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The models produced by means of the available 3D-scanning technologies are considered accurate
enough for most applications. Unfortunately, the acquisition of complex objects is still a demanding
process that cannot be performed by non-specialists. Among the open problems, one of the most
difficult to grasp is theplanning of the acquisition session, i.e. choosing a set of positions of the
scanner to view the whole surface of the object.

Most of the algorithms proposed in the literature either can handle few degrees-of-freedom
(DOFs) or are too burdensome, as they require the optimisation of complex objective functions. Hence,
they are in trouble when dealing with complex surfaces. We propose a full 6-DOF pose-planning algo-
rithm that is simple and easy to implement. We do not search for thenext best view(NBV) to minimise
the number of acquisitions, as most previous algorithms do. Rather, we pursue the less ambitious ob-
jective of finding a (possibly small) set of views, that guarantee a complete coverage of the surface
with a minimum accuracy on the sampled data. Given an incomplete model, unsampled regions are de-
tected and simple patches are built to cover the missing surface. New views are estimated by clustering
the normals to unsampled patches.
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1. Introduction

The quality of the 3D models acquired from real objects has significantly improved in
the last few years, thanks to the progress of 3D-scanning technologies. Theaccuracy(50
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microns or better for triangulation-based scanners),spatial resolution(i.e. the mean dis-
tance between sampled points, usually in the range of 0.1-0.5 mm), andsampling speed
(100K-300K samples per second) of modern scanning devices are considered to fulfill the
requirements of most applications. In spite of all the progress made, the 3D-scanning tech-
nology is not mature for the consumer market. There are still bottlenecks that slow down
the whole scanning process. Moreover, the process is not fully automatic. The intervention
of expert operators is still required in some key steps, such as the integration of raw data
(registration) and theplanningof the acquisition campaign. Planning and optimising the
acquisition of 100-200 range maps can be difficult even for expert operators. Furthermore,
obtaining a complete coverage of complex surfaces is often a hard task. Among others,
people involved in theDigital Michelangelo Project1 reported that the progressive cover-
age of models comes with an effort which is inversely proportional to the fraction of the
sampled surface.

We address the problem of planning the acquisition campaign, i.e. choosing a set of
views that guarantees a complete and accurate sampling the surface. This topic has been
extensively studied in the literature and it is usually referred to asnext best view(NBV) se-
lection. The goal is to determine the nextbestlocation and orientation of the scanner, given
the data that has already been acquired. The optimality criterion is a key choice to deter-
mine the NBV. Theminimal numberof views has often been used in previous approaches.
In our opinion, the number of scans is a non-critical parameter due to the acquisition speed
of current scanners and the quality of post-processing software2. Moreover, data redun-
dancy can be used to reduce the effect of noise and sampling inaccuracies. Therefore, the
optimality of a scanning set is mainly related to thecompleteness(percentage of surface
sampled), and the meanglancing angle, i.e. the angle between the scanning direction and
the normal to the surface in a given point. The glancing angle is directly related to the
quality of sampled data, since most scanners give high quality samples only when the ac-
quisition direction is nearly parallel to the surface normal.

When planning the acquisition of objects, little is known about their shape. Many pre-
vious approaches make plans without any knowledge on the surface. They cannot make
any assumption on the geometry of the scene, save a volume bounding the object. A more
accurate understanding of the shape would be of great help. We believe that designing a
preliminary acquisition plan is very easy even for modestly-skilled operators. The resulting
model is usually incomplete. An automatic planning algorithm can be designed that takes
advantage of, and refines this preliminary acquisition. Our approach improves this simple
initial planning by detecting the surface regions that have not been covered by the initial
scans. For each of these potential holes, we estimate a set of surface normal vectors using
the supposed orientation of the faces of the hole. A set of views is automatically generated
on the basis of a quantisation of the space of viewing directions. Experimental data show
that the coverage factor is significantly improved.

This paper is an extension of a previous work3. The main new contribution is a fast and
effective method to account for visibility during planning. Visibility information is used to
discard obstructed views and to extend our algorithm to two-line-of-sight scanners, such
as triangulation devices. A method to avoid collisions between the scanner and the object
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is also suggested. Finally, experimental data is shown to support our algorithm.

2. Related Work

Sensor planning can be defined as the problem of determining a sequence of sensing oper-
ations to view a given scene. Each sensing operation is a set ofsensor parameterssuch as
viewing pose(i.e. position and orientation of the sensor), camera focus and field of view,
andenvironment parameterssuch as controlled lighting conditions (e.g. in BRDF acquisi-
tion). A number of constraints can be used to optimise the acquisition. A common target
criterion is the minimisation of the number of sensing operations that allow the scene to be
completely covered. Most of the techniques in literature do not take into account environ-
ment parameters and assume fixed most sensor parameters. The focus is mainly on finding
viewing poses, thus reducing the search space to six dimensions (three for the position of
the sensor and three for its orientation). We will refer to this search space aspose space.

Sensor planning has been addressed mainly by the computer vision community as the
problem of determining the minimum set of viewing directions covering the surface of
a given object. Following the approach of Maver and Bajcsy4, planning strategies can
be classified according to how much a-priori knowledge about the scene is available. If a
complete model of the scene is known in advance, the plan can be computed off-line using
the reference model. On the other side, if no geometrical information is available prior to
the acquisition phase, the best we can do is to build the plan on-line, step by step. This
approach, known as thenext best view(NBV) problem, is more popular in the computer
graphics community in the context of surface acquisition. A third class of algorithms lies
midway between the first two, i.e. only partial information about the scene is accessible.

Fig. 1. A spherical bounding volume. The views (shown as lines) are constrained by the shape of the volume.

When planning the acquisition of a 3D shape no prior knowledge is given about the
surface to be acquired. Sometimes the object is assumed to be bounded by a (often spher-
ical or cylindrical) volume (see Figure 1). The scanning system is often constrained to lie
onto the surface of the bounding volume, thus reducing the number of degrees-of-freedom
(DOFs) of the viewing pose from six to two. This may cause some viewable surface areas
to become not measurable by the system (see Figure 2). The same may happen discretising
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the set of viewpoints.

Fig. 2. Planning and acquisition of an object using a spherical bounding volume. The surface acquired (lower-
middle image) is not complete, even if the acquisition system can sense it. This is due to 2D nature of the bounding
surface. Conversely, if the planning is unconstrained (lower-right image) the final model is more complete.

A common situation in which a model of the scene is known a-priori is the case of
industrial inspection of mechanical parts, where a CAD reference model is used to verify
the compliance of manufactured objects. Tarbox and Gottschlich’s algorithm5 generates a
plan based on the reference model and then verifies it using a model of the data acquisition
system. Despite this off-line verification phase, when the plan is executed it can still be
incomplete due to imperfections in the model of the acquisition system. A further on-line
planning phase is then performed to fill the holes. Three different planning algorithms are
proposed. The first one constructs the plan incrementally, choosing the sensing operation
that is able to sense the largest portion of unseen surface area. A quality constraint must be
satisfied in order to consider a surface point measurable from a given viewpoint. Namely,
if the angle between the normal to the surface in the given point and the viewing direction
(glancing angle) exceeds a given threshold the point is marked as non measurable from
the current viewpoint. A second procedure weights each point with respect to its glancing
angle in order to balance between a short plan and a high quality reconstructed model. A
third algorithm employs a simulated annealing scheme to perform a local search on the
space of viewpoints.

One of the first algorithms in the class of approaches with no a-priori knowledge was
proposed by Connolly6. He partitions a spherical bounding volume using an octree repre-
sentation. All octree nodes have a label initialised asunseen. When a portion of the surface
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is scanned, the nodes containing the sampled surface are labelled asseenand the regions
in the portion of the conoid between the scanner and the surface are labelled asempty. Two
algorithms are presented to compute the NBV. In theplanetariumalgorithm the bounding
sphere surface is sampled in a number of candidate viewpoints. Visibility of the surface
for each candidate position is evaluated and the NBV is selected as the viewpoint max-
imising the amount of unseen nodes. This is a burdensome algorithm because computing
the visibility information requires ray casting through each octree node. Thenormal al-
gorithm counts the area shared by the faces of nodes which separate empty and unseen
regions. Consequently, only six directions are possible. The NBV is the direction max-
imising the shared area. Although this algorithm is computationally much cheaper with
respect to planetarium, it is a fairly naive approach.

Maver and Bajcsy4 proposed a planning algorithm tailored to a light stripe range sen-
sor, constrained to translations and limited rotations in a plane above the object. Occluded
regions are represented as polygons. Viewpoint visibility constraints are computed from
the polygon boundaries. This algorithm cannot be easily used with other scanning config-
urations.

Whaite and Ferrie7 developed a model-based approach in which a parametric model
(superquadric) is fitted to the currently sensed data. At each step the model can be re-
fined minimising the uncertainty in the model itself. Since the uncertainty is strictly tied
to how well the sensed data fits the current model, the next operation is to scan the region
where data fits the model worst. The main limit of this algorithm is the inability of simple
parametric models to accurately represent surface detail.

A general framework for viewpoint planning is presented by Pito8. His algorithm as-
sumes that the scanning volume is enclosed by a surface. The enclosing is parameterised
using a representation calledpositional space, consisting of two bi-dimensional scalar
fields. This representation allows to avoid the heavy memory requirements of an octree
structure. The positional space encodes the visibility information for each candidate view-
point. The viewpoint which maximises the unseen volume is chosen as the NBV. Pito’s
framework can account for every possible bounding volume. Nonetheless, the shape of the
bounding volume must be tailored to every object, since the scanner is constrained to move
on its boundary. As a consequence, in practice it is very difficult to obtain a full 6-DOF
sensor planning algorithm in this framework.

All the approaches described above assume that the scanner never enters a given bound-
ing volume to avoid collisions between the scanner and the object. Papadopoulos-Orfanos
and Schmitt9 presented an approach which incorporates a path planning algorithm for
collision avoidance. They use a laser stripe scanner mounted on a robot with three transla-
tional DOFs. The acquired data is used to guide both the sensor planning and path planning
algorithms. They also exploit the geometry of the laser stripe scanner to obtain a more ef-
ficient space carving strategy, based on direct and indirect shadowing (i.e. occlusions from
the light source and to the camera). The main drawback of this approach is that the scan-
ning system is not allowed to rotate around the optical centre. This constrains severely the
shape of scannable objects.

Reed and Allen10 encoded three planning constraints as operations on sets. They
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consider the workspace volume as a set of points. The constraints are enforced onto the
workspace by applying set operators. Viewpoints are regarded as constraints. Since set
operations may be computationally expensive, this approach is inefficient.

Scott et alii11 worked out a multi-stage approach in which a coarse model acquired
in a stage is used to guide scene exploration for the fine modelling of the next stage. An

Fig. 3. A candidate NBV. Some planning algorithms do not exclude out-of-focus surface points when computing
measurability from a viewing direction.

a-priori base model is needed at the first stage. It can be as simple as a bounding volume.
Virtually any number of stages can be used but in practice a choice of two should suffice.
The algorithm partitions the rough model into cavities, holes and planar patches and for
each patch a set of candidate viewpoints is generated. A user-definedmeasurabilityfunc-
tion is computed for each patch of the rough model. A simple approximated set-covering
algorithm is employed to select the views that together give the best sampling of the whole
surface. This algorithm does not constrain the viewpoint space, hence full 6-DOF plans
can be generated if a suitable discretisation of the viewpoint space is done. However, find-
ing a good discretisation is not straightforward, since we cannot assume that the scanning
system can sense all surface data in a given direction. Namely, a slope along the direction
of optical axis may be so steep that some points would not be imaged at all. Hence, the
measurability of some points from a given direction may be misrepresented. Figure 3 de-
picts an example in which this situation occurs. The authors do not suggest any method to
cope with this problem.

Model-based object recognition and localisation is an example of planning problem
with partial a-priori knowledge. Given a model of the object’s shape, its pose must be deter-
mined. Here an approximation of the shape is known in advance, but not the object’s pose.
Most approaches in this class follow a common scheme12,13. A search is performed in
the space of poses employing thehypothesis-and-verifyparadigm. Hypotheses are formed
regarding the identities and poses of the objects in the scene. Then, hypotheses are assessed
in compliance to some metrics. New sensing operations are performed accordingly until a
halting condition is met.
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A good survey of view planning algorithms can be found in14. For a recent survey see
15 which also provides an alternative and effective classification.

3. Assumptions

Complex objects may have many protrusions and partially occluded concavities. In order
to fulfil the scanning requirement(i.e. all the ‘viewable’ surface should be scanned8), a
planning algorithm should allow the scanner to be positioned and oriented in every possible
way. Planning algorithms that constrain the scanner to move on a predetermined surface
(e.g. a sphere centred on the centre of mass of the object), may have forbidden positions in
the sixth-order pose space (see Figure 2) that are dependent on the algorithm itself, rather
than on the capabilities of the scanning system or on the features of the objects. That is
why they are doomed to fail in meeting the scanning requirement.
Our algorithm, being guided byoccluding patches(see Figure 4), has no restrictions or
forbidden regions and, in principle, can sample all the surface viewable by the scanning
hardware. Actually, a quantisation of the pose space is carried out. However, the surface

Fig. 4.Occluding Surfaces- A scan is taken from a direction orthogonal to the surface. In the left image anoc-
cluding patchcasts a shadow onto the back surface. The correspondingoccluding contourandoccluding surface
are shown in the middle. On the right the resulting clusters are displayed together with the associated normals.

patches that cannot be viewed by the sensor become smaller as the quantisation step be-
comes finer, since the pose space is quantised uniformly. In the limit, no missing patches
will be left.
Despite many of the methods proposed in the literature keep an eye on quality and com-
pleteness of the sampled model, research in this field has put the stress mainly on the gen-
eration of short plans. As a result, surface coverage is not always satisfactory. Moreover,
many proposed solutions are complex and memory-consuming. Conversely, our approach
tries to maximise quality and coverage, rather than minimising the length of plans.

Like many previous algorithms, we are interested in planning the position and ori-
entation of the scanner. Hence, we assume that the other parameters (e.g. camera focus,
environment lighting, and so on) are fixed at the beginning of the scanning session. We call
viewpointthe position in space of the center of projection of the camera. Aview, orviewing
pose, can be defined as a couple(C, d), whereC is a viewpoint andd is the orientation of
the camera.
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Henceforth, we use the expressionsoccluding contourandoccluding surfaceto indi-
cate, respectively, the border of an occluding patch, and the surface that spans between an
occluding contour and its projection onto the back surface (see Figure 4).

4. A Hole-Driven Planning Algorithm

Many previous approaches try to build very accurate plans in a single iteration, using com-
plex optimisation functions or data structures. Anyway, complex shapes escape even the
Wise, despite the efforts we make. This is mainly due to our limited knowledge on missing
patches. When human operators plan an acquisition they have a powerful means of acqui-
sition that automatic planners lack: the human visual system. An automatic planner can
only guess the shape of missing parts.

We believe that it is not worth doing complex plans at the expenses of computational
resources. Better results can be obtained using a simple iterative approach, where planning
and acquisition are interleaved. Moreover, acquiring the shots that have been suggested by
the planner gives a feedback to the planner itself. This resembles what humans do when
they ‘acquire’ a representation of the world. They just look around to view parts of objects
that were occluded in previous views. Then, they integrate the observed patches to their
representation.

The proposed approach falls in the class of algorithms with no a-priori knowledge.
We use a multi-stage refinement of the surface. A basic shape is generated using a simple
sweep. Most of the basic scanning tasks can be solved by choosing one of two different
simple plans.

(1) X-Y sweep. This is the typical setup used to scan a basrelief or a car body section. The
characteristics of the scanner are assumed to be known. Given the extent of the object
in a given projection plane, we can easily partition the scanning space inton×m range
maps. Data is acquired by a regular sweeping of the scanner along the two directions
on the projection plane. Scanner displacement depends on the inter-scan overlapping
factor (usually 0.7-0.8 the scan height and width).

(2) Cylindrical sweep. The common approach to scan an all-round object consists in the
acquisition of a set of cylindrical scans. Either the scanner is rotated around the object
or a rotating platform is employed, which allows to move the object while the scanner
is steady. The number of shots in a complete rotation depends on the mean diameter
of the object and the inter-scan overlapping factor (usually 20-30%) and can be easily
computed. The vertical sweep factor and the number of cylindrical acquisitions again
depend on the inter-scan overlapping factor and the height of the object.

Both these methods are naive but require few parameters and can be easily set up. Obvi-
ously, they rarely come up with a satisfying coverage of the surface, since they do not take
into account surface features to guide planning. Self-obstructing regions on the surface can
produceunseen regions(see Figure 5). Nonetheless they give a rather well distributed set
of views, that is a good starting point for further improvement.

At each step of the refinement phase, we build a plan to sample unseen surface by find-
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Fig. 5. An example of unseen regions originated from the presence of a self-obstructing component of the shape.
Thick lines indicate unsampled surface sections.

ing a small number of views covering the occluding surface. A minimum-quality constraint
is enforced setting the maximum glancing angle.

Figure 6 shows the steps of our algorithm. First, we locate all unsampled regions of the

Fig. 6. Pipeline of the proposed algorithm. TheHole Locationstep differs between local and global solutions.

current model. The unsampled surface is represented as a triangle mesh. Then, the faces
of this mesh are clustered with respect to their normals. The idea is that a cluster should
represent a portion of an occluding surface that can be acquired in a single shot. Finally, a
viewing pose is computed for each cluster, taking into account the contribution of all the
normals to faces in the cluster. New surface patches are acquired using the new views. If
the model is still incomplete, the algorithm in Figure 6 can be iterated. We found that one
iteration often covers almost all the missing data. No more than two iterations are needed
in most cases.

4.1. Locating Holes in the Model

The core of our approach is thehole locationphase, since its performance is critical for the
generation of good plans. Hole location relies on the following observation. When a range
map is acquired, the data occluded to the sensor lies inside a conoid bounded by occluding
contours. Thus, the occluding surface separates unseen volume from volume known to be
empty. Since we know nothing about the unseen volume, save its boundary, our idea is to
exploit this minimal knowledge to compute occluding surfaces and use them as a guide for
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planning (see Figure 4). We propose two different methods for locating holes. One is very
simple and fast but can find only local holes. The other one can locate holes in the whole
surface and is more reliable but is also more burdensome.

In thelocal method, hole location is view-dependent as it operates in2 1
2D. Namely, the

Fig. 7. A height jumpand the correspondinghole map. A range map is shown in wireframe together with good
(lower-left image) and (lower-right image) bad faces. Bad faces are the hole map of the current scan.

boundaries of occluding surfaces are detected by searching for strongheight jumpsin the
range map (see Figure 7). The range map is triangulated and triangles associated to high-
quality sampled regions are filtered out, i.e. all but very skewed triangles are removed. The
resulting mesh is the dual of a ‘good-looking’ surface patch. In this way we obtain a sort of
hole map, consisting of all the faces that are removed from the original mesh patch. Notice
that the faces of this hole map are nearly orthogonal to the viewing direction.

The hole detection phase is preceded by a smoothing operation on the raw data, re-
garded as a height field. This step is fundamental in order prevent overly scattered normals
in the hole surface. Since the hole surface is made up of skewed triangles the distribution
of triangle normals is usually very noisy. Smoothing the raw data also attenuates noise
in boundary data, which could cause artifacts in the hole surface. Smoothing is further
discussed in Section 5.

The global method is based on volumetric diffusion16. Volumetric diffusion allows
to close holes by expanding the distance field on unsampled regions. It also exhibits the
nice property that the expanded surface is smooth. This property is useful when clustering
normals. We take care of computing aconfidencevalue during the volumetric diffusion.
This allows to discriminate the surface parcels that are originated by field expansion from
those that originate from real data. Figure 15(a) shows a model before fusion (image on
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the left) and the expanded mesh reconstructed at low resolution (image on the right). The
colour on the reconstructed surface maps the confidence value using a colour ramp: the red
indicates surface portions that were acquired with a low confidence (i.e. are badly sampled
or are associated to holes), while original data is painted in bluea. The unsampled areas
of the mesh can be detected by defining a threshold on the confidence value. Figure 15(b)
shows the hole map.

It is worth noting that we do not need a highly accurate model at this stage. A mesh
reconstructed approximately suffices for the detection of un-sampled regions. Hence, we
reconstruct the volume with a low sampling rate (i.e. with a voxel width much larger than
the inter-sampling distance of range maps). Working with a low resolution voxel set allows
a more efficient execution of the volumetric diffusion of the distance field.

4.2. Clustering the Faces of Holes

Once holes have been located and a mesh representation has been computed for them,
mesh faces are grouped in clusters with respect to their normals. Each cluster represents
all the faces that are measurable from a single direction. We define measurability as a
function ofglancing angle. Namely, a face is measurable if the direction of its normal is
nearly parallel to the viewing direction. Figure 8(a) depicts the cross-section of a surface
and the camera viewing cone. A ray is cast form the center of projection of the camera
to each face of the surface. The figure shows the angles between the normals to mesh
faces and the corresponding rays. The cluster associated to the current view is given by
the faces whose angles do not exceed a given threshold (Figure 8(b)). A representative
direction is associated to every cluster. A face belongs to a cluster if its distance from
the representative direction is within a given threshold. The distance measure we employ
is simply the glancing angle. The threshold value depends on a quality function of the
scanning system, which is usually directly related to the glancing angle. Notice that here
we assume that faces pointing in the same direction can be acquired in a single shot, i.e.
they are inside the viewing cone of the scanner optics (Figure 3). This condition is met if we
assume that the whole object lies inside the scanning volume. Anyway, it can be avoided if
a constraint on maximum Euclidean distance is embodied in the distance measure used for
clustering. A method to account for this will be presented in Section 4.3.

The clustering algorithm we employed is in the spirit of Octree Quantisation17. This
is a simple method used for colour quantisation in palette-based colour images. Suppose
you are given a colour table that can contain at mostk entries. When a new colour is added
to the table, if there is a free slot in the table then you are done. Otherwise you have to
make room for the new entry. This can be done by merging some close neighbours into
one cluster. A common colour is assigned to the cluster. An octree is used to represent the
RGB space. Colour components are the coordinates within the octree. Exact colours are
represented as leafs of maximum depth, while intermediate nodes represent clusters. The

aDue to publishing restrictions images are printed in grey levels. A colour PDF file can be downloaded from
http://vcg.isti.cnr.it/publications/papers/planning IJSM05.pdf
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(a) A ray is cast form the center of projection of the camera to each face of the surface. The angles
between the normals to the faces of the mesh and the corresponding rays are shown. The angles that
exceed a given threshold are filled with a striped pattern.

(b) The faces that can be acquired at high quality in the current view.

Fig. 8. Cross-section of a surface and the camera viewing cone.

deeper the level of a node, the fewer the colours it represents. Every time the number of
leaves exceedsk, some leaves are merged. In order to generate an equally distributed par-
tition, the leaves of deepest level which represent the fewest pixels are chosen. Once every
colour has been added to the octree, the colour table is given by the leaves. The mapping
from colour indices to table entries can be done simply by traversing the octree structure;
when a leaf is found its colour is returned. Since unit normals have only two degrees of
freedom, we implemented a sort ofquadtree quantisationin 2D, mapping azimuth and
elevation angles to colours.

We chose this solution in place of more widely used clustering methods, such ask-
means18,19, because of its simplicity. Even ifk-means might give better results, we do
not need to be very accurate since our knowledge of the missing data (i.e. the occlud-
ing surfaces) is imprecise. Moreover, the gain in accuracy would be at the expenses of
running-time. Different face clustering approaches have been proposed in the computer
graphics community20,21. However, even if they are simple and fast as well as Octree
Quantisation, they are too tied to mesh topology and can give incorrect results for our
application. Figure 9 shows the comparison between two different clustering approaches.



May 10, 2005 15:31 WSPC/INSTRUCTION FILE IJSM05

A Six-Degrees-of-Freedom Planning Algorithm for the Acquisition of Complex Surfaces13

Fig. 9. Face clustering methods:topology-drivenmethods (on the left) generate a cluster for each face, while
octree quantisationcorrectly gives two clusters (clusters are shown in different colours).

One is driven by the topology of the model, while the other takes into account only the nor-
mal to faces. The former stops adding new faces to the current cluster when it encounters
a discontinuity. Hence, clusters are bounded by discontinuities of the surface. Conversely,
the latter scheme allows the clusters to span over discontinuities. This behaviour is prefer-

Fig. 10. Cross-section of a surface and the camera viewing cone. A cluster can contain non-contiguous faces
(right image).

able for our application, as shown in Figure 10. An iterative clustering algorithms has been
recently proposed by Cohen-Steiner et al.22. They choose some initial seed mesh faces,
and grow clusters around seeds by adding faces in the boundary of current regions, until
all faces are processed. Faces are added using a priority related to the distortion due to
approximation. The partition is used to compute best-fitting planes, calledproxies. In turn,
proxies are used as seeds for the next iteration. The performance of this method is pretty
good, and it is shown to converge in few iterations. However, it is rather slow. Moreover,
the type of clustering produced is very different from what we need for our application in
two respects. First, it tends to produce elongated polygons, since its objective is a cluster-
ing that closely resembles what human beings expect. Second, clusters are computed by
growing regions around mesh faces. Hence, the algorithm produces only one connected
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component, while our clusters can contain more components (Figure 10).
In order to adapt this algorithm to our purposes, we have slightly modified the termina-

tion condition and the criterion to choose the next merging. Namely, we choose the nodes
to be merged taking into account not only the number of normals represented (encoded as
colours), but also the glancing angle with respect to the representative viewing direction.
Since we are interested in finding the minimum number of clusters that cover the whole
normal distribution, the number of leavesk must be as little as possible. The merging is
thus stopped when no more merging can be carried out without violating a constraint on
the maximum glancing angle.

Notice that this merging criterion assigns the same weight to all the faces. Weighting
the faces with respect to their area could result in a better performance.

4.3. Computing the New Views

Once we have clustered face normals, the directions associated to the clusters constitute
a small set of viewing directions covering the holes in the current model. To compute
the viewing positions, we take the centroid of the vertices belonging to each cluster and
displace it along the viewing direction. The displacement is determined in order to allow
every face of the cluster to lie inside the imaging cone of the scanner (Figure 3).

Now that a small number of viewpoints has been determined, their quality can be
ranked with respect to the area of unknown surface viewed. This is done by summing
up the area of the faces in each cluster. The viewpoint associated with a given cluster gets
a rank proportional to its area. A constraint on minimum area is enforced to discard low-
ranked views. Even though some views are discarded using this method, some of the new
scans might have wide overlapping regions. In order to avoid sampling the same surface
again and again, we weight the rank of a view with respect to its neighbours. Namely, we
sort the views with respect to their area and compute the angleθij between the viewvi

and the viewsvj , j = 1 . . . i − 1. The rank of the viewvi is r(vi) = maxj [w(θij) · Ai],
wherew(.) is a weighting function andAi is the area associated tovi, expressed as the
ratio between the area of the cluster and the area of the current model. In our implemen-
tation, we setw(θ) = θγ , with γ = 1.5. The views whose rank is below a fixed threshold
are discarded.

A method to get rid of the assumption that the object must lie inside the viewing cone of
the scanner is as follows. For each vertex in the cluster the distance from the optical centre
can be computed. A histogram of the distances is then built. By examining the distribution
of distances the cluster is split in as many sub-clusters as needed to scan each sub-cluster
in a single shot. This method is tricky to implement and may produce some unnecessary
viewpoints due to its locality.

Better results can be obtained by integrating a constraint on maximum Euclidean dis-
tance in the distance measure used for clustering. We do this simply by extending the
Octree Quantisation algorithm in five dimensions (two for orientation, three for position).
Namely, when the algorithm tries to merge neighbouring nodes it must check not only their
orientation but also their linear distance along the candidate viewing direction. This can be
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Fig. 11. Clusters are constrained to lie between the near and far planes of the sensor frustum.

thought as constraining the clusters to lie in a volume bounded by two planes orthogonal
to the viewing direction (Figure 11), that is exactly what we want to do.

4.4. Visibility and Potential Collisions

The approach we have presented so far does not take into account any visibility issue.
Namely, when clusters are computed we do not know whether they are visible or not from
the associated viewing direction. This is because we do not check for visibility while clus-
tering. Computing visibility involves casting rays along the line-of-sight of the scanner. In
order to avoid burdensome computations, we use the graphics hardware as in23. A set of
candidate viewing directions is computed as described above. For each direction, we place
the camera accordingly and render the scene with flat shading. Different colours are used
to encode the background, and the outer and inner side of the surface. Moreover, the outer
side of each cluster has a unique colour. In order to evaluate the visibility of a candidate
pose, we search the rendered image for pixels of the colour associated to the cluster. If their
number is not close enough to what we expect, we discard the pose.

This method can check visibility along one line-of-sight. However, the most widely
used scanning systems are based on triangulation. Hence, visibility must be computed
along two directions. Our basic algorithm produces only 5-DOF plans. There is another

Fig. 12. Our basic algorithm allows the scanner to rotate around the viewing direction. Hence, it generates 5-DOF
plans. 6-DOF plans can be generated computing visibility from both the laser beam and the sensor (see the text).

DOF left, i.e. the sensor is allowed to rotate around the viewing direction (see Figure 12.
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This aspect is of no importance using one line-of-sight scanners24. However, it can be a
limitation for scanners with two lines-of-sight (see Figure 5). In general, different orien-
tations of the scanner around the imaging axis give different results. Figure 13 shows two

Fig. 13. Two possible orientations of the scanner around the optical axis of the sensor, S. On the left, a part of the
sampled surface is almost parallel to the laser beam, L. The data acquired is thus extremely noisy and must be
discarded. This does not happen placing the scanner as in the right picture. Hence, the right orientation captures
a greater extent of the target surface.

possible orientations. The line-of-sight of the laser is occluded on the left, while it is free
on the right. In order to cope with two lines-of-sight, we compute visibility in two steps.
First, we compute visibility for the sensor as above. Then, a number of orientations around
the scanning direction are checked for visibility. The orientation that gives the best visi-
bility (i.e. the greatest number of pixels) of the current cluster is chosen. This extension
allows to obtain full 6-DOF plans with little more effort. The time overhead is negligible,
since few renderings are required for each candidate pose.

Avoiding collisions between the scanning hardware and the object is an important issue
for an automatic acquisition system. In order to check for potential collisions, we need a
tight volume enclosing the object, e.g. the visual hull of the object. If the initial model
has been acquired using one of the two sweeps described in Section 4, no protrusions are
missing. Hence, the model itself can be used in place of the visual hull. Moreover, we
can represent the scanner using a bounding volume. Thus, we know the shape of the two
objects which can potentially collide (the scanner and the object) and their relative position.
Collisions can be detected using any of the standard algorithms in the literature25.

5. Experimental Results

We have tested our algorithm both in synthetic and real environments. In our synthetic
testbed, we simulate the acquisition of range scans rendering a reference model from the
selected views. The new scans are simply the rendered depth buffers. In both the real
and synthetic setups, the method proposed is able to detect suitable viewpoints, increasing
significantly the sampling ratio of the surface. Figure 14 shows some snapshots of each
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step of the local algorithm. Runs of the global algorithm are depicted in Figure 15 and

(a) Range data and corresponding meshes. To the
right the range data are smoothed using a gaussian
filter with σ = 15. Jump edges are highly atten-
uated in the smoothed mesh.

(b) Hole maps: different colours refer
to different representative normals (i.e.
viewpoints). A spike is shown for each
viewpoint computed.

Fig. 14. Some snapshots showing each step of the local method in action on real data.

Figure 17.
As can be observed from Figure 14, some gaps were missed by the local algorithm.

Some holes were not detected due to the view-dependent nature of the local hole location
method (i.e. only hole surfaces nearly orthogonal to the viewing direction can be detected).
Moreover, as discussed in Section 4, strong height jumps in the range map are associated
to hole boundaries. Smoothing range data attenuates height jumps. In order to avoid to
smooth out jump edges we tried to employ an edge-preserving smoothing filter26. How-
ever, it did not work well since preserving jump edges was obtained at the expenses of
an unsatisfactory removal of noise in proximity of those edges, that is exactly what we
are interested in filtering out. Hence the only chance to remove noise around edges, still
being able to detect holes correctly, is to adjust the threshold used to detect badly-shaped
triangles with respect to the smoothing parameters. In conclusion, the local hole detection
needs an accurate steering of the user and is not easily executable in an unattended fashion.

This problem is not present in the global approach, as can be observed from Figure 15.
Thus, it is a better choice to design a semi-automatic scanning system. On the other hand,
this method is slower and more memory-demanding. The burdensome component is the
diffusion of the volumetric distance field. However, since we can run it at a reduced resolu-
tion the overall timings are affordable on modern PCs. The examples reported in Figure 15
and Figure 17 require few seconds. Bigger models (e.g. theAngelmodel in Table 1) might
require up to 15 minutes, which is a fairly affordable time in the framework of a complex
acquisition session. The details of timings are reported in Table 1. For the results shown we
used a P4 3GHz notebook, 512Mb RAM, with graphics board. Table 2 shows the number
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(a) Range maps acquired us-
ing a turntable and the expanded mesh.
The colour on the reconstructed surface
maps the confidence value using a color
ramp, where low and high confidence is
mapped to red and blue, respectively.

(b) Thehole mapand the directions re-
sulting from clustering the normals of
the hole-map faces. Each colour encodes
a cluster. On the right only the selected
views are shown.

(c) The final model
obtained after the
corresponding range
maps have been ac-
quired and merged
into the model.

(d) Snapshots of thebird model shown from a different viewpoint. A large hole has been detected and split
into a number of distinct clusters.

Fig. 15. Some snapshots of thebird model showing each step of the global method. This model was acquired by
means of a (simulated) rotating platform.

of iterations and scans required. The algorithm requires few iterations, provided that the
initial model is acquired as described in Section 4. Conversely, the number of iterations
and time required might grow large if this assumption is violated, i.e. only a part of the
object is sampled (see Figure 16(a)). Our planning algorithm is designed to sample miss-
ing surface patches, given a surface that covers all the extent of the object. Basically, we
assume that no protrusions of the object are missing from the initial model. This is exactly
what happens in Figure 16(a). Anyway, our algorithm is still able to sample large new ar-
eas, as Figure 16(b) demonstrates. Table 2 shows that the coverage of theMinervamodel
is significantly improved after planning.

In our test we set the voxel size to2 mm, and the maximum glancing angle to120 de-
grees. In order to cut away the views that potentially give little improvement, we retain
only the clusters whose rank is above0.05 for the first step, and above0.025 for further
iterations. Finally, we mark asbad those mesh faces whose normalised confidence falls
below0.4.

Evaluating the performance of our method with respect to previous approaches is hard,
since the models used are often unavailable. Moreover, timings and memory requirements
are rarely discussed. We believe that our approach can run faster than many previous ap-
proaches since, for example, we do not have to fit parametric models to fairly complex
meshes7 or to compute polygonal regions as in4. Moreover, our method is more memory-



May 10, 2005 15:31 WSPC/INSTRUCTION FILE IJSM05

A Six-Degrees-of-Freedom Planning Algorithm for the Acquisition of Complex Surfaces19

(a) The Minerva model before
planning. Only a part of the ob-
ject has been sampled, thus vio-
lating the assumption that the ini-
tial model is acquired using one of
the two sweeping methods of Sec-
tion 4.

(b) TheMinervamodel after plan-
ning. The model is highly incom-
plete. Still, a large area of the object
has been added due to planning.

Fig. 16. TheMinervamodel. The model after planning is incomplete since our algorithm is designed

efficient than other approaches as we encode the un-sampled surface using just a set of
normal vectors, rather than using a volumetric model6 or any other representation involv-
ing the storage of dense matrices8,11. On the other hand, we use volumetric diffusion to
detect holes. This has proven to be the bottleneck of our algorithm, both in terms of com-
putational speed and memory requirements. However, we discovered that increasing the
voxel size in the early iterations does not affect the performance of our algorithm, while
significantly reducing the memory burden. Hence, using a variable voxel size allows to
keep low the computational requirements without sacrificing the quality of the final model.

6. Concluding Remarks

We have presented an algorithm that exploits the properties of what we calledoccluding
surfaceto make full 6-DOF sensor plans. Since a discretisation of the viewpoint space must
be carried out, a good sampling has to be found in order to fulfil the scanning requirement8.
Constraining a-priori the viewpoint space is not a good choice, since it does not take into
account the features of the surface and can fail to cover complex shapes. This can be easily
managed if some a-priori knowledge of the shape of the object is available, but it is a fairly
difficult problem if only incomplete or no information at all is given.

Our approach tries to guess good sensor poses with respect to the available information,
i.e. a single scan or a set of already scanned range maps. We quantise the space of normals
to the surface parcels, separating void and unseen volumes (occluding surface). The space
of normals is partitioned using a quality threshold, in order to compute new views covering
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Fig. 17. Sampling the missing surface of theBunnymodel. Most of the missing surface is detected and sampled
in the first iteration.

unsampled regions. In order to check for self-intersections and line-of-sight visibility, a
ray-casting algorithm is needed. We avoid direct ray-casting employing an efficient GPU-
based method23.

Both the time performance and the quality of the plan of our approach are strongly
dependent on thehole locationphase. If a faster and more reliable hole location method is
found, our algorithm will be faster and more robust.

Discriminating between real holes in the mesh and unsampled parts is a problem com-
mon to all the approaches we know of. It can be solved in some special cases but no general
solution exists, to our knowledge. A more subtle problem is halting when done. In princi-
ple, a completely closed model should contain no borders. However, complex models have
often small holes due to the limitations of the scanning hardware. Moreover, most scanning
systems cannot sample shiny or transparent surfaces. Hence, the algorithm can be stopped
either when no further significative improvements are made during the last iterations, or
when the size of unsampled regions falls below a fixed threshold.

The approach presented has been included in the design of an automatic system, which
couples the capabilities of a laser scanner with a robot arm (Digital Sculptor Project, in
cooperation with Scienzia Machinale s.r.l.23).
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iter 1 iter 2 iter 3 iter 4 iter n

total # voxels
field
exp.

view
comp.

fusion field
exp.

view
comp.

fusion field
exp.

view
comp.

fusion field
exp.

view
comp.

fusion field
exp.

view
comp.

fusion

Lovers 4 6 2 33 6 0 9 5 1 8 6 0 0 — — — 76 366 K
Angel 4 136 6 42 74 2 54 100 5 54 169 4 67 — — — 713 4.1 M
Bowman 3 1 0 1 1 0 1 1 0 0 — — — — — — 5 142 K
Bunny 3 4 0 2 4 0 4 4 0 5 — — — — — — 23 371 K
Chief 2 5 2 4 5 1 5 — — — — — — — — — 22 1.6 M
Goddess 2 3 0 3 3 0 2 — — — — — — — — — 11 220 K
Laurana 2 17 1 15 31 1 29 32 4 30 — — — — — — 160 7.6 M
Ecce Homo 3 41 7 43 34 3 48 37 4 45 — — — — — — 262 6.4 M
Minerva 12 138 11 61 146 8 90 297 5 113 332 6 113 502 7 176 6800 89.6 M
Gargoyle 4 2 1 5 2 0 4 2 0 4 2 0 0 — — — 22 295 K
Thinker 3 5 1 7 5 0 5 6 0 5 — — — — — — 34 671 K
Fist 3 2 0 3 3 0 3 3 0 0 — — — — — — 14 152 K
Bird 2 4 2 4 2 0 2 — — — — — — — — — 14 150 K

Table 1. Time statistics of our planning algorithm. For each model, we show the number of planning iterations required and the computation time (in seconds). We report the
time for the three phases of planning in each step:field expansion, view computation, andfusion. The total time and number of voxels processed is also shown. The processing
time of all the examples is affordable, except for theMinervamodel. Anyway, this is because we violate our initial assumption that a roughly covered model is given prior to
planning (see text).

# iter
iter 1 iter 2 iter 3 iter 4 iter n

initial cov. % sampled # scans
# new
views

area
gain

# new
views

area
gain

# new
views

area
gain

# new
views

area
gain

# new
views

area
gain

Lovers 4 6 1.2916 7 1.0180 8 1.0155 0 1.0000 — — 0.6798 0.9077 27
Angel 4 2 1.2438 8 1.1735 4 1.0398 2 ∼1 — — 0.6907 ∼1 22
Bowman 3 4 1.0574 1 1.0680 1 1.0044 — — — — 0.8603 0.9541 12
Bunny 3 4 1.2152 1 1.0004 1 1.0001 — — — — 0.8168 0.9931 12
Chief 2 1 1.0023 1 1.0037 — — — — — — 0.9217 0.9703 8
Goddess 2 1 1.1436 0 1.0000 — — — — — — 0.8626 0.9865 7
Laurana 2 1 1.0320 2 1.0114 2 1.0000 — — — — 0.9697 0.9955 11
Ecce Homo 3 3 1.0854 8 1.0227 8 1.0028 — — — — 0.9374 ∼1 25
Minerva 12 4 1.3336 8 1.1290 5 1.0450 4 1.0096 4 1.0112 0.3802 0.6604 59
Gargoyle 4 8 1.1225 8 1.0039 1 1.0025 0 1.0000 — — 0.8741 ∼1 23
Thinker 3 4 1.1726 2 1.0077 1 1.0001 — — — — 0.8505 ∼1 13
Fist 3 4 1.2355 1 1.0034 0 0.0000 — — — — 0.7559 0.9370 11
Bird 2 4 1.1855 2 ∼1 — — — — — — 0.8215 0.9712 12

Table 2. Planning results. For each iteration, we report the number of new views acquired and the area gained, expressed ascurrent area/previous area. The total number of
scans required is also reported together with the percentage of area sampled. Notice that six of the scans are acquired using the turntable before planning. Finally, we report
the initial coverage given by the turntable to evaluate the sampling gain due to planning.


