
EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík
(Guest Editors)

Volume 26(2007), Number 3

Ray-Casted BlockMaps for
Large Urban Models Visualization

P. Cignoni1 M. Di Benedetto1 F. Ganovelli1 E. Gobbetti2 F. Marton2 R. Scopigno1

1Visual Computing Laboratory, ISTI-CNR, Italy
2Visual Computing Group, CRS4, Italy

Abstract

We introduce a GPU-friendly technique that efficiently exploits the highly structured nature of urban environments
to ensure rendering quality and interactive performance ofcity exploration tasks. Central to our approach is a
novel discrete representation, called BlockMap, for the efficient encoding and rendering of a small set of textured
buildings far from the viewer. A BlockMap compactly represents a set of textured vertical prisms with a bounded
on-screen footprint. BlockMaps are stored into small fixed size texture chunks and efficiently rendered through
GPU raycasting. Blockmaps can be seamlessly integrated into hierarchical data structures for interactive render-
ing of large textured urban models. We illustrate an efficient output-sensitive framework in which a visibility-aware
traversal of the hierarchy renders components close to the viewer with textured polygons and employs BlockMaps
for far away geometry. Our approach provides a bounded size far distance representation of cities, naturally
scales with the improving shader technology, and outperforms current state of the art approaches. Its efficiency
and generality is demonstrated with the interactive exploration of a large textured model of the city of Paris on a
commodity graphics platform.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture; I.3.7 [Three-Dimensional Graphics and Realism]: Raycasting; I.3.7 [Pic-
ture/Image Generation]: Viewing Algorithms;

1. Introduction

The enormous success of easy-to-use web-based 3D map
browsers, such as Google Earth, NASA WorldWind, or Mi-
crosoft Virtual Earth, is renewing the interest in technology
for distributing and rendering massive high quality 3D rep-
resentations of the Earth. While, historically, frameworks for
distributed visualization of multi-resolution representations
of the planet have concentrated on photo-textured digital ter-
rains, the interest is now shifting to urban environments, if
only because of all the related business opportunities. As
a consequence, entire cities are being digitized and a large
amount of new data will be available in the near future, es-
pecially because automatic 3D reconstruction technologies
are starting to be developed and successfully applied to ur-
ban complexes [TAB∗03,FJZ05,CCV06].

Real-time visualization of virtual cities is a very challenging

problem because of the great complexity of urban scenery,
which combines large extents with very rich small scale vi-
sual details. Models are made of many small connected com-
ponents (single or small group of buildings), each one usu-
ally represented with a relatively small number of polygons
but a large amount of color information, typically one pho-
tograph for each façade of the building. Moreover, geome-
try is highly discontinuous and different views of the model
have widely different depth complexity, ranging from full
visibility of flyovers to nearly full occlusion at ground level.
This kind of 3D model does not fit well within classical mul-
tiresolution/CLOD rendering. While multiresolution textur-
ing and geometric levels of detail may provide an accept-
able solution for objects near to the viewer and moderate
degrees of simplification, major problems arise with distant
objects. Because of limited image resolution and perspective
projection, typically several triangles and a large amountof

c© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350Main Street, Malden,
MA 02148, USA.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

Figure 1: The BlockMaps idea: replace far away groups of buildings with a concise texture-based representation, called
BlockMap, which is efficiently rendered by a GPU ray caster.

input texels project to a single pixel, making joint filtering
of geometry and texturing an important issue. Relying on
surface meshes to drive such simplification is very compli-
cated, as the triangles mapping to a given pixel may stem
from disconnected surfaces, or totally different objects.For
such reasons, image based approximations (impostors), have
been proposed as a means to replace to the original data with
good visual accuracy. However, away from their supported
set of views, impostors introduce rendering artifacts, such as
parallax errors, disocclusions, or rubber sheet effects, which
can only be reduced by introducing constraints on viewpoint
motion or by radically increasing storage and transmission
costs. The limitations of current techniques for simplifica-
tion of distant geometry thus impose important scalability
limits their usability.

Contribution. In this paper, we introduce a GPU-friendly
simplified representation of urban environments called
BlockMapand and illustrate how it can be used to construct
an efficient output-sensitive system. The BlockMap encodes
both the geometry and the sampled appearance (color and
normals) of a small group of simple buildings, represented
by a collection of textured vertical prisms (see Figure1).
BlockMaps are stored into small fixed size texture chunks
(e.g. 32x256 RGB textures), and can be efficiently rendered
through GPU raycasting. Since BlockMaps are simplified
representations of the original textured geometry, they sup-
port visibility queries, and, when built into a hierarchy, offer
multiresolution adaptability. In this paper, we show theirpro-
ficient use by incorporating them in a state-of-the-art frame-
work based on multiresolution texture atlases, in which a
visibility-aware traversal of the hierarchy renders compo-
nents close to the viewer with textured polygons and em-
ploys BlockMaps for far away geometry.

Advantages. BlockMaps provide a compact, complete,
bounded error, replacement for the original geometry in the
classical LOD meaning, and can be seamlessly integrated
into hierarchical data structures for interactive rendering of
large textured urban models. They are simple to code, GPU
friendly, and rendering performance naturally scales with
the improving shader technology. Thanks to the fact the

BlockMaps represent portions of an urban environment with
small and constant sized textures, they are suitable to be used
in a networked remote visualization framework.

Limitations. As for all current large scale urban model ren-
dering approaches, our method has also some limitations:
being tuned for far-field representations, BlockMaps need to
be combined with other techniques to provide an all-scales
view; we have currently not implemented out-of-core com-
pression and speculative prefetching – these are orthogonal
to our method, but important to reduce perceived refinement
latency.

Despite these limitations, the current method and prototype
system is of immediate practical use and provides unprece-
dented performance in streaming and rendering very large
complex urban models. As highlighted in Section2, while
certain other methods share some ofBlockMap’s advantages,
they typically do not meet its capability in all of the areas.
The BlockMap data structure, and the algorithms required to
construct and render them are presented in Sec.3. We then
briefly illustrate the structure of our multiresolution system
implemented to test the BlockMap approach (Sec.4), and
discuss the results obtained with complex textured city mod-
els (Sec.5). We finally summarize our findings in Sec.6).

2. Related work

Real-time rendering large urban (and more general) envi-
ronments is an active research area. In the following, we
will discuss the approaches most closely related to our
work. Readers may refer to recent surveys (e.g., [LRC∗02,
KMS∗06]) for further details.

Representing and rendering far geometry. The idea of
using a different representation for distant geometry, that
has a small, slowly changing on screen projection is cen-
tral to many approaches for massive model rendering. Using
a simpler geometric representations for far geometry is the
core idea ofLOD techniques, while switching to a radically
different image based representation characterizesimpostor
approaches. The term impostor was introduced in [MS95],

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

where simple textured quads were suggested for replacing
the rendering of more complex geometry. This approach has
been later extended with the introduction ofTextured Depth
Meshes(very simple triangle meshes with depth values taken
from rendering) [SDB97, DSV97] in order to alleviate par-
allax errors. In [DSSD99] the disocclusion error generated
by associating points belonging to different surfaces to the
same impostor is estimated, and objects are grouped in a
way to minimize the error. In [JWS02, JW02], a collection
of slices at increasing distance is used as impostor to form
a layered environment-map impostor. Impostors based on
Layered Depth Images, that for each pixel store all the in-
tersections of the view ray with the scene, have been in-
troduced in [SGwHS98] and later extended in [WWS01],
where the regular sampling of LDIs is replaced with a
more general adaptive point sampling of the geometry. Sim-
ilarly to impostors, BlockMaps are stored in texture mem-
ory. However, the BlockMap representation is more similar
to LOD than to impostor approaches, as a BlockMap pro-
vides a view-independent, simplified representation of the
original textured geometry, provides full support to visibil-
ity queries, and, when built into a hierarchy, offers multires-
olution adaptability. Encoding shape and appearance into a
texture is also the goal of geometry images [GGH02], which
enables the powerful GPU rasterization architecture to pro-
cess geometry in addition to images. Geometry images focus
on reparametrizations of meshes onto regular grids, while we
focus on a specialized representation of urban structures.

Managing a large amount of textures. Massively textured
urban models, where the facade of each building is rep-
resented by a different image, require the management of
very large amounts of textures. The data management is-
sue has been historically addressed in the context of ter-
rain datasets with very simple parameterization (e.g., the
Clipmap approach [TMJ98], that required specialized hard-
ware, or the software based approach of [CE98]). These so-
lutions, however, consider a single smooth, uniform texture
parameterization, and are not directly applicable to detailed
urban datasets with many vertical walls. Just a few solu-
tion were proposed for the more general situation of com-
plex meshes with large texture information. The GoLD ap-
proach [BGB∗05] is one of the most recent representatives
in this area. It consists of a CLOD hierarchical data struc-
ture that partitions the geometry and the texture over it into
patches. This approach, like most of the CLOD multiresolu-
tion schemes, is more oriented to the management of large
unstructured meshes with simple topology than to scenes
composed of tens of thousands of single textured compo-
nents. In [BD05] the authors presents a hierarchical structure
called texture-atlas tree that is tailored, like our solution, to
the management of large textured urban models. Their work,
however, considers multi-resolution textures but single res-
olution geometry, and does not take into account network
streaming issues. In our approach, we enrich the structure
with BlockMaps for all inner nodes, providing adaptability

both in terms of textures and geometry. Moreover, as demon-
strated in the results section, single geometry and texture
processing are tightly coupled, less information is needed
for a BlockMap representation than for a subsampled atlas
with geometry at the same quality.

GPU techniques. The GPU technique used for rendering a
BlockMap is strictly related to the issue of height field ray
tracing and displacement mapping techniques [Coo84]. Re-
cently, a number of specialized techniques have been pre-
sented to exploit the GPU for that purpose. The Relief Map-
ping approach was introduced in [OBM00], where a warp-
ing approach is used to find the final position of an or-
thogonally displaced texel over a given flat texture. An ap-
proach to the problem of rendering generalized displace-
ment mapped surfaces by GPU raycasting was proposed
in [WWT∗03] and [WTL∗04]. In these methods, the re-
sults of all possible ray intersection queries within a three-
dimensional volume are precomputed and stored in a com-
pressed five-dimensional map. While general, this approach
implies a substantial storage overhead. Other generaliza-
tions involve replacing the orthogonal displacement for a
more inverse perspective [BD06], replacing the texture plane
with a quadric [MM05], handling self shadowing in general
meshes [POC05]. Instead, we render BlockMaps by exploit-
ing a small number of precomputed maps which compactly
encode the heightfield geometry. Similarly to [Don05], dis-
tance maps are used for space leaping.

3. BlockMaps: many buildings in few pixels

The goal of the BlockMap representation is to compactly and
faithfully represent a city portion as seen from a distance.
For obvious scalability reasons, this means that the repre-
sentation should be able to rapidly render many buildings
projecting to few pixels, with a memory and time complex-
ity ideally depending only on the region’s screen footprint.

An important characteristic of urban models is that a set of
textured vertical prisms typically provides a good approxi-
mation of the geometry and appearance of a region, well pre-
serving the large scale features, i.e., the silhouette and color
of the buildings. This assumption holds not only because the
vast majority of buildings have a prism-like shape, but also
because automated methods for ground-based acquisition of
large-scale 3D city models impose geometric constraints on
reconstruction to make the acquisition tasks more tractable.

Starting from this assumption, with BlockMaps we intro-
duce a simple, height-field-like, efficient representationfor
a set of discrete vertical textured prisms. We exploit the reg-
ularity of this discrete description to obtain a very compact
encoding and a fast GPU-friendly rendering algorithm, and
use the discretization stepsize to control reconstructionqual-
ity.

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

Figure 2: In the upper part a the256× 32 texture cod-
ing a 32:192 BlockMap is shown. The bottom part shows
the three channels of the first quad, namedgeometry, of the
BlockMap. The red arrow illustrate the texture2 fetches ex-
ecuted if a vertical wall is hit.

3.1. The BlockMap data structure.

The BlockMap representation stores in a rectangular portion
of texture memory all the data required to represent a group
of textured vertical prisms aligned on a square grid. The data
representation is tuned for being efficiently accessed at ren-
dering time by a GPU-based raycasting algorithm.

The prisms representing buildings are coded by texel val-
ues, with each texel coding height and roof/ground texture
information. For the texels corresponding to visible building
walls, we also store a column of texture data as well as the
wall normal.

Figure2 illustrates our data structure with an example of a
BlockMap encoded in a 256×32 24 bit RGB texture.

The three channels of the leftmost 32×32 square are shown
at the bottom of the figure, and they code theheight map,
theoffset mapand thedistance map. Each texel of theheight
mapstores the height value of the corresponding texel. The
offset mapis used to address thewall texture/normal, as de-
tailed below, and thedistance mapstores a discrete distance
field defined in the void inter-building space used to speedup
raycasting by space leaping [Don05].

The second 32×32 square simply contains the roof/ground
color information, and the rightmost 192×32 portion of the
BlockMap encodes the shading information for the vertical
walls. Each column in this last portion is associated with a
single texel of the height map, and theu coordinate of the
column is stored in theoffset map(second channel of the first
square). The first 31 texels of the column contains color data
for the vertical wall, while the 32nd texel contains its rgb-
coded normal. In this rightmost 192×32 portion we store a
texture column only for visiblewall texels, i.e., texels having
at least one of the 4 neighbors with a smaller height, that
is, where at least one of their sides is partially visible. Note

that in the offset map a non-null value is present only for
the texels at the boundary of the buildings footprint, that we
call boundary texels. Since we store only one column per
boundary texel, and a boundary texel can have more than
one side exposed, we average texture and normal values of
each side, as explained in more detail when describing the
construction process. Hereafter we will indicate a 256×32
texture thus partitioned as a 32:192 BlockMap.

Even though the example uses a a 256×32 24 bit RGB tex-
ture, other choices for the the texture size are obviously pos-
sible, and the best granularity for a BlockMap representation
can be selected depending on the particular working condi-
tions of the application. As discussed in Section3.3, the size
of the BlockMap clearly affects the accuracy of the repre-
sentation as well as the loading/transmitting and rendering
time.

Figure 3: A scheme of the ray casting process. For each ray
hitting a surface, the BlockMap provides access to normal
and color to use for rendering.

3.2. Raycasting BlockMaps.

The particular encoding of a BlockMap leads to an effi-
cient GPU raycasting process. The fragments correspond-
ing to rays entering the bounding box of the BlockMap are
activated by the rasterization of the 3 visible faces of the
bounding box. The fragment program computes, it if exists,
the nearest intersection and computes depth and color of the
fragment.

An example of how to raycast a BlockMap is presented in
Figure3, where for the sake of simplicity we use a section
along theZ axis. The figure shows a number of different rays
passing through a BlockMap’s bounding box.

The intersection of a ray with the BlockMap is found by
sampling the height map along the ray. Given a sampling
point, its projection on the distance map is found (dropping
the height coordinate), the corresponding value is fetched
and used to place the next point along the ray.

The intersection procedure can exit with three possible
cases:

• The ray exits the bounding box without hitting neither
buildings nor the ground (see the black ray in Figure3).

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

• The ray hits a roof/ground (blue and brown rays, respec-
tively). The roofs and the ground are considered to have
normaln = (0,1,0) while the color is fetched on theroofs
textureat the sameuv coordinates as the hit point.

• The ray hits a vertical wall. In this case the normal and
color are stored in thewalls normalsandwalls textures,
respectively, at the sameu coordinate, which is stored in
the offset mapat the sameuv coordinates as the hitting
point. Thev coordinate to fetch the color is given by the
height of the hitting point.

3.3. Building a BlockMap.

To compute the texture parameterization of the walls over
the rightmost part of the BlockMap texture we simply un-
fold each building, by following its boundary in a linear
way. With this simple approach, most of the times, adjacent
boundary texels correspond to adjacent texture columns.

Figure4 illustrates the process of computing texture and nor-
mal for a pixel-sized BlockMap column. Figure4.(a) shows
a height map where boundary texels are in cyan and non-
boundary texels in blue/white. For each boundary texel, and
for each boundary side, we compute a texture column that
corresponds to the original textured geometry lying there as
seen from that boundary side (shown as a red line-dot in the
figure). In the case a boundary texel has more than a single
side (like the one shown in Fig.4.(b)) the computed texture
columns are averaged together. Simple orthographic render-
ings of the original textured models are used to efficiently
compute these columns.

If the final number of columns created is more than the size
reserved for vertical texture (192 pixel in the case of a 32:192
BlockMap) the wall textures and normals regions are scaled
along theu coordinate (and so are the values in the offset
map).

Figure 4: Construction of a BlockMap: (a) Height map with
boundary texels rendered in cyan. The red dots correspond
to the locations from which the renderings are done. (b) Ex-
ample of a boundary texel with two exposed sides, the two
side renderings are averaged together.

Accuracy. BlockMaps are a discrete representation of a
height field made ofn×n×256 voxels, wheren is the side
in texels of the heightmap and 256 is the number of values

to code the height. Consequently, the geometric Hausdorff
error is bound by half of the length of the diagonal of a sin-
gle voxel in object space, and the geometric error in screen
space is the projection of such length. In order to bound the
error in every point of the BlockMap, we consider the closest
point of a bounding sphere of the BlockMap to the viewer as
distance for the perspective division.

4. Multiresolution streaming and rendering with
BlockMaps

As we previously discussed urban scenes exhibit a high topo-
logical complexity, that makes it very difficult to find repre-
sentations for drastically simplified levels of detail thatare
compact in terms of rendering primitives as well as in stor-
age requirements. BlockMaps, thanks to their discrete and
tessellation-independent nature, are able to compactly code
the overall shape and appearance of a set of city buildings
as a set of vertical prisms. Moreover, encoding a region of
space with a amount of information leads to a fixed render-
ing and storage cost, that makes their use appealing in mul-
tiresolution frameworks.

Since BlockMaps are able to provide faithful far field repre-
sentations for all directions and do not suffer from the dis-
occlusion, undersampling, and distorted parallax problems
of image based impostor techniques, their integration is not
limited to systems based on view-cells, but can be seam-
lessly employed for far field rendering in any type of in-
teractive visualization system adopting a hybrid multireso-
lution representation. By simply associating BlockMaps to
larger and larger areas, it is in particular possible to create a
quadtree like hierarchy of levels of detail.

Embedding BlockMaps in a Multiresolution Hierarchy.
To demonstrate the ease of integration of BlockMaps into
existing multiresolution frameworks, we have embedded the
BlockMap representations in an out-of-core multiresolution
hierarchy based on the texture-atlas tree approach introduced
in [BD05]. In this framework, the spatial domain of an urban
scene is organized in a quad-tree built by recursive space
partitioning guided by a texture/geometry complexity cri-
terion. In each quadtree node, a reference to the geometry
data in its region is stored together with all the texture data
mapped on such geometry, arranged in a texture atlas. The
texture atlas of a leaf quad is composed by assembling orig-
inal facade textures, while the atlas of an inner quad is ob-
tained by composing the downsampled versions (by a fac-
tor of 2 on each direction) of the texture atlases of its four
children. A shortcoming of this approach is that it does not
scale up well for very large urban environments composed of
tens of thousands of buildings, and it has major limitations
in a networked setup. For instance, this approach requires
the transmission of complex geometry even for very coarse
detail levels. This kind of data, with high topological and
texture coordinate complexity is hard to compress. On the

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

Figure 5: The first four levels of the BlockMaps hierarchy.
The same portion of the urban scene is covered with finer
and finer BlockMaps arranged in a quadtree.

other hand, BlockMaps are a valid substitute for the coarser
levels of the hierarchy, with the major advantage that they
are well bounded both in terms of transmitting and render-
ing cost. For this reason, we simply build, over the urban
domain, a quadtree hierarchy of finer and finer BlockMap
representations by reusing the same spatial partitioning of
the existing hierarchy. BlockMaps are constructed for all
nodes from the root until either when the BlockMap repre-
sentation becomes too crude for the geometry contained into
the node, or the cost of directly storing/rendering the origi-
nal texture and geometry becomes competitive with the cost
of the BlockMap representation. The example in Figure5
shows the BlockMaps composing the first four levels of the
hierarchy.

Once we have built the BlockMap hierarchy, at runtime we
can use the BlockMaps whenever the projected size of the
bounding box of a node is less than a given threshold and
the rendering error is therefore safely bounded. In our cur-
rent implementation, the rendering procedure proceeds by
visiting the hierarchy coarse-to-fine and front-to-back, prun-
ing those nodes whose geometry is occluded or lies outside
the view frustum, and stopping refinement when a node rep-
resentation, BlockMap or textured geometry, is considered
accurate enough in terms of projected texels/pixel, or when
child data is not yet available in-core. In the latter case, asyn-
chronous I/O requests are issued by a separate thread. As
in [BWPP04], occlusion culling is performed by interleav-
ing hardware assisted occlusion queries with rendering of
leaf nodes visible in the previous frame to mask query la-
tency.

5. Results

An experimental software library and a rendering applica-
tion supporting the technique have been implemented on
the Windows XP platform using C++, OpenGL, and GLSL
shaders. We have extensively tested our system with a num-
ber of large urban models. The quantitative and qualitative
results discussed here are for the Paris urban environment.
The reported times were obtained on a dual core P4 @ 3GHz
PC equipped with 2GB Ram, two HD 160GB SATA and
a NVIDIA GeForce 8800GTX with 768MB. The geome-
try of the Paris dataset has been created from the cadas-
tral maps, containing a vector representation composed of
80,414 building outlines, whose extrusion was tessellatedto
3.7 millions triangles. The original dataset has no texturein-
formation, so, for the sake of testing, we have created and
stored for each building a different 5122 fake texture for its
façades; overall, the texture information for the façades is
composed of 19.63 Giga texel. In an uncompressed format
this texture information would need almost 60 GB.

Preprocessing. For the Paris dataset the creation of all the
geometry from the cadastral profiles, the geometric parti-
tioning and the quadtree construction took less than a cou-
ple of minutes and generated a tree of 25,405 nodes with
18,978 leaves, with maximum depth of 10. The recursive
partitioning of the tree targeted less than 16 buildings for
each leaf. The construction of the atlas-tree took approxima-
tively four hours starting from the original 80,414 5122 fa-
cade textures and generating 25,405 atlases. The generated
atlases were S3TC compressed into a 14.1 GB dataset. In
the case of 64:256 BlockMaps the creation of a tree of 4,178
BlockMaps, roughly corresponding to the first 7 levels of the
tree, took 35 mins.

Rendering. In order to evaluate the rendering costs of
BlockMaps we have performed various tests on our urban
scene. To better estimate very short rendering times (a full
screen single BlockMap can be rendered at more than 1kHz),
we have chosen 50,000 random viewing directions at vary-
ing viewing distances. We have clustered viewpoints accord-
ing to projected screen size of the BlockMap and we aver-
aged together the times for one hundred of renderings with
similar screen coverage. We repeated these tests both by sim-
ply drawing an entire level of the BlockMap hierarchy and
by using the adaptive rendering strategy described in Sec-
tion 4. In this latter case, the BlockMap hierarchy is recur-
sively traversed, and BlockMap nodes are rendered if their
screen projected geometric error is less than a pixel. The ren-
dering of the textured geometric dataset in the test was done
by using the textured-atlas approach described in Section4.

The graphs in Figure6 illustrate how BlockMap size and
projected size affect rendering time. The rendering time of
the BlockMaps of increasing size (from 16:64 to 64:256)
were evaluated in comparison with the rendering times of the
full, and of a quarter of, the original geometric Paris dataset.

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100000 200000 300000 400000 500000 600000

F
P

S

Fragments

BlockMap 16:64
BlockMap 32:128
BlockMap 64:256

1/4 geometry (952ktri)
full geometry (3.7Mtri)

Figure 6: Rendering rates of BlockMaps at different preci-
sion/granularity versus the original textured geometry.

The graphs highlight the strict relation between BlockMap
rendering time and the number of fragments covered by the
projection of their bounding box, typical of all fragment
shader limited rendering paths. Moreover the rendering of
the original dataset (or a portion of it) is always more costly
and independent of its impact on the screen. The size of the
BlockMap obviously affects also the rendering, but it should
be noted that smaller BlockMaps usually arenot faster to
render, because a deeper traversal of the tree is required
to reach the same accuracy and more BlockMap atlases
switches and shader uniforms updates are performed. More-
over, fine grained BlockMaps exhibit a higher overdraw ra-
tio. On the other hand, it is also true that larger BlockMaps
require more texture for covering the same area with the
same texel densities, mostly because they represent walls
with higher, better defined textures. Figure7 illustrates the
rendering cost of 64:256 BlockMaps for different accuracies
and number of fragments covered. As expected, BlockMaps
rendering time is strictly related to the number of fragments
covered by the bounding box of the geometry that they are
replacing, and coarser levels of the BlockMap tree are much
faster to be rendered because of reduced overdrawing.

Integration in a multiresolution engine. The qualitative
performance of our adaptive renderer combining BlockMaps
and texture atlas is illustrated in an accompanying video,
recorded live using a 1280x1024 rendering window resolu-
tion (see Fig.8). The interactive sessions were designed to
be representative of typical inspection tasks and to heavily
stress the system. Note for example how in the first and last
part of the flight, when the whole city is visualized, most
of the geometry is substituted by BlockMaps, and the ad-
vantage over the traditional approach is very high, since we
can sustain 100fps while guaranteeing a good visual qual-
ity. Similar gains can be also noted when the camera pans

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100000 200000 300000 400000 500000 600000

F
P

S

fragments

Level 0 (1 bm)
Level 1 (4 bm)
Level 2 (16 bm)
Level 3 (62 bm)

Level 4 (226 bm)
Level 5 (851 bm)

Adaptive

Figure 7: Rendering rates of BlockMaps at different levels
of accuracy

over the city at a close distance from the building roofs and
the city extends up to the horizon covering almost the entire
screen. Without using BlockMaps the rendering rate of the
whole city would be limited to 60fps.

As demonstrated by the video, the ability of BlockMaps to
have a predictable size and to offer good approximation even
at coarse levels is particularly useful in this limited band-
width network setting. The visual quality of the inspectionis
always acceptable and improves at a rapid pace.

6. Conclusions and future work

This paper introduced the BlockMap, a GPU-friendly sim-
plified discrete representation of a portion of urban scenery
that provides a replacement for the original color and ge-
ometry in the classical LOD meaning. BlockMaps are char-
acterized by efficiency in rendering, compactness in space,
and bounded geometric error. BlockMaps can be arranged
in a simple hierarchical structure that can be seamlessly and
efficiently integrated as coarse representations into existing
multiresolution structures. Compactness of the BlockMaps
structure make them especially useful in a networked vi-
sualization framework, where they provide a size and error
bounded representation of urban scenes that can be progres-
sively downloaded and displayed.
Further work can be done in several directions. As afore-
mentioned the color is not uniformly sampled within a
BlockMap, since the same number of texels in thewall tex-
tures is assigned to every façade, so differentwall textures
parametrization strategies could be evaluated. Another im-
provement concerns sloped roofs, which could be detected
in the ray casting algorithm and treated explicitly, while they
currently in a stepped surface.
Finally we observe that although the BlockMaps have been

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

Figure 8: Two snapshots from the flight over Paris video. The far away buildings are efficiently rendered using the BlockMaps
approach.

designed for static models, the editing of a small portion
of the geometry would require only to rebuild just the
BlockMap nodes on the path from the edited leaves to the
root. Furthermore the nodes to be updated can be all pro-
cessed independently and seamlessly replaced in the hierar-
chy without stopping the rendering.

Acknowledgments This research is partially supported by
the European projects CRIMSON (RTD contract SEC4-PR-
011500) and Epoch (NoE contract IST-2002- 507382).

References

[BD05] BUCHHOLZ H., DÖLLNER J.: View-dependent rendering
of multiresolution texture-atlases. InIEEE Visualization(2005),
p. 28.

[BD06] BABOUD L., DÉCORET X.: Rendering geometry with
relief textures. InGraphics Interface(2006), Gutwin C., Mann
S., (Eds.), Canadian Human-Computer Communications Society,
pp. 195–201.

[BGB∗05] BORGEAT L., GODIN G., BLAIS F., MASSICOTTE

P., LAHANIER C.: Gold: interactive display of huge colored and
textured models.ACM Trans. Graph. 24, 3 (2005), 869–877.

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PUR-
GATHOFERW.: Coherent hierarchical culling: Hardware occlu-
sion queries made useful.Comput. Graph. Forum 23, 3 (2004),
615–624.

[CCV06] CORNELIS N., CORNELIS K., VAN GOOL L.: Fast
compact city modeling for navigation pre-visualization. In Proc.
IEEE CVPR’06(2006).

[CE98] CLINE D., EGBERT P. K.: Interactive display of very
large textures. InIEEE Visualization(1998), pp. 343–350.

[Coo84] COOK R. L.: Shade trees.Computer Graphics 18-3
(July 1984), 223–231.

[Don05] DONNELLY W.: GPU Gems 2. Addison-Wesley, 2005,
ch. Per-Pixel Displacement Mapping with Distance Functions,
pp. 123–136.

[DSSD99] DECORETX., SILLION F., SCHAUFLER G., DORSEY

J.: Multi-layered impostors for accelerated rendering.Computer
Graphics Forum 18, 3 (Sept. 1999), 61–73. ISSN 1067-7055.

[DSV97] DARSA L., SILVA B. C., VARSHNEY A.: Navigating
static environments using image-space simplification and morph-
ing. In SI3D(1997), pp. 25–34, 182.

[FJZ05] FRUEH C., JAIN S., ZAKHOR A.: Data processing al-
gorithms for generating textured 3d building facade meshesfrom
laser scans and camera images.International Journal of Com-
puter Vision 61, 2 (feb 2005), 159–184.

[GGH02] GU X., GORTLERS. J., HOPPEH.: Geometry images.
In SIGGRAPH 2002 Conference Proceedings(2002), Hughes J.,
(Ed.), Annual Conference Series, ACM Press/ACM SIGGRAPH,
pp. 335–361.

[JW02] JESCHKE S., WIMMER M.: Textured depth meshes
for realtime rendering of arbitrary scenes. InProceedings
of the 13th Eurographics Workshop on Rendering (RENDER-
ING TECHNIQUES-02)(Aire-la-Ville, Switzerland, June 26–28
2002), Gibson S., Debevec P., (Eds.), Eurographics Association,
pp. 181–190.

[JWS02] JESCHKE S., WIMMER M., SCHUMANN H.: Layered
environment-map impostors for arbitrary scenes. InGraphics
Interface(2002), pp. 1–8.

[KMS∗06] KASIK D., MANOCHA D., STEPHENSA., BRUDER-
LIN B., SLUSALLEK P., GOBBETTI E., CORREA W., , QUILEZ

I.: Real time interactive massive model visualization. InEuro-
graphics 2006: Tutorials(2006).

[LRC∗02] LUEBKE D., REDDY M., COHEN J., VARSHNEY A.,
WATSON B., HUEBNER R.: Advanced issues in level of detail.
In Course 14, SIGGRAPH 2002.(July 21-26 2002).

[MM05] M ANUEL M.OLIVEIRA F. P.: An Efficient Representa-

c© The Eurographics Association and Blackwell Publishing 2007.

P. Cignoni et al. / Ray-Casted BlockMaps for Large Urban Models Visualization

tion for Surface Details. Tech. Rep. RP 351, Universidade Fed-
eral do Rio Grande, January 2005.

[MS95] MACIEL P. W. C., SHIRLEY P.: Visual navigation of
large environments using textured clusters. InSI3D (1995),
pp. 95–102, 211.

[OBM00] OLIVEIRA M. M., B ISHOPG., MCALLISTER D.: Re-
lief texture mapping. InProceedings of the Computer Graph-
ics Conference 2000 (SIGGRAPH-00)(New York, July 23–28
2000), Hoffmeyer S., (Ed.), ACMPress, pp. 359–368.

[POC05] POLICARPO F., OLIVEIRA M. M., COMBA J. L. D.:
Real-time relief mapping on arbitrary polygonal surfaces.ACM
Trans. Graph 24, 3 (2005), 935.

[SDB97] SILLION F., DRETTAKIS G., BODELET B.: Effi-
cient impostor manipulationfor real-time visualization of urban
scenery.Computer Graphics Forum 16, 3 (Aug. 1997), 207–218.
Proceedings of Eurographics ’97. ISSN 1067-7055.

[SGwHS98] SHADE J., GORTLER S. J.,WEI HE L., SZELISKI

R.: Layered depth images. InSIGGRAPH(1998), pp. 231–242.

[TAB∗03] TELLER S., ANTONE M., BODNAR Z., BOSSEM.,
COORG S., JETHWA M., , MASTER N.: Calibrated, registered
images of an extended urban area.International Journal of Com-
puter Vision 53, 1 (June 2003), 93–107.

[TMJ98] TANNER C. C., MIGDAL C. J., JONES M. T.: The
clipmap: A virtual mipmap. InSIGGRAPH(1998), pp. 151–158.

[WTL∗04] WANG X., TONG X., L IN S., HU S., GUO B., SHUM

H.-Y.: Generalized displacement maps. InProceedings of the
2004 Eurographics Symposium on Rendering(June 2004), Fell-
ner D., Spencer S., (Eds.), Eurographics Association, pp. 227–
234.

[WWS01] WIMMER M., WONKA P., SILLION F.: Point-based
impostors for real-time visualization, May 29 2001.

[WWT∗03] WANG L., WANG X., TONG X., L IN S., HU S.-M.,
GUO B., SHUM H.-Y.: View-dependent displacement mapping.
ACM Trans. Graph. 22, 3 (2003), 334–339.

c© The Eurographics Association and Blackwell Publishing 2007.

