. Beside pure aesthetical consideration, the time
required to compute this effect was too much with respect to the obtained visual
impact. Since the techniques used in the demo are quite general, the same kind of
computation could be integrated in other existing visualization systems. Having all
the calculation done on hardware shaders of modern GPU, it is simple to extend
existing rendering engine to accommodate additional data and shader management.
In this way it would be possible to add realistic lighting even to large 3D dataset
visualization tools.

Thanks
I would like to thanks people that made possible this jointed work, among whom I
am pleased to mention Paul Debevec and Diane Piepol. Thanks also to all people
at the ICT Graphic lab and Flatworld for their contributions in the development of
this work.
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