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Abstract

This work concerns a novel study in the field of image-to-geometry registration. Our approach takes inspiration
from medical imaging, in particular from multi-modal image registration. Most of the algorithms developed in this
domain, where the images to register come from different sensors (CT, X-ray, PET), are based on Mutual Infor-
mation, a statistical measure of non-linear correlation between two data sources. The main idea is to use mutual
information as a similarity measure between the image to be registered and renderings of the model geometry,
in order to drive the registration in an iterative optimization framework. We demonstrate that some illumination-
related geometric properties, such as surface normals, ambient occlusion and reflection directions can be used
for this purpose. After a comprehensive analysis of such properties we propose a way to combine these sources of
information in order to improve the performance of our automatic registration algorithm. The proposed approach
can robustly cover a wide range of real cases and can be easily extended.

Categories and Subject Descriptors (according to ACM CCS): Vision and Scene Understanding [I.2.10]: Inten-
sity, color, photometry, thresholding—Three Dimensional Graphics and Realism [I.3.7]: Color, shading, shadow-
ing and texture—Scene Analysis [I.4.8]: Shading—Digitization and Image Capture [I.4.1]: Imaging Geometry—
Enhancement [I.4.3]: Registration—

1. Introduction

Many graphics applications related to color mapping and
reflectance properties estimation require to register the im-
ages of an object on its virtual representation. Typically, the
images are acquired during a photographic campaign, and
the geometry of the model is acquired through 3D scanning.
There are various ways to accurately recover intrinsic and
extrinsic camera parameters, and, in the past years, several
algorithms have been proposed for this task. Our approach
was inspired from medical imaging, specifically from multi-
modal image registration. One of the main problems in med-
ical imaging is the registration of images coming from dif-
ferent sensors, such as magnetic resonance (MR), comput-
erized tomography (CT), PET, x-rays, and so on. Most of
the algorithms developed in this field are based on Mutual
Information [PMV03a], a statistical measure of dependency
between two data sources. This measure can be employed

efficiently for both 2D/2D and 2D/3D registration, by set-
ting up an optimization framework where the parameters of
the geometric transformation associated with the registration
are calculated by maximizing the mutual information. In our
context, we align a 3D model to a given image by using dif-
ferent renderings of the model and a grey-scale version of
the input image.

One of the main issues regarding the use of mutual in-
formation for 2D/3D registration is to choose a rendering
process that correlates well with the images to align. The
main problem is that the input images contain texture and
unknown lighting conditions: this could make their visual
appearance very different from a rendering of the geometry.
Viola and Wells [VWMW97] proposed using surface nor-
mals and image brightness to correlate shading variations
on the image with the model surface. Here, we extend their
idea by using several types of renderings, such as ambient
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occlusion, normal map, reflection map, silhouette map, and
combined versions of them. We decide to exploit such maps
because the properties of the geometric features used are re-
lated to the visual appearance of the model but generating
them does not entail knowing the lighting environment of the
scene. For example, the use of the ambient occlusion term is
based on the assumption that the occluded parts of an object
also remain darker in the image to align despite the light-
ing conditions and texture differences. In order to cover a
wide range of real cases, where the validity and strength of
these assumptions may vary, we integrated the information
provided by these different maps.

The contributions of this paper can be summarized as:

• The outline of a simple and fast general method for image-
geometry registration based on mutual information maxi-
mization using the renderings of several geometric prop-
erties of the model.

• The identification of a set of geometric properties which
can be effectively used for this purpose: ambient occlu-
sion terms, normals, reflection directions, and their com-
bination.

• The comparison of the proposed approach with the one of
Viola and Wells, which employs only surface normals for
the registration.

• An empirical demonstration that this approach is able to
cover a wide range of practical cases (i.e different materi-
als and different lighting conditions).

2. Related Work

In this section we summarize the use of mutual informa-
tion in multi-modal image registration and the issue of au-
tomatic texture-geometry registration. For a comprehensive
overview of the general topics, please refer to the surveys
cited.

Registration using Mutual Information. Image regis-
tration is a very popular research topic. Hundreds of dif-
ferent approaches and practical applications have been pro-
posed. While a comprehensive survey of the issue is pre-
sented in [ZF03], we will focus on what we believe is one of
the most promising groups of methods for multi-modal reg-
istration: the ones based on Mutual Information (MI). Two
of the first methods of this kind were developed by Viola
and Wells [VWMW97] and by Maes et al. [MCV∗97]. Since
then, several registration methods based on MI have been
proposed (see [PMV03b] for a comprehensive overview).
Most of these studies regard simple geometric transforma-
tions such as 2D roto-translations or affine transformations.
This means that some issues related to the camera model
registration are not addressed. Moreover, the resolution of
medical data is often quite poor, so using MI in a general
case is difficult if no specific adjustments are made.

Another key issue in the use of MI is the choice of the
optimization strategy to achieve the maximization; the pros

and cons of several methods are presented in [MVS99]. An
interesting method for 3D object tracking allows almost real-
time tracking of simple template-based objects has recently
been proposed [LWIG97, PK08].

Regarding more complex texture registration tasks, a sys-
tem has been developed to improve texture registration by
exploiting 2D-2D and 2D-3D MI maximization [CS07].
However, the optimization is only introduced in 2D-2D reg-
istration, while for 2D-3D alignment, Viola and Wells’s ap-
proach is used. Viola and Wells’s method was also imple-
mented in [NSI99], where a 3D model with reflectance val-
ues (acquired using 3D Scanning) was used.

Texture-Geometry Registration. The problem of auto-
matically aligning a set of uncalibrated images to a 3D
model is important both for Computer Graphics and Com-
puter Vision. Robust semi-automatic approaches have been
proposed [FDG∗05] for general cases, but registration can
be time consuming. An automatic planning of the number
of images and camera positions could lead to good results
[MK99] and reduce the importance of registration, but in
most cases no information about camera positions is known
in advance.

Automatic registration can be achieved by analyzing the
image features [NK99] or using the reflectance value ac-
quired during scanning [IOT∗07]. Several papers rely on
the analysis of the silhouette of the object [BLS92, LHS00].
However, in this case the entire object must be present in
each image: this may be a limitation since the advances in
acquisition devices mean that very large objects can be rep-
resented. In order to add highly detailed texture information
to geometric models, it might be necessary to frame only
portions of the object in each image.

A recent work for 3D-3D and 2D-3D automatic registra-
tion [LSY∗06] can be applied in a more general case, but
under the assumption that the 3D scene contains clusters
of vertical and horizontal lines. Similarly, other approaches
such as [LS05] rely on orthogonality constraints, which may
not always be present.

3. Background

3.1. Mutual Information

Two widely-used measures of similarity between two im-
ages A (the reference) and B (the image to register) are the
Sum of Squared Differences (SSD) and Normalized Linear
Correlation (NCC). SSD tends to zero whenever the corre-
sponding values of A and B are very close. NCC is able to
capture the linear dependence between the two images. For
this reason, NCC is less sensitive than SSD to linear trans-
formations of pixel values such as contrast and/or bright-
ness changes. Mutual Information (MI) can be seen as an
extension of NCC, i.e. a measure that is able to evaluate the
generic dependency between two random variables, and it is
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Image A Image B

H(A,A) H(A,B)

Figure 1: Joint histogram. (Right) Construction. (Left) An example. The joint histogram of the image A with itself and the joint
histogram of the same image with a rotated version of it.

not limited to linear dependency. Since our aim is to align
images whose visual appearance are very different, MI ap-
pears to be the most promising mathematical tool for mea-
suring such similarities.

From an information theory viewpoint MI measures the
information shared by two random variables A and B. An
alternative definition is that MI is the amount of informa-
tion about B that A contains. Mathematically, this can be
expressed using entropy or joint probability. Following the
latter interpretation, the mutual information I between two
images IA and IB can be defined as:

I(IA, IB) =− ∑
(a,b)

log p(a,b)
p(a,b)

p(a)p(b)
(1)

where p(a,b) is the joint probability of the event (a,b), p(a)
is the probability that a pixel of IA gets value a and p(b)
is the probability that a pixel of IB gets value b. The joint
probability distribution can be estimated easily by evaluating
the joint histogram (H) of the two images and then dividing
the number of occurrences of each entry by the total number
of pixels. A joint histogram is a bi-dimensional histogram
made up of NA×NB bins; the occurrence (a,b) is associated
with the bin (i, j) where i = ba/NAc and j = bb/NBc (see
Figure 1).

For example, in Figure 1 the joint histogram of the per-
fectly aligned image pair is “very compact” with respect to
the one corresponding to the rotated image. Since the two
images are identical, the identity relationship between the
pixels values is clearly visible in the joint histogram. In gen-
eral, the higher the dispersion of the distribution of joint
events, the lower the value of the MI. In the examples shown:
I(A,A) = 6.307 and I(A,B) = 1.109.

4. Registration Algorithm

The image-geometry registration problem consists of deter-
mining the parameters of the camera model used to map the
3D model onto the image plane. In this work a perspective
(or pinhole) camera model is assumed. According to this
model, the transformation is described by the projection (in-
trinsic) parameters plus the position and orientation of the
camera in the space (extrinsic parameters).

In this context the registration can be formalized as an
optimization problem in a 7D space:

C∗ = argmax
C∈R7

I(IA, IB(C)) (2)

C = (tx, ty, tz,θx,θy,θz, f )

where f is the focal length, (tx, ty, tz) and (θx,θy,θz) define
the position and orientation of the camera, IA is the pre-
processed image to align and IB is a rendering of the 3D
model. Hence, IB depends on the camera parameters (C).
The intrinsic camera parameters, except for the focal length,
are assumed as being pre-determined. More specifically, the
skew factor is assumed to be zero, the principal point is set as
the center of the images and the horizontal and vertical scale
factors are assumed to be known from the image resolution
and the CCD dimensions.

Due to the complexity of finding an optimal solution for
(2), the problem was divided into two sub-problems: find-
ing an approximate solution, the rough alignment, and refin-
ing this solution to an optimal one, the fine alignment. The
convergence properties and speed of the fine alignment algo-
rithm determine the accuracy required for the solution pro-
vided by the rough alignment. For example, a very fast and
robust fine alignment could help to solve the rough align-
ment with a simple greedy approach, by generating a large
number of suitable initial views. Moreover, the larger the
convergence range of the fine alignment, the “simpler” the
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Figure 2: Fine alignment algorithm overview.

development of a global framework. For such reasons our
goal in this work is to develop a fast and robust fine align-
ment algorithm with good convergence properties. We are
currently still developing a global alignment framework by
building on the proposed algorithm. A sketch of the pro-
posed registration algorithm is given in Figure 2: we convert
the input image into a greyscale version, generate a render-
ing of the 3D model given the current camera parameters,
and we evaluate the mutual information. An iterative opti-
mization algorithm updates the camera parameters and re-
calculates MI until the registration is achieved. More specif-
ically, we minimize the opposite of the MI value.

The lack of a-priori knowledge about lighting, color and
material reflectance information from the model prevents
from generating realistic renderings. However, the goal of
the rendering cycle is not to generate a photorealistic render-
ing but to synthesize an image which has a high correlation
with the input picture under a wide range of lighting condi-
tions and material appearances.

Viola and Wells [VWMW97] demonstrated a good corre-
lation between surface normals and the variation of shading
generated by the directional light source, regardless of light
direction. In the next section we extend this idea by evalu-
ating several illumination-related geometric features such as
surface normals, geometrical occlusions, and reflections di-
rections. In addition, we propose a method to integrate these
different sources of information, in order to make the reg-
istration algorithm robust and applicable in a wide range of
real cases.

The implementation details of the overall algorithm, in
particular of the greyscale conversion and of the optimiza-
tion framework, are given in Section 6.

5. Correlation Analysis of Illumination-related
Geometric Properties

5.1. Mutual Information Analysis

In order to analyze the performance of the different geomet-
ric features, we evaluated the shape of the MI function in
the neighborhood of the optimal solution. This analysis pro-
vides useful information about the convergence obtained us-
ing the various geometric properties. The ground truth was
obtained using a semi-automatic tool called TexAlign (devel-
oped by Franken et al. [FDG∗05]); the error in registration
for high resolution images is estimated to be around two
pixels. Our test images have a resolution of moreless 4M
pixels, we scaled them to a width of about 800 pixels, so
we expect our reference registration error to be around one
pixel. Since the MI function around the aligned position is a
function of seven camera parameters, we explore the overall
shape around the aligned position with a number of 1D sec-
tions, 30 in our case, calculated in random directions in the
7D space; where the MI has a local minimum every section
should exhibit the same minimum.

The normalization of the variables plays a key role in
the context of the minimization: it is extremely important
in order to ensure a good convergence for the minimization
method. We define the alignment error as the mean square
distance (in pixels) between the projections through Cr and
C of all the vertices of the model. This measure is used to
normalize the camera parameters: each parameter is scaled
so that the increment of 1 unit produces an alignment error
of 1 pixel. This normalization also improves the readability
of the plots presented in the next Subsections. The X axis
represents the distance in the scaled parameter space, while
the Y axis represents the values of the mutual information.
It is important to underline that these values are not normal-
ized, and they depend on the specific image and 3D model.
The quality of the MI function is defined by its shape: the
important factors are the existence of a well defined mini-
mum and a smooth shape, which permits a wider range of
convergence.

submitted to Pacific Graphics (2009)



Corsini et al. / Image-to-Geometry Registration: a Mutual Information Method exploiting Illumination-related Geometric Properties 5

Original image Normal map MI function plots MI function plots Ambient Occ. map

Figure 3: Ambient vs Normal. As it is possible to notice the ambient occlusion fails to provide reliable functions in this case.

5.2. The Role of Background

In MI based registration methods, only the “rendered” pix-
els are usually considered. However, we have noticed a sig-
nificant positive influence of the background information on
the overall performance of the algorithm. We thus decided to
evaluate the joint histogram using the whole rendering view-
port (and hence the whole image), so not only the part of the
image that corresponds to the object’s rendered pixels.

We argue that including the background pixels implicitly
accounts for the silhouette of the 3D object. This is partic-
ularly like to be true when the statistics of the image back-
ground is very different from the one of the object of inter-
est. The explicit contribution of the shape silhouette in our
framework is evaluated in the experimental results section,
since many methods for 2D/3D registration rely on silhou-
ette matching.

5.3. Surface Normals

For Lambertian material the reflection depends on the inci-
dent angle of the light. In a standard rendering this is com-
puted at each point by the scalar product of light direction
and surface normal. As already mentioned, the work of Vi-
ola and Wells [VWMW97] is based on this observation and
it works reasonably well under the assumption of directional
lighting.

Since the normal map has three components (i.e. the co-
ordinates of the normal), we evaluate the MI of each com-
ponent separately and sum up these values as the final MI
value. More specifically, only the x and y components are
used since the third one (z) is redundant.

5.4. Ambient Occlusion

Ambient occlusion is used as an illumination-related geo-
metric property since the occluded parts of the model will
receive little light irrespectively by the lighting environment
of the scene. Ambient occlusion is also view-independent,
since its values for each point of the surface depend only on
the surrounding geometry. Hence, it can be pre-calculated

Figure 4: Ambient vs Normals. (Top) Original image. (Mid-
dle) Normal and ambient occlusion maps of the aligned
model. (Bottom) Corresponding MI functions plots.

and stored in order to speed-up the rendering. To our knowl-
edge, this kind of information has never been used in regis-
tration algorithms before. There is only another work that
demonstrates a correlation between geometry and texture
surfaces [MKC∗06]; in this work ambient occlusion and
other geometry-correlated measures are used for texture
transfer.

In our tests, the ambient occlusion term is pre-
calculated with the hardware accelerated technique de-
scribed in [PG04], and stored as per-vertex color. The am-
bient occlusion values are mapped such that black corre-
sponds to a completely occluded vertex, while pure white
corresponds to a completely exposed surface. The rendering
is obtained using OpenGL with Gouraud shading to interpo-
late the ambient values between vertices.
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Figure 5: Reflection map. The resulting map is view-
dependent: unlike the normal vector, the reflection vector
changes with the position of the camera. This effect becomes
more pronounced for large fields of view.

The utility of ambient occlusion is related to the geometric
shape of an object and to the lighting of the original scene;
in the case of uniform illumination or complex geometry, it
plays a predominant role in the final visual appearance of the
object. This is shown by the tests presented in Figure 3 and 4,
which show the MI plots between the original image and the
normals and ambient occlusion renderings of the registered
3D models. In the first example (Figure 3), regarding a por-
tion of a stone portal, a local minimum is clearly visible in
the normals plot. Due to the color and illumination in the
image, ambient occlusion has little influence on the light-
ing of the surface, and the corresponding plot exhibits no
minimum at the aligned position. Conversely, the second ex-
ample (Figure 4) shows that the ambient occlusion plot pro-
duces a strong minimum, while normals plot have shallower
and shifted minima which could cause the minimization al-
gorithm to stop in an incorrect local minima. This is related
to the more complex geometry of the stone capital and uni-
form illumination, which generates local self-shadowing as
the predominant visual effect.

5.5. Reflection Map

The direction of the mirror reflection is another geometric
property which is related to the lighting effects (Figure 5).
We can evaluate the reflection vectors with a simple shader
knowing the viewpoint and the position and normal at each
point of the model. We expect a specular material to ex-
hibit highlights that are statistically related to these vectors,
hence, we analyzed also the contribution of a rendered re-
flection map. Our experiments demonstrated that the reflec-
tion map performs similarly or slightly better than the nor-
mal map, depending on the object’s surface reflectivity. In
Figure 6 using the reflection map provides slightly better re-
sults than using the normals, especially regarding the pres-
ence of a good local minimum. This is related to the strong
specularity of the material of the object.

5.6. Information Integration

The previous analysis underlines that it is possible to find
cases where the performances of a specific type of render-

Figure 6: Reflections vs Normals. (Top) Original image.
(Middle) Normal and reflection maps of the aligned model.
(Bottom) Corresponding MI functions plots.

ing are better than the others. The ideal solution would be
to combine all these contributions in order so as to obtain
good results in the general case. This integration is difficult
for several reasons. The simple sum of the MI contributions
could introduce errors due to the fact that is difficult to nor-
malize MI, and its range of values depends on the object and
on the rendering type. Another problem is that objects made
of specular material could present a weaker ambient occlu-
sion term, due to the reflected light.
One idea could be to detect the highlights and assign a higher
weight to the reflection map in the corresponding parts of the
image, but this can worsen the registration performances for
certain types of objects, or in particular lighting conditions.
For these reasons, the integration of all the contribution is
still under investigation, but in the following we demonstrate
that the combination of ambient and normal could be done
elegantly and providing effective results. Since the ambient
and reflection map are integrated in the same way, for the
reasons mentioned above, we might expect in certain cases
the performance of this measure to be slightly worse than the
ambient and normal combination.

We combine the information provided by the ambient and
normal map linearly into a single image by weighting the
normal map (CN) with the value CA of the ambient occlusion
map (that is normalized between 0.0 and 1.0):

Ccomb = (1−CA)CA +CACN (3)

The resulting rendering strategy integrates the characteris-
tics of both ambient and normal (ambient prevails in darker
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Dogs Bas-relief Capital1 Horse Capital2

Figure 7: The images used for testing (together with 3D scanned models).

Normal Combined of 1st Type Reflection Combined of 2nd Type
(Normal + Ambient) (Reflection + Ambient)

Figure 8: Two examples of combined map.

areas while normals in exposed areas) and should correlate
well with a wider range of cases. The same approach is used
to integrate the ambient with the reflection map. Figure 8
shows two examples of combined maps. In order to test the
proposed renderings map in an extensive way, we applied the
registration algorithm to several cases in order to cover dif-
ferent issues related to automatic alignment, such as object
material, shape, color, complex visible silhouette, and so on.
The test cases are presented in Figure 7.

6. Implementation details

The first step of the alignment algorithm, color-to-grey con-
version of the input image, is performed using the formula:

Y = 0.3R+0.59G+0.11B (4)

This is the CIE luminance as described in the ITU-R Rec-
ommendation BT. 601-4 used in the definition of the NTSC
television standard [Poy03]. This conversion provides sim-
ilar results to other color transformations, such as RGB to
HSL or RGB to HSV. Hence, it has been selected for its sim-
plicity. The rendering cycle is implemented using OpenGL
with a GLSL shader for each rendering type.

The mutual information is calculated on the CPU, by eval-
uating the Equation (1). The joint probability distribution
p(a,b) is estimated directly from the joint histogram, by di-
viding the occurrence of the (a,b) event by the total number
of pixels. A joint histogram with 128×128 bins was used.

The choice of the optimization algorithm depends on

many factors, a very important one is the smoothness of the
function to optimize. Algorithms based on estimating deriv-
atives perform poorly on the non-smooth MI functions, es-
pecially near the minimum. Other algorithms, based on pat-
tern search, require many iterations to converge, due to the
number of dimensions of the problem. Most image regis-
tration techniques try to produce smooth MI function using
techniques such as Parzen-window [Par62] or antialiasing
rendering. We chose a different approach using the recent
optimization algorithm NEWUOA, described in [Pow04].
This algorithm iteratively minimizes a function F(x), x∈Rn,
by approximating it with a quadric Q. A trust region pro-
cedure adjusts the variables looking for the minimum of Q,
while new values of the function improve the approximation.
This algorithm entails tuning just one parameter, RHOBEG,
which is related to the initial trust region (approximatively
1/10th of the expected initial error), which was set to 2.0 in
all of our tests.

7. Experimental Results

In this section we provide several experimental results in or-
der to evaluate the overall performances of the proposed al-
gorithm. First, since many image-geometry registration al-
gorithms are based on silhouette information, we discuss
how it contributes to our framework. Then, we evaluate the
performance of the proposed algorithm by estimating the
range of convergence for each rendering type. Finally, we
give some details about the computational times.
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Silhouette Map MI function plots

Figure 9: Silhouette map performances. The silhouette in-
formation fails to register the model. The use of the internal
visual information is decisive in this case.

7.1. Notes about silhouette information

One of the main remark regarding the proposed algorithm
could be that the main contribution to its convergence comes
from the silhouette information, with a minor role of the
other geometric features. For certain objects, the presence of
an articulated silhouette plays an important role in the con-
vergence range, but it is also important to underline that the
use of the geometric features is fundamental in many cases.
A first demonstration of this statement is shown in Figure 9
where the MI function plot of the image in Figure 6 is ob-
tained using a “silhouette map”. This map is generated by the
rendering cycle assigning black color to the background and
white color to the 3D object. The plot shows no local min-
imum, and this is confirmed by the poor alignment perfor-
mance of the silhouette map (Table 1). Moreover, in certain
cases the silhouette of the object is not present, as in Fig-
ure 3, where the registration is obtained using normal maps.

Finally, the contribution of the silhouette in our frame-
work is achieved without any image pre-processing, while
the state-of-the-art silhouette-based methods often need to
extract the contour of the object in the image to register, or
to acquire the image of the object on a uniform background.

7.2. Overall performances

In order to test the convergence properties of our algorithm
we applied 300 random perturbations of the camera parame-
ters of the aligned images. The parameters were perturbed
simultaneously, the maximum allowable registration errors
with respect to the reference registration was 50 pixels. For
each set of perturbations we measured the percentage of suc-
cess in convergence, defined as a final error of less than 4
pixels to take into account the registration error of the ground
truth as well. This perturbation can be quite severe; for ex-
ample, the amount of angular perturbation associated with
an error of 20 pixels depends on the shape of the model and
the position in the image, but it can be more than 20 degrees
for certain models (e.g. CAPITAL1).

Five real objects were used in the convergence tests (see
Figure 7). The images of the objects came from different

digital cameras. The corresponding 3D models were gener-
ated via 3D scanning using a Konica Minolta VI910 laser
scanner. Such objects cover several cases; CAPITAL1 is a
diffuse object with complex geometry and uniform color,
CAPITAL2 is similar to CAPITAL1 but it is colored, DOGS
and HORSE are two specular objects (HORSE presents an
articulated silhouette w.r.t DOGS) and the BAS-RELIEF is
a diffuse object with no silhouette information at all, since
only a part of the whole object is depicted in the image. Six
rendering types were evaluated: ambient, normal, reflection,
silhouette, ambient+normal and ambient+reflection. Table 1
summarizes the convergence results obtained.

Although the performances of ambient rendering for
the DOGS image is poor the use of an integrated ambi-
ent+normal map gives results that are similar to the nor-
mal ones. This shows that the use of this combined measure
doesn’t affect performances even when ambient or normal
maps fail. In this case the role of the silhouette is marginal, as
apparent in Figure 9. But even with a low contribution of sil-
houette information, the convergence rate is good, and gives
satisfying results even with perturbations of 30 pixels. In
the case of the BAS-RELIEF, the ambient performed poorly
due to a local minimum close to the right one which influ-
ences the algorithm. On the other hand, the other applicable
renderings (even the combined ones) result in good perfor-
mances. The CAPITAL1 test is another example where, even
though the silhouette fails, the other renderings gave very
good results. On the contrary, the results obtained with the
HORSE test are probably positively influenced by the com-
plex silhouette of the model.
Finally, the CAPITAL2 test showed very good performances
for the ambient rendering, while the other individual contri-
butions are not reliable. In this case too, the performances of
the combined renderings were very similar to the best single
one.

In conclusion, the rate of convergence obtained by the
combined renderings was generally very good: the quality of
results was always very similar to the best single rendering
approach. This indicate that the combined renderings could
be an effective solution to for registering images to 3D mod-
els in a variety of different cases in terms of geometry, ma-
terial and lighting conditions. Moreover, good percentages
of convergence were obtained with perturbations of 50 pix-
els or more, which is an important value considering that the
viewport resolution used was 800×600.

7.3. Computational time

The registration algorithm has been tested on a Intel Core
Duo 2300Mhz with 4GB of RAM and an NVidia 8600 GTS
512MB. The convergence is usually reached in around 100
iterations at 25fps, requiring about 4 seconds, with a 1 mil-
lion triangle model and a viewport of 800×600 pixels. A
GPU implementation could improve performance by com-
puting the histogram directly on the graphics hardware, thus
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Convergence (% of success)

Test Map
Initial registration errors (pixels)
10 20 30 40 50

DOGS

Ambient 33 23 4 0 0
Normal 100 94 57 19 18

Reflection 100 100 68 5 15
Silhouette 0 4 0 0 0

Amb+Norm 100 85 52 13 7
Amb+Refl 100 76 51 5 0

BAS-RELIEF

Ambient 0 0 0 0 0
Normal 100 100 100 70 53

Reflection 100 100 100 95 65
Silhouette * * * * *

Amb+Norm 100 100 100 94 82
Amb+Refl 100 100 100 95 94

CAPITAL1

Ambient 100 100 100 100 100
Normal 100 100 100 84 100

Reflection 100 100 81 73 50
Silhouette 0 10 23 0 9

Amb+Norm 100 100 100 89 90
Amb+Refl 100 100 100 100 81

HORSE

Ambient 100 100 91 50 20
Normal 100 100 100 78 66

Reflection 100 100 100 83 85
Silhouette 100 100 90 75 71

Amb+Norm 100 100 100 78 62
Amb+Refl 100 100 95 92 66

CAPITAL2

Ambient 100 100 100 100 100
Normal 0 11 11 9 11

Reflection 33 25 15 9 6
Silhouette 0 0 0 0 0

Amb+Norm 100 93 89 54 76
Amb+Refl 100 94 94 66 52

Table 1: Convergence tests.

avoiding having to transfer data to the CPU. A GPU calcu-
lation of mutual information is given in [SB07].

8. Conclusions and future work

In this paper we have analyzed the potentials of illumination-
related geometric properties in a mutual information frame-
work for image-geometry registration. The presented study
demonstrates that different sources of information, such as
normals, ambient occlusion, and reflection directions can be
usefully employed for 2D/3D registration. In particular, we
have proposed a way to combine the normal map with the
ambient occlusion map to achieve a robust fine alignment
algorithm, regardless of the color, material and lighting en-
vironment of the object.
Very good results were obtained, as shown in the experi-
mental results section: for perturbations of up to 50 pixels
the convergence was obtained within few seconds. This al-
gorithm could be a reliable component in the context of a
completely automatic global registration algorithm. Our on-
going preliminary results in this direction are encouraging.

Several interesting research directions can be pointed out.
In particular, a better integration of the illumination-related
geometric properties to improve the applicability of the algo-
rithm, the correlation analysis of other renderings (e.g. pre-
calculated radiosity map), the use of multi-resolution and
mutual information GPU implementation in order to speed
up the algorithm.
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