EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24 (2005), Number 3

Pinchmaps: textures with customizable discontinuities

Submission id: 1397

Abstract

We introduce a new texture representation that combines standard bi-linearly interpolated samples, for smoothly
varying regions, with customizable discontinuities for sharp boundaries between these regions. It consists in a
standard signal texture, plus a second texture we call pinchmap, which encodes discontinuities along generally
curved lines, this structure is stored in texture memory as a pair of images and is efficiently interpreted on com-
modity graphic hardware in the fragment shader. We also present a fully automatic way to compute a pinchmap
and signal texture pair from an much higher resolution image. We show that the final effect on the screen is a
comparable visual quality, for a fraction of the texture storage cost and a very small impact on performance.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-

tion

1. Introduction

In general terms, a 2D texture 7§ stores a signal function s
(e.g. color, normal, alpha value, or other attributes) that is
to be applied over a 2D surface. It consists in a regular set
of samples (texels) of that signal, that are typically interpo-
lated at rendering times. Naturally, the quality of the result
is strictly dependent to the resolution of the texture. High
resolution textures are so determinant to achieve better vi-
sual result that texture memory is always a resource in short
supply, notwithstanding the continuous increase of its avail-
ability that we experienced thanks to chipset improvements.
Hence the need to increase perceived texture quality by other
means than just increasing the number of texels.

One promising direction is to resort to mixed 2D image
representations that are more expressive, for typical images,
than a direct sampling. In facts, the combination of the infi-
nite precision of vectorial elements (e.g. lines, sharp bound-
aries) together with the flexibility of sampled texels poten-
tially leads to tremendous decrease of texture memory usage
for a comparable visual quality.

However, to be useful in most applications, such a scheme
must be efficiently interpreted in graphic hardware. Recently
we assisted to been important advancements in this direc-
tion, but there is currently no solution that is really feasible
to run on commodity hardware at an acceptable price in term
of consumed resources. In this paper we present such a so-
lution.

submitted to EUROGRAPHICS 2005.

After a focussed, brief analysis of related word, we de-
vote the next four sections to the description the new texture
representation (showing its basic underlaying concept, the
structure itself, its actual implementation on graphic hard-
ware, and additional effects that can be added, in sections 2,
3, 4 and 5 respectively). Later in section 6 we sketch a fully
automatic method to construct an instance of that represen-
tation.

1.1. Previous Work

In this section we will address only the few previous research
results that, to our knowledge, most closely share our objec-
tives: to embed discontinuities into textures to improve their
visual quality - especially when magnified - while keeping
texture memory usage low. We refer the reader to the ba-
sic and advanced literature for other, conceptually related
but technically distant problems (like those involving auto-
matic feature detection, image segmentation, on-the-fly tex-
ture synthesis, procedural textures and texture compression).

The approaches presented in [TC04, RBWO04, Sen04],
and ours too, all share the idea of adopting an image (or
texture) representation capable of encoding and displaying
features (sharp discontinuities) over images that would oth-
erwise describe smoothly varying values. Another shared
characteristic is that the extra information is distributed
across the image and stored over a regular grid (of “Bix-
els”, “feature-based-texture” pixels, “silmap” texel, or the

2 Submission id: 1397 / Pinchmaps

“pinchmap” texels that we are about to propose), so that only
a limited number of accesses near the current region will be
necessary to locally interpret the image (a necessity, if the al-
gorithm is to be implemented in the GPU, where the number
of per fragment texture accesses is severely limited).

In the schema proposed in [TC04], pixels are enhanced to
embed sharp boundaries (so becoming “bixels”), and pixel
values are not interpolated across such boundaries. Bound-
aries are defines with linear or quadratic formulas, and can
therefore be curved. This work is not designed in its details
to be implemented in a programmable fragment shader. Its
structure would allow for such an adaptation, but this has not
been investigated and many problems would probably arise
(the same that we will see shortly).

In [RBWO04] a similar schema is proposed. Boundaries are
defined as a set of splines. This results in a very expressive
representation, but also leads to very complex worst cases
that would rule out an implementation on programmable
graphic hardware. Authors suggests that the simpler seg-
ments should be adopted instead of splines in that scenario,
which probably would lead to a solution similar to [Sen04].

[Sen04] (a derivative work of [SCHO3]) represents a
breakthrough because for the first time this sort of algorithms
is really implemented and tested on a programmable frag-
ment shader. To achieve this, complexity of boundaries is
kept to a minimum (straight segments). Results are impres-
sive. However, the cost of the technique turns out to be still
prohibitive for most applications, requiring a total of eight
texture accesses per fragment (five to the texture encoding
discontinuities, three to the final signal texture) only to ob-
tain a single texture value (the equivalent of a single texture
fetch for a standard texture). This figure can possibly be re-
duced by some form of texel packing or other similar opti-
mizations, but probably not drastically.

This is a consequence of the approach followed by all the
above proposals. To implement boundaries, final texture val-
ues are computed by averaging, near such boundaries, not
the usual four but three, two or a single texel. Unreachable
texels are weighted by zero, and remaining weights are re-
normalized. This makes the computation of the final texel
value very heavy in term of number of accesses. It also cre-
ates many different cases (even for very simple boundary
primitives), that are difficulty dealt in the fragment shader
(extremely ill-equipped for densely branched code).

Additionally, that approach has an important shortfall
in terms of quality, because only few pixels are interpo-
lated near boundaries. This means that signal gradient in
directions perpendicular to the boundaries will be void,
and, worse still, at corners, where only a single texel is
“weighted”, the color is bound to be constant.

Another common trait is that discontinuities are always
defined piecewise, region by region, and within each region,
in a way independent from neighbors. As we will discuss

later, this ultimately results in the necessity to perform more
accesses to the discontinuity encoding texture (as in facts
turns out to be the case).

As we will see shortly, we approach the problem from
a totally different direction, leading to a solution that uses
only an extra texture access (other than the one to the fi-
nal texture), simplifies the per-fragment computations, im-
proves the visual quality, and naturally supports a number of
additional features - including curved boundaries, inexpen-
sive anti-aliasing, smoothly starting discontinuities, optional
solid lines, and others.

2. Concepts and Preliminaries

Assume the original texture signal s is defined over a 2D
squared domain T? = 0, N x 0, N for some N =2",n € N. In
Ts, suppose texels are located at each integer position in T2.

The process of scan converting a textured polygon on
screen will produce a set of fragments each with its cor-
responding region of T2. When that covers multiple sam-
ples of Ty, the problem to combine them into a single value
can be efficiently solved by various forms of pre-filtering
(MIP-mapping). When, on the contrary, the produced frag-
ment corresponds to a region of T? with an area smaller than
one, then a magnifying filter f); is needed. The function fjy,
defined over T, returns for any given position a value that
is some combination of the samples of T§.

Fetching the closest texel of Ty leads to severe aliasing
artifacts. A common solution to alleviate them is to use

fu(w,v) = fy(u,v), (u,v) €T

where fj, is bilinear (first order) interpolation between the
four closest samples of 7. This solution is so widely applied
that is hard-wired on any modern GPU. Bilinear interpola-
tion is ideal when the signal s to be represented is smooth; on
the contrary when s presents 0-order discontinuities it leads
to exceedingly blurred visual results.

The bilinear interpolation f}, is a continuous function de-
fined piecewise as follows: T2 is implicitly subdivided into
N X N unit squares, and inside each square f;, is defined as
the 1st order bilinear interpolation of the four texels at the
corner of that square. We will refer to these squares as fexels
(from “four texels”). Each fexel has four corner texels, and
adjacent fexels share two corner texels.

2.1. Main Idea

Wherever the signal to be represented presents sharp (0-
order) discontinuities, there are some fexels which contains
an unwanted smooth transition between the texels that were
sampled on either side of that discontinuity. We call those
fexels undesired fexels. Fexels that are not undesired are
visible .

submitted to EUROGRAPHICS 2005.

Submission id: 1397 / Pinchmaps 3

Figure 1: The concept behind a pinching operation. On the
left: a 4 x 4 closeup of a standard texture (in this case, a
color texture). The 16 texels are shown as colored spheres.
A fexel is the space where 4 texels are bilinear interpolated.
Here fexels are separated by a solid line and shown with a
superimposed regular grid just to show how the fexel space
is warped during the pinching. Fexels that interpolate be-
tween similar texels are color-coded with shades of blue or
red. Undesired fexels, i.e. those that interpolate across very
different texels, are color-coded with grays. Right, the unde-
sired fexels have been “pinched” creating a sharp disconti-
nuity between the red and the blue regions.

The idea is to perturb the locations at which bilinear in-
terpolation is computed so that, intuitively, undesired fexels
are shrunk to a line creating a discontinuity in the final re-
sult (see Figure 1); in practice, we ensure that area inside
undesired fexels will never be accessed. We call this pro-
cess pinching. As magnification filter fj; we therefore use
the function:

fM(uvv) :fb((uvv) +p(u,v)), (”’v) €Ts

where p is called the pinch function. In locations away from
discontinuities, p is valued (0,0) and the magnification filter
becomes a standard bilinear interpolation. At discontinuities,
p will present a step discontinuity as well.

In all cases, a single bi-linearly interpolated final texture
access from the signal texture 7y is performed per fragment.
The advantages of this basic choice are manyfold:

e cfficiency: bi-linearly interpolated texture accesses are
hardware optimized, making best use of on-chip texture
RAM bandwidth;

e non-branched code: we always have a single texture tex-
ture access to T, and that texture access is performed in a
non-branched part of the fragment shader;

e visual quality: all visible textured area will still be a part
of a legal fexel, i.e. every fetched texture value is interpo-
lated between four texels; this means that the gradient of
fum in any direction is never bounded to be zero;

e additional effects: manipulating the above formula, it is
easy to obtain several additional effects, including anti-
aliasing (see sec. 5.1), smooth beginning of sharp bound-
aries (see sec. 5.2), and others.

Note also that no texel of 7y is wasted, as every texel will

submitted to EUROGRAPHICS 2005.

still affect an area of T; rather we conceal some fexels, that
is, regions between the texels.

The vector function p implicitly determines: which fexels
are pinched, the pinching directions (gray arrows in Fig. 1),
and the lines into which pinched fexels are collapsed.

The function p is encoded in an auxiliary texture Tp,
the pinchmap, that is pre-computed and paired with the
main signal texture 7. Before rendering 7}, is loaded on the
graphic card as an additional texture. To limit use of GPU
RAM T}, should be as compact as possible; also, to limit
consumption of on-card texture bandwidth, p(u,v) should be
computed using the least number of accesses to T)p, ideally a
single one.

One natural choice would be to define p piecewise, by
subdividing T? into as many pieces as there are texels in
T, and then separately storing each piece in a correspond-
ing texel of Ty, encoding it with a configuration index and a
limited number of parameters. However, in order to enforce
continuity of p across adjacent texels, one would need to ei-
ther perform additional accesses to neighbor texels in T, or
at least replicate some data from neighbor texels inside each
texel of Tp. It the former case we go against our objective
to limit the number of texture accesses; in the latter case it
would become exceedingly difficult to pack all the required
information in a single 4-channel texel.

To bypass this problem we designed a scheme where p
is computed using a single bi-linearly interpolated texture
access to the pinchmap T}, and p(u,v) is computed starting
from the four recovered values (one per channel).

It could be argued that a bilinearly interpolated texture
access has a cost equivalent to four direct texture accesses.
However, as we noticed, bilinear texture access is so opti-
mized and hard-wired that in practice it affect performance
and limits bandwidth just as much as a single closest-value
texture access. For example, in all programmable fragment
shader GPU architectures the limit of texture accesses is in-
dependent on whether the accesses are performed with or
without bilinear interpolation.

The scheme is described in detail later in Section 3, but
here we briefly list some of its properties:

e the scheme is capable of encoding discontinuities along
lines that are, in general, curved;

o the size in texel of the pinchmap T}, can be flexibly chosen
to be equal or smaller to the one of s (see Section 5.4).

The resulting per-fragment algorithm to process a frag-
ment with associated texture coordinates (u,v) is concep-
tually as follows (see Section 4.2 later for a more detailed
description):

1. fetch texel ¢, at pos. (u,v) from pinchmap Tj;

2. compute pinch-function p(u,v) using ¢, (and u and v);

3. fetch final texel f; at pos. (u,v) + p(u,v) from signal tex-
ture Ts;

4 Submission id: 1397 / Pinchmaps

4. process ty normally.

Both texture accesses are bi-linearly interpolated. The last
step is the same as any other 2D texture mapping application;
for example it can consist in a verbatim copy of fy to the
current pixel (if 7 stored a pre-shaded color), or in a shading
of Ty (if Ty stored normal values) and so on. The first two
steps are detailed in section 3.

2.2. Pinchmaps and mipmapping

Although the pinchmap perturbation is designed for magni-
fication filters, it produces final texture coordinates that are
valid for all MIP-map levels. This means that the same algo-
rithm sketched above works regardless of the magnification
level (differently from other approaches, we do not need to
identify it in the fragment shader). Simply, MIP-map levels
can be pre-computed for 7y when loading it and stored on
the card as usual; during rendering the texture access in step
3 can be performed with trilinear interpolation.

Clearly, the first texture access (the one to the pinchmap)
needs to be performed with simple bilinear interpolation and
without MIP-mapping.

3. Pinchmaps

In this section we detail how a proper pinch function p can
be stored in and recovered from a pinchmap texture 7. For
illustration purposes, we first tackle a 1D case.

3.1. One dimensional case

In a one-dimension analogue, a fexel is the segment between
two consecutive texels in a one-dimensional set of samples.
Fexels delimited by texels that should not be interpolated
are undesired , just like before. Note that two consecutive
fexels cannot both be undesired , otherwise the texel they
share would not be part of any visible fexel.

Undesired fexels will be collapsed into a point Y located
somewhere inside it, by expanding the two adjacent fexels
on its left and right side (which are both visible ones). In
particular, we choose to expand only the closest halves of
the two adjacent fexels. In this way, the two furthest halves
of these fexel are left unchanged, and can be expanded over
the possibly undesired fexel on the opposite side, if needed.

We define a local one dimensional pinch function p«l{D :
R — [—1..+ 1] that is parameterized with y and is used to
perturb the texture location in order to pinch away a single
undesired fexel. The final texture access for a texel with tex-
ture coordinate k will be k + p#D (k).

Note that, in order to avoid visual artifacts, we must make
sure that k4 p%D (k) is strictly monotonically increasing with

k. This translates in the constraint dpy? (k) /ok > —1.

Let us describe p%(D in a reference system where the origin

S+

Figure 2: Above: the one dimensional pinch function p%(D
for a given Y. The horizontal axis is centered in the mid-
dle of the fexel to be pinched (hatched with diagonal lines).
Texels are shown as gray balls. Below: the function for
v=—-0.5,-0.25,0,+0.25,40.5.

is in the middle of the 1D fexel to be pinched away (see fig-
ure 2). Consequently the locations of the two texel delimiting
the fexel will be at —0.5 and at 0.5. The function p%(D is non-
zero only inside the interval (—1..+ 1) (as we want to affect
only the two halves of the adjacent fexels), and moreover it
must be zero in 1 to ensure continuity. The parameter v,
which is the position where the undesired fexel is collapsed,
typically ranges in [—0.5.. +0.5].

Since we want to “pinch” both delimiter texels into posi-
tion v, we need that p(y~) = h—yand p(y") = h+Y, where
h is the value 0.5 (we are using / as a parameter because later
we will need to change its value, see Sec. 5.4). By interpo-
lating linearly between these fixed values at —1, +1, Y~ and
v we get

0 k< —1
Wo=d Ty TS)
ACEL T

0 k>1

Note that the constraint on the derivative of pqllD is satis-
fied forany ye (—1..+1).

In summary, the function p%(D is such that k+ p},D (k), with
k € R is never in (—0.5.. 4 0.5), but will assume any other
value for some k. The interval (—0.5.. 4+ 0.5), which corre-
sponds to an undesired fexel, is effectively “pinched away”,

submitted to EUROGRAPHICS 2005.

Submission id: 1397 / Pinchmaps 5

Figure 3: The plot of the function pﬁl(D (k) + k, for the same
parameter Y as shown in Picture 2, above.

@ @ @ o o o

Figure 4: An discrete subset of the segments along which the
Sfunction p\l(D (see Figure 2) is to be applied. In each shown
segment, the midpoint (k = 0) is identified by a square, the
extreme points (k = 1) by a circle, and the points at posi-
tion k = £0.5 by a small crossing line. Undesired fexels are
grayed (note that they correspond to the points at positions
—0.5 < k < +40.5). For clarity we do not show the pinching
positions v, defined for each segment and forming a discon-
tinuity line.

meaning that that area of the one-dimensional texture will
never be accesses (see Figure 3).

3.2. Two dimensions

Getting back to the two dimensional case, we will define
a proper continuous set of 2D segments over the texture
space over which pwl(D is applied. Each segment is identified
by its midpoint (um,vin) and its direction ||(ug,vg)l|, with
|[(#g,vaq)|loo = 1, and it is parameterized as

(um7Vm)+k'(ud7vd) ke [_17+1]

. We also assign to each segment a position 7y that identifies
where, over that segment, the discontinuity is to appear. Over
each segment, the function p is defined as

(s vm) + k- (ug,va)) = pyP () - (ug,va) ()

submitted to EUROGRAPHICS 2005.

The midpoint of the segments are in the middle of un-
desired fexels, and their direction are such that the segment
position for k = £0.5 is on the frontier of between visible
and undesired fexels (see figure 4). This way, the image of
(u,v) 4+ p(u,v) corresponds exactly to the union of visible
fexel; in other words, all and only the undesired fexels will
be “pinched away”, and the final texture will never be ac-
cessed at point inside them.

3.3. Constraints on 2D

Just as in one dimension we could not have two consecu-
tive pinched fexels, we have similar consistency constrains
in two dimensions.

First of all, the combination where a group of 2 x 2 adja-
cent fexels are all pinched does not make sense. If that was
the case, the signal texel shared by the four fexels would be-
long to no visible fexel.

Another combination to be ruled out is the one where a
texel is at the same time a corner of two opposite unde-
sired fexels, and two opposite visible fexels. If that was the
case, the texel in question would be involved in two different
incompatible pinch operations pushing it in opposite direc-
tions.

Any other combination is legal (see Figure 5 for some ex-
amples).

4. Implementation
4.1. Pinchmap structure

In order to apply equation (2) to the texture position of each
fragment, we need to use the values uy, vy, k and 7y of that
formula. We store these quantities through the pinchmap 7.
A different channel of T is used for each of the four pa-
rameters: the texel values (ug,vg,kT,yT) are stored in the
(r,g,b,) channels of T), respectively.

The value of each channel of 7, ranges from —1 to +1,
and since (r,g,b,0) values natively range in [0..1], a re-
mapping M(x) = 2x — 1 is applied in the fragment shader
to all channels of any texel of 7}, just after fetching (some
care must be taken to be able to represent the value O pre-
cisely. For example, if the textures has an 8-bit precision per
component, then the range [—1,+1] must be represented in
the texture with the interval [0..254], not [0..255], so that the
value O can be correctly represented by the value 127).

As we mentioned, the pinchmap 7}, will be accessed in the
fragment shader with bilinear interpolation (therefore in this
section it will be useful refer both to fexels of the pinchmap
T, and to fexels of signal-texture T5. When we refer to the
former will be always specify pinchmap fexel). A single tex-
ture access to the pinchmap will return the quadruple of in-
terpolated values (ug , vg KT AT).

We adopt a schema where we set a pinchmap texel in

Submission id: 1397 / Pinchmaps

Figure S: Examples of basic pinching operations, over a
minimal 4 x 4 signal texture texture. Each column shows a
different combination. Top row: standard bilinear interpola-
tion, with no pinching. Second row: fexels are shown before
pinching. A 8 X 8 subgrid is superimposed, and undesired
fexels are darkened and identified with a black cross. The
discontinuity line (randomly chosen) is also shown in black.
Third row: undesired fexels are collapsed to that line, and
neighbors fexels are expanded over them. Bottom row: final
visual result (actual snapshot).

Tp in the center of each fexel of the signal texture Ts. In
other words, the two textures are reciprocally displaced by
0.5 in both directions (see Figure 6). In this way, it is easier
to obtain the 1-order discontinuities that the channel & must
present in k = +1 (compare Figure 4), as they now naturally
appear at the border between pinchmap fexels.

We refer to the pinchmap texels corresponding to unde-
sired fexels of T (that will be pinched) with the term active
texels.

The main channel of the pinchmap 7}, is the channel k”
which records the position inside the belonging segment. It
is set to zero in active texels, and +1 elsewhere.

Since p%(D (k) is valued O for k = £1, no pinch will be
performed in zones where k is constantly 1. Therefore the
texels of the pinchmap 7}, are subdivided into a number of
zones separated by a line of active texels, and in each zone

Figure 6: A detail of a signal- (in this case, color-) texture
Ts with its pinchmap texture Ty superimposed. Texels of Ts
are shown as colored balls, while texels of Tp are sown as
crosses. There is one texels of Tp for each fexel of T, so
the two grids are displaced by half a texel size. Undesired
fexels of Ts (grayed areas) correspond to active texels of Tp,
shown as black crosses, where the k channel is zero. The
other texels of Tp have a k channel with a value of either
minus one (red crosses) or one (blue crosses). The pinch-
function is nonzero only in zones colored green or gray, so
the pinch affects only these regions. In particular, the green
region will expand over the gray region, covering it (in this
way the gray region will be pinched into a discontinuity line
- here dotted).

we have a constant k = +1. As these zones are necessarily
closed, this may at first seem to severely limit the the num-
ber of possible pinchmap configurations: more precisely, we
need that any pinched fexel belongs to a closed chains of
pinched fexels, meaning that the discontinuity line in the fi-
nal result will need to be always closed. However this is not
a problem, as pinching can be locally disabled even in ac-
tive texels by setting their u; and v, channels to zero (see
Section 5.3 later).

Each channel of the pinchmap require some implementa-
tion consideration.

Channel k: As we have seen in Section 3.2, we need the
value of k to be linear along all the the segments (and conse-
quently to be equal to +0.5 correpsonding to the border be-
tween undesired and visible fexels). Even if the value of kT
is set to k in all pinchmap texels, the bi-linearly interpolated
value inside a pinchmap fexel is in some case not linear. This
happens in a pinchmap fexel that has exactly one or exactly
three active pinchmap texels as its corners (see figure 7).

Lucky it is easy to correct the interpolated value k" and
recover linear k, knowing the current texture position over
T}, and the signs of u},v}.

submitted to EUROGRAPHICS 2005.

Submission id: 1397 / Pinchmaps 7

XX

Figure 7: Left: a single pinchmap fexel from the pinchmap
shown in Figure 6. This particular fexel has the k channel
set to 0 in one (active) corner texel (in black), and the other
three corner texels with a k set to +1 (in blue). This is one
case where the result of the bilinear interpolation of the kT
channel (plotted in the middle left) is not equal to the linear
signal k that we need (plotted in the right). The latter is lin-
ear along the segments defined in Section 3.2, the former is
not.

Channels u; and v,: We store a zero value for u} and v}
for all non-active in texels, and we store the proper segment
orientation only to active pinchmap texels. In this way all
non-active pinchmap texels within the same zone delimited
by active texels share the same values in the uz, VZI- and
k! (namely, 0, 0 and +1 respectively), independently from
neighbors.

This makes it trivial to deal with the case when a non-
active pinchmap texel is adjacent to multiple active texels,
but poses a problem: the value of («},v]) will be the inter-
polation of the needed values (uy,v4) and the value (0,0)
that we defined at inactive texels.

However, (ig,v4) can be recovered from (u},vY) simply

normalizing the latter (with respect to the infinity norm, that
is, dividing it by max(|u} |, [vL])).

Better yet, given the structure of the channels ug, vg and
kT of our pinchmap, we can predict max(|u? |, [v}]) = (1 -
|k|). We prefer the latter formulation for reasons that will be
explained in Section 5.2.

Channel y: The channel vy is the sole responsible to deter-
mine the exact location of discontinuity line -where the un-
desired fexels will be collapsed- within the zones affected by
the pinch (colored in green and gray in In figure 6).

In facts, that discontinuity appears in points where k =y
(see Figure 2). We define ¥/ < y+ (kT —k), so that the above
equality is equivalent to the easier to control — YT .

Note that both the member of the last equality are simply
bilinear interpolated values that we control by setting the tex-
els of 7. Note also that at exact texel positions of T, since
k" =k, we have that YT =7.

All we need to do is to set to YT channel of each texels ap-
propriate values so that the intersection of that channel with
the channel k7 (which is determined by the combination of
active and inactive texels) produces the required discontinu-

submitted to EUROGRAPHICS 2005.

Figure 8: The plot of the 1 Dimensional Anti-Aliased pinch
function p;D’AA (k), for y= —0.25. In the horizontal axis the

anti-aliased part i is grayed.

ity lines (see Section 6 for an illustration of how to do this in
an automatic way). Note that such intersections are in gen-
eral along curved lines.

4.2. Fragment Program

The complete fragment program, for a fragment with initial
texture coordinates (u,v), is therefore:

1. Fetch bilinearly interpolated values (r,g,b,a) from
Pinchmap Tp at (u+ h,v+ h) (with bilinear interpola-
tion);

. Remap (u vL kT 4y — M(r,g,b,0);

. Compute the “rectified” value k form k'

. Normalize direction: (ug,vg) «— (ul,v})/(1—|k|) ;

. Compute Yy — ! + (k—kT) ;

. Pinch the texture coordinate:

(W) = (,9) + pIP(K) - (g, va)

7. Fetch final signal value from (u’,v")

(with bilinear interpolation and mip-mapping).

8. Process fetched signal value as usual.

AN AW

The entire program, including all the extensions that we
are going to illustrate in the next section, has been imple-
mented in less than 50 ARB fragment program instructions
(the most expensive parts currently being Steps 3 and 5).

Numerical analysis shows that the algorithm is stable even
when the divisor in step 4 is arbitrarily close to zero (in
which case, also the final displacement will be close to zero).
Of course, care must be taken to avoid a direct division by
zero - for example, by adding a small constant.

5. Additional Features

In this section we show some additional feature that can
be added, with a small or null impact of efficiency, to the
pinchmap algorithm.

5.1. Anti-aliasing

It is easy to add an anti-aliasing on screen over the Oth or-
der discontinuities that we introduce in the texture. Concep-
tually, the idea is simply to perform only incomplete pinch

8 Submission id: 1397 / Pinchmaps

Figure 9: Actual screenshots featuring a simple textured
quad, showing a random shape defined by a very small (8x8)
pinchmap and a rgb-colormap (as the signal texture) of the
same size. Below: a post-processed close-up to show indi-
vidual screen pixels. Left and right: results with and without
anti-aliasing.

operation, so that undesired fexels are shrunk to a very small
but positive area rather than to a line. This effectively results
in an anti-aliasing, as undesired fexels are exactly the region
where the values from the two sides of the 0-order disconti-
nuity are interpolated together.

The only thing that we need to change is the function p%{D s
which is to be substituted in equation (2) with its anti-aliased
version p;D’AA. The function p;D’AA, which is continuous, is
defined as:

a4 gy _ JBE=Y) i (k<)@ Bk =) < py” (1)
Py p%(D (k) otherwise

3

where the ® symbol denotes the logical exclusive-or, and
B, with B > 1, is the anti-aliasing parameter, intuitively de-
noting the speed of texture coordinate over the undesired
fexels. The meaning of the formula is that the value of p%D
is overridden in proximity if its discontinuity by a steep, but
not instantaneous, connecting function (see Figure 8).

The anti-aliasing parameter [determines the width of the
region where the undesired fexel will be squeezed. It is easy
to see that that region will be 1/ texel sizes long. Ideally, for
a perfect anti-aliasing, should be equal to one screen pixel.
One possibility is to actually use the per-fragment texture-
speed to adequately set P for every texel. Alternatively, that
can be approximated with a global parameter 3 for each tex-
tured object.

The function pql(D’AA is just an approximation of the ideal
anti-aliasing function (in facts, contrarily to the ideal case,
the anti-aliased regions on the left and on the right of y are
in general different in size). However, the function is very
simple to compute and it is good enough for all practical
purposes. For an example, see figure 9.

Figure 10: Pinching can be locally turned off, and disconti-
nuity lines can start smoothly. Top left: an image covered by
a 4 x 3 subset of a signal texture Ty (circles) with a pinchmap
Tp (crosses). Each fexel is shown with a superimposed 8x8
grid, and undesired fexels are darkened. Active pinch tex-
els are shown as black or white crosses: white ones have a
pinch strength psr of zero, black ones of one. As a result (top
right) only the top undesired fexel is pinched away, while the
bottom one is not. The two middle ones show a smooth tran-
sition between these two states. Bottom: actual screenshots
of the application without (left) and with (right) pinching:
the discontinuity line starts smoothly.

Figure 11: Here, the signal texture is a normal-map encod-
ing a curved surface with a crease. The pinch strength is
modulated from zero to one over the space of three fexels
in order to make a crease start smoothly. Left: fexels are
shown with a superimposed 8x8 grid, right: final result (ac-
tual screenshot).

5.2. Smoothly starting discontinuities

An important feature of our system is the ability to have a
smooth spatial transition between pinched and not pinched
regions. Intuitively the effect is obtained by only “half-
pinching” a given undesired fexel, leaving one of its side
un-pinched while pinching the other (see figure 10).

The concept is straightforward. We assign to each seg-

submitted to EUROGRAPHICS 2005.

Submission id: 1397 / Pinchmaps 9

Figure 12: A detail of a signal-texture Ts and paired with a
pinchmap Ty in case that the latter has a resolution that is
an half of the one of the former. Notice the disposition of the
texels of the two textures. For a legend of symbols, see the
caption of Figure 6.

ment pinch strength pgr € [0, 1], and we use it to weight the
pinch function p%D in equation 2, which becomes:

P(tm,vm) + k- (ug,va)) = py° (k) - pstr- (g va) — (4)

This is implemented in a simple way, by encoding pgr
in the (ug,vg) channels of each texels. In active texels we
store, as (ug,vg), the values (pgr - ug, psir-vg)- Step 4 of the
fragment program in Section 4.2 will now rightly compute
Pstr+ (g, vg) rather than (ug,vy)

The ability to make boundaries smoothly start over several
texels is especially useful in cases when the signal texture 7
represents a normal field: the Oth order discontinuity lines
are in this cases creases, and in many cases (like, for exam-
ple, in an automobile chassis) it is required that they start
very gently (see Fig. 11).

5.3. Open boundaries

Another important application of the above is when the
pinch strength py is uniformly set to zero in a larger area,
in which case no pinching at all occurs in that area (see Fig-
ures 11 and 10). The ability to locally turn off pinching let
us have non closed discontinuity lines across the texture. A
non closed discontinuity line is (correctly) bound to start
smoothly.

5.4. Different resolutions for the pinchmap and signal
textures

Until now we assumed the pinchmap 7}, and the signal tex-
ture Ty had the same resolution. However, in general, the

submitted to EUROGRAPHICS 2005.

Figure 13: Actual screenshots featuring the same data as
figure 9. Left: pinched result, without solid lines. Middle and
right: solid black lines of different thickness are added in the
way described in Section 5.5.

resolution of the pinchmap can be 2K (with K > 0) times
smaller than the signal texture. When K > 0, the texels of T§
must be grouped in cluster sized 2K 52K | that will be placed
on one same side of the discontinuity. The displacement of
T, with respect to Ty is, in the general case, 2(=K=1) (see
Figure 12).

In the fragment shader, the only difference is that the ille-
gal fexel to be pinched are now smaller with respect to the
size of one fexel of T). Therefore the function p%(D need to be
smaller in magnitude. The value of the parameter 4 (in equa-
tion (1) and in Step 1 of the fragment code in Section 4.2) is
in the general case 2(=K=1) (see Figure 12).

On the contrary, it is impossible to have a signal textures
smaller than the pinchmap, as that would make the function
p\l(D too steep (with the derivative smaller than -1).

Within this limit, the two resolutions can be chosen in-
dependently. Intuitively, the resolution of the pinchmap de-
termines the complexity of the discontinuities - the higher
it is, the more complex and dense the discontinuity lines can
be; the resolution of the signal texture determines instead the
possible complexity of the color-map in the smoothly vary-
ing zones.

5.5. Solid lines.

Another easy-to-obtain effect consists in adding thick lines
of a constant color in correspondence of the discontinuities
lines, an effect that can be useful, for example, when the sig-
nal texture contains color information and we are targeting
a non-realistic rendering (see Figure 13). This is applicable
only when all discontinuity lines are closed.

To get this effect, it is sufficient to apply the anti-aliased
pinch function p;DAA, as defined in 3, and detect when the
Ist of its cases is applied. In this anti-aliased would normally
take effect. Instead, we simply overwrite the current frag-
ment color with a globally defined constant color. The global
parameter 3 of p;D’AA determines lines thickness (which
however will not be perfectly constant, due to the variation

of the length of diagonal segments).

In some application it could be appropriate to store line

10 Submission id: 1397 / Pinchmaps

thickness and color in each vertex of the model, or in an
additional texture, in order to have them varying over the
surface.

6. Automatic pinchmap creation tool

So far we described the way pinchmap-enanched textures
work.

In this section we detail how one can build a pinchmap
and a signal texture to represent a given signal s in a fully
automatic way.

6.1. Inputs and outputs

The input of this process is a description of the original sig-
nal s, for example a vector-based representation of an image,
or a procedurally defined image, or a very high-resolution
raster image Iyires. In our implementation we adopted the
latter approach because of its better flexibility (if the signal
if originally defined in any other way, in can be sampled into
a hi-res raster image in a pre-preprocessing stage, with arbi-
trary precision).

Moreover, we use Iyir.s images with a extra alpha (trans-
parency) channel, that is used by the final tool user to specify
where the signal discontinuities must appear: the intended
meaning of this channel is as follows: wherever two regions
of Igires are separated in the alpha channel by a steep jump
from zero to one or from one to zero, it means a sharp border
between the two corresponding texture regions is required.
On the contrary, where the alpha channel present no such
jump, the signal in the final result will be blended.

For example, the user can provide as input a rgbo. color
image consisting of a foreground shape (where alpha is set
to one), silhouetted against the background (where alpha is
set to zero), to obtain a final result where that shape appears
separated from the background by a sharp boundary, and the
color varies smoothly both internally and externally of the
shape (see for example Figure 14).

Finally, we are assuming that the resolution resp of the
required pinchmap 7} and the resolution ress of signal tex-
ture 7y are also given as input. Clearly the two resolutions
are supposed to be much lower than the resolution of Igjges-

The output of the process is a pinchmap and a signal-
texture at the asked resolutions that can be used to approxi-
mate signal originally stored in Iyg.s: in particular, the dis-
continuity encoded in the pinchmap will mimic the bound-
aries discretely specified via the alpha channel as described
above; the signal texture will store the signal specified in
the other channels of /g;g.s (Whether they represented color,
normal, transparency, etc).

Once built, the two output textures can be stored and later
used independently from the original image /g;r.s that was
used to create them.

6.2. Algorithm
The algorithm consist in the following phases:

1. down-sample the alpha channel o of Iy;g.s into a bit-
mask Iz 4yer Of resolution resp;

. enforce consistency constraints on the bit-mask Iy 4yer;

. build «}, v, and kT channels of T}, from the bitmask;

. optimize the channel yT channels of 7, to match Iyiges.00

. fill 7y from the other channels copying values from the
proper locations of Iyiges;

[I NS I)

In the first four step the pinchmap T}, is constructed.

Step one consists in a brutal down-sampling of o channel
of Iyires. We build a temporary Iy, bit-mask with a bit
for each fexel of the final pinchmap. All texels of the cor-
responding area of Iyr.s are checked against the threshold
0.5, and the I74yer bit is snapped to 0 or to 1 according to the
majority of the results (we keep track of the magnitude of
the rounding for the next step).

In the second step we enforce the constrains described in
Section 3.3. Problematic areas are located, and then an it-
erative local search is performed: in each step we find and
apply the cheapest move that diminishes the global number
of broken constraints. A basic move consist in assigning a
previously mixed 2 x 2 patch of /4y, to an one or a zero
(overwriting their previous values), and its cost is computed
as the worsening of the total rounding error).

In step 3 this Iy 4yer Will be used to identify active and in-
active pinchmap texels, and to consequently build the u£ v§
and k7 channels of each texel of Tp. This is straightforward:
each texel is build in the intersection of 4 pixel of /74y, and
is fully determined by their value.

Next, the yT channel is optimized in step 4. Our objec-
tive is to assign a value to the yT component of each texel
(that is either active or around an active texel), so that we
maximize the number of matching pixels of Igjg.s. A pixel
is considered matching when its o value is bigger than 0.5 if
and only if in the corresponding point of 7}, the bi-linearly
interpolated value of YT is bigger than the interpolated value
of kI (see Section 4.1). We do this using a randomized sim-
ulated annealing approach.

Now the pinchmap 7), is ready, all we have to do is to
fill the signal-texture Ts. To do that we first compute the in-
verse g~ of the function g(u,v) = (u,v) + p(u,v) (by using
a discreet approximation, simulating the pinchmap behavior
as defined by Tp). Then to each texel of T, corresponding
to the position (i, j) on T, we assign a signal value that is a
combination of the texels of Igyjges around g(u,v).

When we do that, we make not mix in 7T texels of Iyres
that belong to different regions. That is, we must be sure to
combine only texels that have all o > 0.5 (if in position (u,v)
of T, where y > k) or o < 0.5 (otherwise).

submitted to EUROGRAPHICS 2005.

Submission id: 1397 / Pinchmaps 11

Figure 14: Some results of the automatic pinchmap creation tool. Left: original starting image (alpha channel, which in both
cases separates foreground from background, is not shown). Second column: the result pinchmapped texture (actual screenshot
of the HW implementation): above both signal and pinchmap texture are sized 32 x 32, below 64 x 64. Third column: for
comparison, a 128x128 anti-aliased down-sampling of the original image. Last column: the signal map and the color-map.

6.3. Results

We tested our method in a variety of input of different sizes
and with different parameters. Some results in visible in Fig-
ure 14.

The computation times are contained, keeping in mind
that this is just a preprocessing phase. The forth phase, being
an iterative search over a very large domain, is the most ex-
pensive one and takes proportionally almost all of the time.
However, thanks to the optimization, total times are in the
order of a few seconds for a 32 x 32 pinchmap mimicking
an original texture of 1024 x 1024.

More importantly, once built the pinchmap/signal-texture
pair can be rendered in real time (as was predictable from
the fragment program instruction counts), also leaving many
per-fragment resources (texture accesses and ALU instruc-
tions) untapped for any further computation.

7. Conclusion

We presented a texture representation that uses an auxil-
iary pinchmap to describe and embed custom discontinuities
along generally curved lines over standard bi-linearly inter-
polated 2D textures. We showed how the obtained results
are visually comparable to those usually obtainable only at a
cost of a severely larger texture memory usage.

submitted to EUROGRAPHICS 2005.

In this worth mentioning here the two basic ingredient
of our approach. First, the very pinching (fexel hiding) ap-
proach means that we always resort to a single final bi-
linearly interpolated to the last texture access, with positive
effects both on visual quality (every point interpolation of
four points) and of course on efficiency. Second, the preced-
ing texture access to the auxiliary pinchmap is also bilin-
ear interpolated, again improving efficiency (both reducing
texture accesses and leading to basically single case algo-
rithms), and also unlocking simple solutions to deal with
anti-aliasing, mip-mapping, smoothly starting discontinu-
ities, resolution differences between pinchmaps and signal
textures, and so on.

The system is designed for minimal performance impact,
maximal quality and features during the rendering phase;
the cost is that it becomes difficult to design a pinchmap
that delivers the wanted discontinuities at the wanted lo-
cations. This is why the work presented here would have
been limitedly useful without an automatic procedure to per-
form that task. Even considering that, some limits remain:
pinchmaps only approximate the required image where more
than two sharp boundaries generates from a point. Moreover,
sharp angles of discontinuity lines are sometimes difficult to
achieve.

As a final consideration it should be noted that

12 Submission id: 1397 / Pinchmaps

the resulting system -consisting in a module to create
pinchmap/signalmap pairs, and a fragment program to dis-
play them- can be used as a black box by final user.

References

[RBW04] RAMANARAYANAN G., BALA K., WALTER B.:
Feature-based textures. In Proc. of the Euro-
graphics Symposium on Rendering (June 2004),
Eurographics Association. 1,2

[SCHO3] SEN P., CAMMARANO M., HANRAHAN P.:
Shadow silhouette maps. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH
2003) 22, 3 (July 2003), 521-526. 2

[Sen04] SEN P.: Silhouette maps for improved tex-
ture magnification. In Proc. of the ACM
SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware (August 2004), Eurograph-
ics Association. 1,2

[TCO4] TuMBLIN J., CHOUDHURY P.: Bixels: Picture
samples with sharp embedded boundaries. In
Proc. of the Eurographics Symposium on Render-
ing (June 2004), Eurographics Association. 1, 2

submitted to EUROGRAPHICS 2005.

