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Abstract In this paper we propose a novel technique to perform real-time rendering

of translucent inhomogeneous materials, one of the most well known problems of Com-

puter Graphics. The developed technique is based on an adaptive volumetric point

sampling, done in a preprocessing stage, which associates to each sample the optical

depth for a predefined set of directions. This information is then used by a rendering

algorithm that combines the object’s surface rasterization with a ray tracing algorithm,

implemented on the graphics processor, to compose the final image. This approach al-

lows us to simulate light scattering phenomena for inhomogeneous isotropic materials

in real time with an arbitrary number of light sources. We tested our algorithm by

comparing the produced images with the result of ray tracing and showed that the

technique is effective.

1 Introduction

Realistic visualization is one of the most important goals in Computer Graphics re-

search. Over the last twenty years, rendering engines have become capable of producing

images that are nearly indistinguishable from real life photographs. These results, how-

ever, often come at the expense of hours of computations. In recent years, since the

advent of cheap, powerful, and now ubiquitous, dedicated graphic devices, much atten-

tion has been devoted on replicating the same effects in real time on end-user machines.

Although convincing renderings of objects have been produced using graphic devices,

many complex lighting effects are still subject of intense study. In particular, various

types of common materials, such as wax, marble, skin, just to name a few, exhibit

peculiar lighting effects commonly known as subsurface scattering. In these materials,
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in fact, the light is not only reflected by the surface of the object, but it partially

penetrates underneath and changes direction multiple times before being absorbed or

leaving the object. Reproducing these interactions in real-time is a challenging task. In

fact, in order to determine the correct illumination of a surface point, it is necessary

to determine all paths taken by photons under the surface, and evaluate how material

properties attenuate light intensity along these paths.

Many models have been proposed to simplify scattering phenomena. One of these

simplifications consists in separately studying lighting effects when either only one or

an undetermined high number of scattering event is assumed to take place. Another

common assumption is to consider materials as isotropic. This last assumption has

allowed, in recent years, the derivation of analytical formulae that permit the compu-

tation of subsurface scattering without explicitly determining the path taken by light

rays. However, if the material is assumed to be inhomogeneous, analytic formulations

result impossible and precomputing certain quantities seems to be the only solution to

achieve interactivity. Precomputation, on the other hand, requires that some object or

scene attributes remain static during run-time, thus limiting the usefulness of the algo-

rithms. For this reason, Computer Graphics research has striven to reduce the number

of limitations imposed by precomputation techniques, and this work is no exception.

We propose a compact and efficient representation of inhomogeneous material prop-

erties in order to compute scattering effects at run time with a single pass algorithm.

Our algorithm proceeds by sampling the volume and computing, for each sample, the

exponential attenuation of light due to optical density and depth in a set of uniformly

distributed directions. This information is stored within the sample using spherical

harmonics compression and used at rendering time to compute the percentage of light

scattered towards the viewer. The rendering consists of displaying the boundary of the

object as a normal surface mesh accounting only for purely superficial effects and then

adding the contribution of the volumetric sampling.

The contribution of this paper is twofold:

– An efficient, single-pass algorithm for real time rendering of single scattering effects

which completely decouples scattering phenomena from superficial light reflection

computations, and that can be well integrated in standard rendering pipelines.

– A strategy for an adaptive opacity-dependent point sampling of the volume enclosed

by a surface that is able to capture and represent the internal appearance of the

object.

The rest of the paper is structured as follows. In Section 2 we will review the

current state of the art on methods for real time rendering of scattering phenomena,

with particular attention to the methods that have mostly influenced our work. In

Section 3 we will present our technique in detail, in Section 5 we will discuss some

results obtained by applying our approach and then in Chapter 6 future directions for

this work will be analyzed.

2 Related work

Although many offline methods has been developed to accurately render scattering

phenomena [4], interactive or real-time methods developed so far still suffer from vari-

ous limitations. In the context of offline rendering, the volume rendering equation has

been often solved with Stochastic Monte Carlo methods or Numerical Simulations and
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Finite element methods. Monte Carlo Methods [13,15,21,30] have slow convergence and

despite many acceleration and precomputation techniques, they are still unusable for

interactive rendering [17]. Radiosity methods and numerical simulation [8,18,26,27,31],

which do not employ randomization, require instead the precomputation of an elevated

number of factors, thus requiring a significant amount of space. Nonetheless, these

methods do not achieve the speed needed for real-time rendering, although significant

improvements have been brought by the advent of graphics hardware programmabil-

ity [3].

2.1 Analytic Single Scattering Solutions

The quest for an analytic formulation of the single scattering problem can be dated back

to Blinn [2]. Hanrahan and Krueger [9] derived analytic expressions for layered surfaces

by using linear transport theory, while Narashiman and Nayar [24] found a formula for

the scattering of isotropic lights in spherical mediums. More recently Venceslas et al. [1]

found a more general polynomial approximation that yields plausible results. Sun et

al. [32] built a method based on an explicit, exact, analytic solution of the single

scattering integral for isotropic point lights in homogeneous participating media. Zhou

et al. [37] relaxed the homogeneous material restriction, introducing Gaussian RBFs

to model variations in material density, a common representation for sparse media like

clouds [7,11]. A recent paper on Ray Marching by Zhou [36] follows his previous work

in using Gaussian RBFs to define medium density but adds a high-resolution residual

field to incorporate fine media details present in smoke.

2.2 Precomputation

Many of the presented approaches can be significantly speeded-up by precomputating

some portion of the rendering process. Premože et al. [25] precomputed incoming light

at every point in a scalar field and used the complex path integration mathematics

to approximate forward scattering. Hegeman et al. [12] used the same mathematical

framework incorporating the same ideas for volume rendering of translucent materials

by Kniss et al. [19, 20]. In their seminal papers, Sloan et al. [28, 29] used a Spherical

Harmonics basis to encode, for each vertex, a transfer function that maps incoming

illumination to “transferred” radiance. By encoding distant, low frequency illumination

in the same basis as the surface transfer function, surface rendering is reduced to a

vector matrix-multiplication.

2.3 Dipole

The work by Stam [31] introduced the idea of modeling multiple subsurface scattering

as a diffusion process. This model can be reasonably applied, to homogeneous materials

only, because light distribution in highly scattering media tends to become isotropic.

Jensen et al. [16] introduced a simplified model that, following such approximation,

further simplifies light transport by using two virtual lights for each incoming ray. This

method has been accelerated by smart precomputation techniques [10,14,22,23,34]. In

particular, Dachsbacher and Stamminger [6], adapted the common shadow mapping
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technique to use it with the dipole approximation, introducing the Translucent Shadow

Maps.

An assumption commonly made by the existing approaches is that if an object is

rigid than it is sufficient to model its boundary or at most adding a few internally

layered surfaces, relying on the fact that the only significant scattering events happen

just under the external surface. This is true most of the time but there are types of

objects where the light interaction is dominated by scattering events well inside the

volume, even if they have partially opaque surfaces. This is the case, for example, a

jar of marmalade or a jellyfish. Walter et al. [33] proposed an algorithm for interactive

rendering for the special case of objects enclosed in a refractive media, where deviation

of lights entering the media plays the bigger role in the final image. Their method

is based on a half-vector formulation of the problem which enable a fast iterative

algorithm to find, for each point inside the volume and a light source, the points on

the surface where the incoming rays are deviated to said point. Very recently Wang et

al. [35] proposed a technique to interactively render translucent objects, by building

a tetraehdralization of the volume in a preprocessing step and using the center of

tetrahedra as nodes of a quad connected graph which is stored as a texture and used

to solve the diffusion equation. Thanks to this parametrization, their algorithm also

work, to some extent, also for deformable objects.

3 Rendering Single Scattering

Our approach consists of encoding the scattering properties of the object in a carefully

chosen set of sampling points placed inside the volume, as shown in Figure 1. Each

sample represents a small spherical region of volume for which it stores a direction-

dependent optical depth function. At rendering time, the scattering term is integrated

along each view ray by rendering the spheres and performing the integration in a

fragment shader as in [37]. The substantial difference with their approach (and similar

ones for participating media) is that, thanks to the precomputation of the optical

depth, we do not need to do a rendering pass for each light in order to accumulate the

irradiance on the samples.

3.1 Single Scattering from Directional Optical Depth.

Below we show how to approximate the volume rendering equation in terms of a set of

sampling points and associated direction-dependent optical depth function.

Ignoring emissive materials, the volume rendering equation can be written as:

∇ωL(x,ω) =

−σt(x)L(x,ω)
| {z }

extinction

+ σs(x)

Z

ξ

p(ω, ξ)L(x, ξ) dΩ(ξ)

| {z }

in-scattering

(1)

where L(x,ω) is the radiance at point x towards direction ω, σs(x) and σt(x) are the

scattering and extinction coefficients, respectively, and p is the phase function.
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Fig. 1 An overview image of our algorithm: the direction-dependent optical depth is sampled
and stored in a set of locations, and it is used at rendering to compute in a single pass the
scattering of light.

The volumes with which we are dealing are defined by an enclosing surface S. Lights

cannot be placed inside the volume; therefore, as surface points are the only receivers

of direct, unattenuated lighting, we will treat them as the sole emitters of light (Li)

within the volume.

Solving the differential equation 1 for the unknown function L(x,ω), we obtain an

equation in the form of an integral along a ray from x to y, two surface points along

viewing direction ω.

L(ss)(x,ω) = e
−τ̂(x,−ω)

FtLi(y,ω)
| {z }

attenuated direct light

+ (2)

Z y

x

e
−τ̂(x′,ω)

σs(x
′)

Z

ξ

p(ω, ξ)L(x′, ξ) dΩ(ξ) dx′

| {z }

in-scattered lighting

where

e
−τ̂(x,−ω) = τ (x, y) =

Z y

x

σt(x
′)dx′

y being the first point of the surface encountered by a ray leaving from x towards

direction ω.

The first term of equation 2 describes how surface point y, receiving light from outside

the mesh, retransmits a certain quantity Ft, determined by Fresnel’s law, towards

direction ω inside the volume. This attenuated direct lighting is a visible phenomenon

only when the viewer is directly facing the light, and as we will limit the discussion

from now on to point light sources, i.e. invisible sources, we will drop the first term of

the above equation and concentrate on the second.
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Fig. 2 Single Scattering of Light The contribution of single scattering of light at point
x in direction ω is computed by integrating, for each point x

′ along the ray from x to y, the
attenuated amount of light received from direction ξ and retransmitted towards ω.

L(ss)(x,ω) =

Z y

x

e
−τ̂(x′,ω)

| {z }

attenuation factor

σs(x
′)

| {z }

scattering
Z

ξ

p(ω, ξ)
| {z }

phase function

L(x′, ξ)
| {z }

incoming light

dΩ(ξ) dx′

In this equation, term L(x′, ξ) is still left unspecified. Light arriving at point x′,

located deeply inside the volume, could be recursively determined by the very same

equation. But, if we assume that only one scattering event can occur, then L(x′, ξ) is

only the attenuated direct lighting coming from the surface, therefore we set:

L(x′, ξ) = e
−τ̂(x′,ξ)

FtLi(x
′
, ξ)

The total amount of light that exits at point x towards direction ω is given by the

sum of the reflected radiance and the scattered radiance, i.e.:

Radiance at point x towards ω is therefore given by:

L(o)(x,ω)
| {z }

total outgoing light

= L(ss)(x,ω)
| {z }

single scattered light

+ (1 − Ft)L(r)(x,ω)
| {z }

reflected light

The term L(r)(x,ω), in the context of our on-line rendering application, will be

calculated using one of the popular shading models used by OpenGL.

For the sake of simplicity, we assume that scattering is isotropic, hence p(ω, ξ) = k;

moreover, we will refer to the integrand function as f(x′),

L(ss)(x,ω) =

Z y

x

e
−τ̂(x′,ω)

σs(x
′)k

Z

ξ

L(x′, ξ) dΩ(ξ)

| {z }

f(x′)

dx
′

We would like now to evaluate f(x′) only at discrete points within the volume and

interpolate them when integrating along a ray. To this end, we will properly choose
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a set of sampling points B = {bi} and associate to each sample a Gaussian radial

basis function as in [37] Γ = {γi(x)}, where γi(x) = eai||x−bi||. Then we can use the

following approximation:

Z y

x

f(x′) dx′ ≈

Z y

x

f(x′)
X

i

γi(x
′) dx′ =

X

i

Z y

x

f(x′)γi(x
′) dx′

It is intuitive that, if Gaussians have small radii of influence with respect to the

dimensions of the surface, then f(x′), whose value strongly depends on the distance

from the surface, will have little variance inside said radius. Therefore, we can assume

f(x′) to be constant and take its value at point bi.

X

i

Z y

x

f(x′)γi(x
′) dx ≈

X

i

f(bi)

Z y

x

γi(x
′) dx′

L(ss)(x,ω) ≈

P

i∈Γ kσs(bi)e
−τ̂(bi,ω)

Z

ξ

e
−τ̂(bi,ξ)

FtL(bi, ξ)dΩ(ξ)

| {z }

f(bi)

R y
x
γi(x

′) dx′

By encoding the exponential attenuation due to the optical depth of each Gaussian

center with Spherical Harmonics ψi, we can write down the formula used in our on-line

computations:

L(ss)(x,ω) ≈
X

i∈Γ

kσs(bi)ψi(ω)
| {z }

constant per sample
Z

ξ

ψi(ξ)FtL(bi,ω) dΩ(ξ)

| {z }

function of lights

Z y

x

γi(x
′) dx′

| {z }

function of view ray

(3)

This equation expresses the radiance exiting at point x towards direction ω as a sum

of three-term products where the first term is constant per sample, the second is a

function of incoming light and the third is a function of the sole viewing ray. If the

light is arriving only from a finite number of directions D, the first integral reduces to

a sum of D terms where each term requires the evaluation of a spherical harmonic. If

lighting is defined over the whole sphere of directions, like when environment maps are

used, then by projecting it over the Spherical Harmonics basis the above integral will

reduce to a simple dot product of two vectors of coefficients.
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Fig. 3 Rendering Integration along the viewing ray and clipping against the external bound-
ary of the object.

3.2 Rendering algorithm

The rendering algorithm consists of two steps. In the first step the input mesh is

rendered, according to a simple surface lighting model (in our tests we used Phong

lighting and shading but others are seamless integrable). The depth buffer produced

by the rendering is then used to clip the region covered by the radial basis functions

of the volume sampling points.

In the second step the term L(ss)(x,ω) of equation 3 is computed by rasterizing

all the balls corresponding to the samples and thus activating the fragment shaders

that perform the necessary computation for each ray. Figure 3 shows a scheme with a

single sphere and three rays. For each ray the fragment program evaluates the integral
R y

x
γi(x

′) dx′ in the equation 3 between x and y, where x is the maximum between the

depth value stored in the buffer for the fragment and the first intersection with the

ball and y is the second intersection of the ray with the ball and as. Please notice that

if x > y, as for the ray ω2, it means the portion of ray inside the ball is outside the

boundary and the corresponding contribution to the line integral is 0. The primary goal

of the method is to avoid fuzzy borders by ensuring that the silohuette of the object is

determined only by the mesh boundary. Figure 3 shows the difference between using or

not clipping on a close up of the gargoyle model. It can be argued that his clipping is

not done against the whole boundary but only against the part visible from the viewer,

i.e. the line integral is performed also in those parts of ray exiting from the object but

still inside some ball, but the effect on the final result is negligible.

4 Point Sampling Direction-Dependent Optical Depth.

The core of the preprocessing stage revolves around finding good positions for the

samples inside the volume. The sampling algorithm is critical not only to minimize

memory occupation and rendering time, but also to ensure that the assumptions made

in our derivation are valid.
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Fig. 4 Comparison of a close up of the Gargoyle model when clipping is used (left) or not
used (right).

Fig. 5 For each point the shape of the direction-dependent optical depth and its first moment
are shown (rendered with blue contours and red arrows, respectively). The gray level represent
the divergence of this moment, which will be higher close to the corners and in general where
the surface change abruptly.

4.1 A sound heuristic for sampling density

When sampling a scalar field, we can place the samples with a density dependent on the

variation of the scalar field. In our case, the sampled value is the direction-dependent

optical depth function ψi(ω) = e−τ̂(bi,ω). However, as shown below, we can derive a

meaningful scalar value for the density of our sampling from the function ψi.

Since ψi decreases exponentially with the optical depth τ̂(bi,ω), it follows that it

will be strongly peaked at directions corresponding to minimal τ̂ (bi,ω), as exemplified
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(a) (b) (c) (d)

Fig. 6 Steps of the sampling algorithm: a section of the volume. (a) original mesh bound-
ary and density (the density is constant in this example) (b) optical depth for the direction
orthogonal to the section (c) absolute value of the divergence ρ(x) = |∇ · T(x)| (d) final
samples.

in Figure 5. In the limit case, the function ψi(ω) defined at a point x placed at an

infinitesimal distance beneath the surface, will present an extreme peak in the same

direction as the normal to the surface.

Since the function is strongly peaked, we can take its first moment as a reliable indicator

of its shape and behavior:

T(x) =

Z

e
−τ̂(x,ω) · ω dΩ(ω) (4)

Function T(x) defines a vector field whose values point towards the mean direc-

tion of minimum optical distance at each point. Moreover, the norm of these vectors,

||T(x)||2 gives us a weighted mean of the attenuation factor over all directions. The

sampling density needs to reflect changes in shape of e−τ̂(x,ω) with respect to x, there-

fore the quantity that is more apt to estimate optimal density is the absolute value of

the divergence of the aforementioned vector field. In fact, in areas where the principal

direction of light changes rapidly, e.g. at corners, divergence will be higher; similarly in

areas where the magnitude of the principal direction decreases rapidly, this value will

be high as well, e.g. near the surface, exactly where we expect scattering phenomena

to be more pronounced. Therefore we set the sampling density as: ρ(x) = |∇ · T(x)|

4.2 Efficient sampling of direction-dependent optical depth

Now that we have the function ρ(x) which tells us the sampling density we want to dis-

tribute samples accordingly and in a efficient manner. The sampling algorithm takes

a watertight mesh and a regular sampling of the material density inside the mesh

(Figure 6.(a)), and returns a set of samples and relative SPH compressed direction

dependent optical depth (Figure 6.(d)). It consists of 5 steps, detailed in the following:

Compute Direction Dependent Optical Depth: ψi(ω)

The optical depth is sampled for a fixed number n of directions, which is parameter of

the algorihm. For each direction a set of parallel rays are casted towards the objects

as shown in Figure 6.(b) for a single direction. Each ray is associated with a value of

optical depth, which is initialized to 0 and incremented for each voxel crossed by the

ray by the amount l d, where l is the lenght of portion of ray inside the voxel and d is

the density of the material associated with the voxel. At the end of this step we have,
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for each voxel, its optical depth for each of the n directions.

Compute first moment of optical depth T(x)

The first moment is easily computed for each voxel as the average of optical depth over

all the n directions.

Compute divergence of first moment ρ(x) = |∇ · T(x)|

The divergence is computed by finite difference operator over neighbors voxels (Fig-

ure 6.(c)).

Sampling the volume

After the estimation of the desired density we want to actually compute a set of Ns

sample points whose density agree with ρ(x) and that are spatially well distributed.

Poisson Disks sampling [5] generates a set of points such that every point has a sur-

rounding empty space of radius r (in other words there are not two points closer than

r). One of the classical techniques for generating such distribution is the dart throwing

approach, simple to be implemented but with the limitation that is difficult to get very

closely packed Poisson Disk distributions. In particular we use a weighted Poisson Disk

Sampling where the empty-space radius varies according to ρ(x) as follows. Let r be a

base radius computed as 3

q

V
2Ns

, assuming that we are not targeting a tight packing.

We define δ = 1
2r + 3

2
ρmax−ρmin

ρ−ρmin
r, i.e. allow δ to vary between r

2 and 2r. Then, the

value of the ray for a given voxel is obtained by mapping the value 1
ρ between r

2 and 2∗r.

Compute SH

Finally, for each sample, the direction dependent optical depth is compressed by means

of spherical harmonics.

5 Results and Discussion.

We implemented our algorithm in C++ and OpenGL, using OpenCL for the prepro-

cessing phase and and GLSL for the shader programs in the rendering phase. All the

tests were run on a Core 2 Duo @ 3.0 GHz 4GB RAM equipped with Nvidia GeForce

9800 GX2 512MB graphics card.

5.1 Comparison with ground truth

Our method relies on an approximation scheme configurable with a three parameters:

the number of samples, the number of directions and the number of SPH coefficients.

We do not give a formal proof of the bound on the error committed as a function of

these parameters, but we can empirically show their influence by comparing images

generated with our algorithm with the ground truth image obtained by ray tracing the

original density field and integrating single scattering along the rays. Note that in this

context “ground truth” is only referred to the single scattered contribution, which is

the focus of this work, therefore the other phenomema are ignored in producing the

image.

The first column of Table 1 shows the ground truth image for a view of a homo-

geneous sphere, while the next 3 columns show images taken with our method at an
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ground truth 32 dir. 49395 samples 128 dir. 53354 samples 512 dir. 55237 samples

Table 1 Dependency of the approximation on the number of sampling directions. The top
image is the ground truth, on the left column our approximationa and on the right the difference
with the ground truth. Original pixels values are inverted compressed in a darker range to make
the result visible when printing.

increasing number of sampling directions (upper row) and the pixel by pixel difference

with the ground truth image (lower row). Note that the number of final sampling points

increases with the number of directions. This is due to the fact that more directions

capture more features and confirms that the divergence criterion adopted to sample

the direction dependent optical depth is effective.

The Figure 7 shows two artificial examples. In the first example we place a torus

inside a cube as shown in Figure 7.a and process the dataset considering the cube as

the boundary of a translucent object containing an opaque part (the torus). Figure 7.b

shows the result of our rendering algorithm putting behind the cube a single white

light. Note that the geometric description of the torus is no more part of the dataset,

but the sampling of the direction dependent optical depth captures its effect on the

scattering of light inside the volume. A similar example is shown in Figure 7.c, where

two lights (a white and a red one) are placed roughly symmetrically about the cube.

Figure 7.d shows a dataset composed of a cube which volume is procedurally defined

as a set of layers with two different density values, visible in the rendering. Figure8

shows few examples of rendering objects with our algorithm. In all cases

5.2 Efficiency

The preprocessing time of our algorithm is dominated by the time to compute the di-

rectional dependent depth opacity, which in turn is linearly proportional to the number

of directions. Table 2 show the preprocessing times decomposed for the steps described

in Section 4. The number of frames per time is linearly proportional to the number of

samples used, and in all our experiments with a single light is constantly over 60 for a

number of samples ranging from 8k to 11k.

Table 3 shows that the fps decrease is only sub-linearly the increasing of the num-

ber of lights. This results is obtained because, thanks to the precomputation of the

direction-dependent optical depth, adding a light only costs one more evaluation of

the spherical harmonics. Table 4 shows the linear relation between rendering time and
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(a) (b)

(c) (d)

Fig. 7 (a) a cube with a torus inside. The cube is taken as external boundary of a translucent
object and the torus as an opaque blocker. (b-c) Two renderings that show how the effect of
the blocker is captured by the sampling. (d) a procedural volume with two values of density
arranges in parallel layers.

DDOD Div PDS SPH coeff
43.02 1.76 15.39 28.92
168 1.71 17.64 112
664 1.78 19.16 446

Table 2 Construction times (in seconds) for the gargoyle model varying the number of
directions for constructing the direction-dependent optical depth. DDOD: time for direction
dependent optical depth computation; Div time for computing the divergence; PDS: time for
the Poisson Disk Sampling algorithm; SPH: time for the spherical harmonic coefficients.

n. lights 2 4 7 8
fps 62 51 42 38

Table 3 FPS when augmenting the number of lights in a scene with 58297 samples with 25
SPH coefficients on a 800 × 800 viewport.

number of samples. It can be seen that the algorithm produces over 30 FPS with 100K

samples.
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Fig. 8 Rendering of translucent objects: the feline statue (10321 samples), the gargolyle
model (18385), the botjio (22722 samples) and a jellyfish (12227 samples), all rendered using
25 SPH coefficients. In all cases the FPS is constantly above 120.

n. samples 25000 50001 107833
fps 117 55 31

Table 4 FPS in relation to the number of sample on a 800 × 800 viewport.

5.3 Discussion

As in [36,37] our approach represents the volume with radial basis functions to compute

scattering effects. The main difference is that in our algorithm the samples do not

store density but a direction dependent optical depth. In this way the ray marching

can be done without sorting the sphere front-to-back and so avoiding the overlinear

cost of sorting algorithm and allowing us to use a much greater number of particles.

As a consequence, we have a reduced approximation error which allows us to obtain

satisfying visual results even without applying compensation for residual errors, and to

sustain a higher fps. Clearly this is possible because the object is assumed to be static

and the direction dependent optical depth does not changes over time.



15

6 Conclusions and future work

In this paper we have presented as real time rendering algorithm capable to reproduce

single scattering inside inhomogeneous materials. We derived a formulation of the vol-

ume rendering equation in terms of a volumetric sampling of the direction-dependent

optical depth, enabling the precomputation of the single scattering behavior as a func-

tion of incoming light. In addition, we exploited the behavior of such function to define

a sound heuristic to define an adaptive sampling density and provided a efficient strat-

egy to place the samples inside the model. Among the benefits of our approach, its

running time shows little dependency on the number of lights and only a linear depen-

dency on the number of samples used, since they do not need to be sorted at run time.

Since it requires a precomputation step, our approach cannot be used as it is for

animate objects. However, we envision a future direction of work in supporting low

degree deformations, which can be done by deriving local rigid transformations from

the deformation and rotating the SPH of the samples accordingly.

The Fresnel deviation effects have not been entirely considered in this model. More

precisely, the deviation of the rays of light penetrating the object can be easily consid-

ered during the construction, while the deviation of exiting rays is more complicated

and it is matter of ongoing work. In order to use our model in a practical setting,

we would also like to derive a multiresolution version, so that when it is far from the

viewer, less samples and/or samples with smaller SPH are used.
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