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Abstract

The accurate and robust reconstruction of a digital repre-
sentation using 3D scanning technologies is an important
task in many application field. An important problem in
this field is the integration of multiple range maps in a sin-
gle polygonal surface. In this paper we describe a robust
and effective implementation of a reconstruction algorithm
based on implicit representation which, thanks to out-of-
core techniques, allows to efficiently reconstruct large set
of range maps.

1 Introduction

3D scanning technology evolved considerably in the last
few years, both in terms of hardware devices and of algo-
rithms for processing the raw data produced by scanning
devices. 3D scanning devices are usually based on opti-
cal technology (laser or structured light) and use either the
triangulation approach (small and medium scale objects)
or the time of flight approach (large scale objects, e.g. ar-
chitectures). The scanning of complex objects is therefore
performed by taking a (usually large) set of partially over-
lapping range scans. The classical pipeline which charac-
terizes a 3D scanning session is rather complex, involving
many different operations that usually end with the final re-
construction of a single surface from a set of well aligned,
cleaned range maps. As sketched in Section 2 many dif-
ferent algorithms have been proposed for the task of re-
constructing a surface starting from a set of possibly noisy
samples. In the rest of the paper we will present a practi-
cal and robust implementation of a MLS based out-of-core
framework for the construction of a triangulated surface.
We should remark that we are focusing on the field of Cul-
tural Heritage application of 3D scanning technologies so
some aspect of the reconstruction, notably the management
of a very large set of range-maps, the possible presence of
systematic errors in the set of samples (typically due to er-
rors in the registration process) must be taken into account.
In section 4 we will present some practical results and tim-
ing of the discussed approach, comparing it with the re-
sults obtained using a standard volumetric approach based
on [12].
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2 Related Work

Methods for surface reconstruction aim to find a mathemat-
ical discrete description of an object surface from its sam-
pling. The need of requiring certain guarantees on the re-
constructed surface along with the necessity of reducing the
computational resources needed by the algorithms for giv-
ing such a description makes this problem an active subject
of research. In this context, a lot of new solutions and ap-
proaches to this problem have been sketched out in the last
years. Some of them use the topological informations in-
side the rangemaps in order to identify the surface: in [34]
the rangemaps are cleaned up by the redundant informa-
tions in the overlapping area and then are merged through
a triangulation process of the border belonging to adjacent
rangemaps. Ignoring the topological informations inside
the rangemaps but constraining the surface to interpolate
the point cloud, Bernardini et al. [9] suggest a region-
growing approach based on the ball-pivoting operation.

Different solutions have been formulated starting
from the Delaunay complex associated to the point cloud.
The alpha-shape approach [15] represent the first work in
this direction; Bajaj et al. [8] extend the initial idea with
heuristics aimed to capture concave features which the ini-
tial algorithm was not able to detect. Amenta et al. [4]
[5] solve the same problem with the crust algorithm, which
dynamically adapt the complexity of the surface to the cur-
vature local factor.

The volumetric methods detect the surface distance at
the corners of a regular grid, building up a signed distance
function from the point cloud: Hoppe et al. [18] locally
approximate the surface with tangent planes, used to com-
pute the signed distance. In order to generate an explicit
description of the reconstructed surface, generally the vol-
umetric methods are combined with some polygonalization
algorithms, such as the marching cubes [26] or related so-
lutions [25] [21] [32] [20] [19] [17].

A relatively recent idea is to describe the surface of
an object through a convenient set of functions. Carr and
al. [11] [10] demonstrated the suitability of this approach
to real problems combining the RBF representation with a
greedy algorithm. Ohtake and al. [27] partition the point
cloud with an adaptive octree and represent the portion of
the surface contained inside each leaf with an opportune ex-
plicit function, whose weighted combination allow to gen-
erate a description of the complete surface implied by the
point cloud. Using a blending function similar to the previ-
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ous, Shen et al. [33] associate to each point a different func-
tion so that also the gradient of the overall implicit function
is constrained near the surface. Actually both approaches
share the same mathematical framework, known as mov-
ing least squares (MLS). This method constitute the ker-
nel of the projection operator originally proposed by Levin
[24]: this operator is able to project a point near the point
cloud on a continuous surface which minimize a local error
measure formulated in terms of the least squares: the set
of point which project onto themselves represent a surface
generally called point set surface (PSS). These projection
based approaches have been subject of investigation in the
last years by numerous researchers by virtue of their many
interesting properties, first of all the ability to automati-
cally filter out the acquisition noise inside the rangemaps.
Adamson and Alexa [3] provide a definition of smooth and
manifold surface starting from a point cloud and then ex-
pand their work [2] [1] in order to combine the PSS def-
inition with rendering and ray tracing methods. Amenta
e Kil [7] propose a projector operator defined on surfels,
namely point-normal pairs, and give an efficient procedure
of minimization along with a proof of the convergence of
projected point onto the PSS surface. Later the same au-
thors [6] extend the domain of the projector operator and
give two definitions of PSS surface with different ratio be-
tween the computational complexity and the precision of
the sharp feature description. With reference to this last
aspect, Reuter and al. [31] suggest a different projector
operator based on the Enriched Reproducing Kernel Parti-
cle Approximation (ERKPA) method, aiming to limit the
smoothing out of corners and edges in the PSS surface.
This modified projection operator allows to correctly re-
construct surfaces with sharp features, but limited to those
volume areas manually marked before by a user. Kolluri
[22] proposes a different projector operator and shows the-
oretically its correctness under the assumption of a uniform
sampling. Day e Sun [14] give a definition of MLS surface
based on the local feature size and provide guarantees on
the quality of the reconstructed surface under the hypothe-
sis of an adaptive sampling. Fleishman et al. [16] adapt the
forward-search paradigm to drive the MLS operator dur-
ing the surface definition process: starting from a small
set of samples not containing outliers, this paradigm pro-
gressively add new samples to the set provided that these
new samples verify some statistical properties which mon-
itor the quality of the surface. By means of this framework,
they are able to manage the noise inside the dataset and also
to detect sharp features and outliers.

3 Our reconstruction approach

Most of the reconstruction methods based on pointset de-
scribe the surface implicitly through an projector operator
capable of projecting point laying near the surface exactly
on the surface implied by the point cloud. Because we are
interested in the construction of triangular meshes, we em-
ploy this projector operator to generate a signed scalar dis-

tance field: combining this scalar field with a polygonal-
ization algorithm, we are able to generate polygonal sur-
faces. Before describing the details of our strategy, we give
a brief review of the projector operator. Because a thor-
ough survey is clearly beyond the scope of this paper, we
address the interested reader to the papers in bibliography
for a more exhaustive coverage of this subject.

3.1 MLS projector operator

Surfaces based on the Moving-Least Squares (MLS) pro-
jection approach have been introduced by Levin [24, 23]
and subsequently used in many different works as robust
approach to define a surface starting from a point set. MLS
surfaces have been used, for example, in point-based graph-
ics by Alexa et al. for high quality rendering of point-
sampled surfaces [3] or to create approximations of point-
based models with low sampling density in [30].

Given a point cloud near a surface S, the aim of the re-
construction algorithm is to build an implicit representation
of the surface from which could be extracted an explicit
description, generally a simplicial mesh. The implicit rep-
resentation used by our algorithm belongs to the extremal
surfaces family: this family includes the set of the surfaces
which can be described by the interaction of two distinct
functions, the energy function and the vector field.

In order to make the algorithm more robust, both
functions are defined on the set of the points and the set
of their normals. The normals either are directly available
from the rangemaps, if the point cloud has been acquired
by 3D scanning or by converting a polygonal model into
a point-based one, or can be obtained by a preprocessing
phase of the point cloud. The kernel of our algorithm is
represented by the implicit representation described in [7],
whose definition will now be briefly sketch out.

The definition of the vector field n follows the intu-
ition that its valuation in a point p in the space must mimic
the normal at the piece of surface closest to that point. Thus
the vector field can be computed from the normals in the
dataset in such a way that the direction associated to a point
p is more influenced by the nearest points in the dataset.
That condition is enforced through the following weight-
ing function:

ϑN(p,xi) =
e−

‖p−xi‖2

h2

∑ j e−
‖p−x j‖2

h2

, (1)

which is a normalized gaussian weighting function
based on the distance. The vector field is then defined as
the weighted average of the surfel normals, i.e.:

nPSS(p) = ∑
i
~niϑN(p,xi).

The energy function also is formulated in a very in-
tuitive way as the unsigned distance from the surface in
terms of the surfel position and normal. Since we would



like to give more importance to the points lying along the
surfel normals, the energy function formulation make use
of the Mahalanobis distance, a distance measure similar to
the euclidian distance but with elliptical support rather than
spherical:

distM(p,xi,~ni)=
(
(p−xi)·~ni

)2 +c
∥∥∥(p−xi)−

(
(p−xi)·~ni

)
~ni

∥∥∥2
,

where k is a scale factor witch affects the ellipsis
shape: in particular when k = 1, the Mahalanobis distance
is equivalent to the euclidian distance between the point p
and the sample qi, whereas when k = 0 it corresponds to
the distance from p to the plane through xi with normal ~ni.
The resulting energy function is:

ePSS(p,~n) = ePSS(p) = ∑
i

distM(p,xi,~ni) ϑN(p,xi).

Finally the implicit surface is determined by the set
of points where the energy function e, evaluated along the
direction of the vector field n, is minima, i.e.:

S =
{

p |p ∈ arglocalmin
q∈`p,nPSS(p)

ePSS
(
q,nPSS(p)

)}
.

3.2 Efficient management of large datasets

In order to be able to process large datasets, we have built
our reconstruction algorithm on a out-of-core framework.
With this framework we can manage the whole dataset and
efficiently solve different types of spatial queries over huge
set of range maps. The kernel of this framework is an oc-
tree which distributes, indexes and maintains out-of-core a
dataset composed by a set of range maps.

When a range map is imported, its point cloud is
sorted according to the Lebesgue space-filling curve [28,
29] relative to the octree deepest level. This sorting tech-
nique imposes a linear ordering to the point set that agrees
with the octree cell distribution and that guarantees that all
the points included in a particular cell of the octree (not
only leaves) are contiguous. Therefore this particular ar-
rangement allows us to refer the set of points included in
a octree cell with just three references: the range map id
and two references addressing the first and the one past the
final element in the sorted dataset. This way we don’t have
to merge the set of range maps in a single point cloud and
we can store in different files on secondary storage the im-
ages of the sorted range maps: so we are able to dynami-
cally load and unload this temporary images depending on
the portion of the surface the reconstruction algorithm is
working on. This framework allows to not explicitly store
anything in the octree nodes so we keep the octree struc-
ture light enough to maintain the whole octree resident in
memory. Moreover the choice of keeping maps separate al-
low the easy inclusion and exclusion of single range maps,

a feature useful when assembling the correct set of maps
to be merged and when choosing the right reconstruction
parameters.

3.3 Generating the triangular meshes

The projector operator does not directly define a scalar
field; nevertheless, starting from the result generated by
the projection procedure, we can obtain a signed distance
function. As said before, the projector operator allows to
project a point p on the nearest surface along the direction
defined by the vector field at p: i.e. the application of the
projector operator to a point p gives back a point-direction
pair (p?,~n?) which respectively represent the projection of
the point p on the surface and the direction it has been pro-
jected along: furthermore, as the projection procedure is it-
erative until the detection of a stationary point, the direction
~n? is the one computed when the convergence is reached.
The pair (p?,~n?) allows us to define the plane P passing
through p? and having direction~n? which for construction
turns out the best local approximation of the nearest surface
to p. This approximation can then be exploited in order to
identify a valuation of the distance between a point p and
the surface: that distance is approximated with the distance
between the point p itself and its projection on the plane
P generated through the results of the application of the
projection procedure to it. It’s convenient to point out that
the direction ~n? computed by the projection operator isn’t
a undirected direction, because it’s computed as weighted
average of the point normals, and then that the computed
distance is necessarily a signed distance.

We use the signed distance function just defined to
generate the scalar field needed by the polygonalization al-
gorithms in order to identify the surface. We sample the
signed distance function at the corner of the leaves of the
octree used to index the point cloud. In order to avoid the
sampling of the signed distance function at all the corner
of the grid induced by the octree, we suggest to limit the
sampling of the scalar field only at the corners of the vox-
els which probably are crossed by the surface: these vox-
els are identified through spatial query to the octree aimed
to identify the set of cells containing at least one point of
the dataset. Most probably the voxels returned by such a
query will contain surface pieces: for each of these voxels
the signed distance function is sampled at its corners and,
if a sign change is detected, the voxel is processed by the
polygonalization algorithm in order to obtain the triangle
set approximating the surface.

3.4 Hole Filling

As defined above, the reconstruction algorithm searches for
the surface only on those voxels containing some point of
the dataset: even though this solution is essential in order
to avoid the sampling on the whole scalar field, however
the mesh reconstructed this way can have discontinuities
and unconnected components, since it can happen that the



Figure 1. Due to the sample distribution as for the octree cells, if the algorithm visit those cells where is contained at least one
sample point (cells in grey), then the reconstructed surface will be composed of two distinct components.

surface goes across voxels not containing any point of the
dataset 1. The solution we propose to this problem is based
on the possibility to encode in each voxel if it has been vis-
ited, if it has to be visited or if it don’t belong to the set of
voxels which will be visited. The surface reconstruction is
namely performed in a fixed number of expansion steps, i.e.
a maximum number of iterations specified by the user: dur-
ing the first iteration, the algorithm analyzes only the vox-
els returned by the octree in response to the spatial query,
while in the next steps the analysis is expanded to those
voxel marked in the immediately previous iteration. The
voxels which are to be visited as well as the voxel already
visited are maintained in two different sets: if, performing
the triangulation of the surface crossing a given voxel a in-
tercept is computed laying on a edge shared by two voxels
which not belong neither to the set of the already visited
voxels nor to the set of the voxels to be visited at the cur-
rent iteration, then all the voxels which share that edge are
inserted into the set of voxels to be analyzed at the next
step. In reference to the figure 1, during the first step, the
algorithm only visits the cells containing at least one point
of the dataset, i.e. the cells colored in gray: when, during
this iteration, the intercept in red are computed, as these
lay on a edge shared with a cell not already visited, this
cell is marked in order to guarantee the reconstruction of a
continuous surface.

This approach allows to build closed surfaces even for
limited value of the expansion steps. Nevertheless using
this extension without any precaution can lead to the gen-
eration of artefact absent in the original surface: this tech-
nique has indeed the tendency to propagate the analysis to
those cells excessively distant from the point cloud. The
remedy we propose is to constrain the propagation only to
those cells whom distance from the point cloud isn’t greater
than k times the leaf diagonal, where k is another parame-
ter chosen by the user. This simple adjustment don’t pre-
clude the algorithm ability to generate closed surfaces and
in addition allows the surface to propagate in those regions
difficult to sample due to the occlusions on the real object.

4 Results

Most of the dataset selected for the experiments presented
in this section have been acquired with a laser triangu-

lation scanner (Konica Minolta VI910), which produces
very dense range maps with a low sampling error. These
datasets, presented in Table 1, encode the digital shape of:
the “Chief Warrior”, a nuragic small bronze of the Bronze
Age (Archeological Museum, Cagliari); the bust of the
“Minerva of Arezzo”, a full body bronze statue (Arche-
ological Museum, Florence); and the bust of “Ippolita
Sforza”, the sole plaster cast of a Renaissance work by
Francesco Laurana. In order to test the effectiveness of our
algorithm in view of a more noisy dataset and to stress its
out-of-core extension, we included also a dataset represent-
ing a architectural model, the “Pisa Cathedral”, acquired
with time-of-fly technology (Leica Geosystem HDS3000).
The size and resolution of all dataset are reported in Table
1.

For testing purposes we have reconstructed all the
dataset with OM, the reconstruction tool presented in pre-
vious sections, and with PlyMC, another reconstruction
program developed at the Visual Computing Lab. PlyMC
is an implementation of the classical volumetric approach
based on discrete distance field and MC-like reconstruc-
tion. The distance field is reconstructed from range maps
following the approach proposed by Curless and Levoy
[12]. To fill unsampled regions, PlyMC adopts the volu-
metric diffusion technique proposed by Davis et al. [13].

We compare visually the output generated by the two
programs in the following figures, in order to provide a
comparison of the improved reconstruction accuracy pro-
vided by OM. All the test have been executed on a PC with
an Intel Pentium IV and 2GB of RAM.

The algorithm performs very well in practice: all the
dataset have been successfully processed and the recon-
structed surfaces preserved the details of the scanned ob-
ject. The ability of our algorithm to correctly reconstruct
regions rich of details are exemplified in Figures 2 and 3:

Dataset Range map no. Samples no. Size
Ippolita Sforza’s bust 29 5 265 736 191 MB
Chief Warrior 102 9 864 132 756 MB
bust of Minerva of Arezzo 80 11 543 578 1.13 GB
Pisa Cathedral 180 154 247 414 5.6 GB

Table 1. The datasets used in our tests.



Figure 2. Reconstruction of the bust of the Minerva of Arezzo: on the left the reconstructed model and at the center and on the
right the details from the helmet and the eye hole as reconstructed by OM and PlyMC respectively.

Dataset Voxel sz Tool Face no. Time (h:m:s)
Ippolita Sforza’s 1.14 mm OM 1 085 808 3:00
bust PlyMC 1 163 249 5:42
Chief Warrior 0.46 mm OM 2 067 672 10:00

PlyMC 2 032 143 16:42
Bust of Minerva 1.15 mm OM 1 015 070 7:37
of Arezzo PlyMC 859 334 9:36
Pisa Cathedral 7 mm OM 214 706 141 63:06:07

Table 2. The results of the reconstruction tests.

as we can see from these screenshots, the models recon-
structed with the new MLS-based solution preserve better
the shape and the details of the scanned object (see Figure
2, at the centre), especially in regions having a thin section
or high curvature; moreover, results do not present artifacts
or wrinkles where the original surface was smooth (see Fig-
ure 3 in the middle).

Running times of the MLS-based solution (OM) are
usually approximately 30% shorter than the ones of the
PlyMC solution (and please consider that in the PlyMC run
we perform volumetric diffusion, which has a substantial
impact in running times).

The test have highlighted a certain sensitivity of the
MLS-based system to possible residual misalignment er-
rors. However, when the order of magnitude of the align-
ment error is comparable with the sampling rate (inter-
sampling distance on the surface), a correct surface is re-
constructed by simply increasing slightly the number of
points used in the projection procedure. This is the case
depicted in Figure 4: the irregularities on the left figure
are due to a misalignment between the range maps; at the
center we show the surface correctly reconstructed by OM
after doubling the number of points used during the projec-
tion procedure.

Some residual misalignment errors were perceptible
also in the reconstruction of the Pisa Cathedral, a dataset
acquired using a time-of-flight scanner which produces
more noisy range maps than laser triangulation. Therefore,
the OM reconstruction algorithm was able to process the
whole dataset (more than 5 GB in input) and to produce, as
Figure 6 illustrates, a very detailed model.

5 Conclusion

We have presented and tested an algorithm for the efficient
out of core reconstruction of very large set of range maps.
The presented technique is based on the explicit polygo-
nalization of a MLS surface representation. The polygo-
nalization algorithm exploits an out-of-core octree index-
ing scheme that allows efficient retrieval of closest point
queries, the critical core of all MLS based interpolation
techniques. In the results section we have shown how
the presented approach allows the reconstruction of huge
datasets composed by hundreds of millions of primitives
and it allows to finely control the amount of smoothing and
hole-filling introduced during the reconstruction process.
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Figure 3. Reconstruction of the Chief Warrior: despite of the thinness of the cloak, both sides of the surface have been
correctly reconstructed. At the center and on the right a detail from the cloak of the models reconstructed using OM and PlyMC
respectively.

Figure 4. Reconstruction of the Ippolita Sforza’s bust: the irregularities on the left are caused by some residual misalignment
error; on the center the surface correctly reconstructed using different projection operator parameters. On the right the surface
reconstructed using PlyMC.



Figure 5. Reconstruction of the Pisa Cathedral: this is the
largest model we have reconstructed so far using OM; once
reconstructed using a cell width of 7 mm, it produces a
surface encoded by 214 million of faces.
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