
Visualization Methods for Molecular Studies on the Web Platform

Marco Callieri∗

Visual Computing Lab
ISTI-CNR

Raluca Mihaela Andrei†

Scuola Normale Superiore, Pisa
Scientific Visualization Unit

IFC-CNR

Marco Di Benedetto‡

Visual Computing Lab
ISTI-CNR

Monica Zoppè§

Scientific Visualization Unit
IFC-CNR

Roberto Scopigno¶

Visual Computing Lab
ISTI-CNR

Figure 1: Standard representation of molecular surface properties using color ramps and field lines (leftmost), the same properties drawn
using complex shading techniques (center) and the electrical interaction of two proteins (rightmost), rendered on a Web Page by using
SpiderGL and WebGL.

Abstract

This work presents a technical solution for the creation of visu-
alization schemes for biological data on the web platform. The
proposed technology tries to overcome the standard approach of
molecular/biochemical visualization tools, which generally provide
a fixed set of visualization methods. This goal is reached by exploit-
ing the capabilities of the WebGL API and the high level objects of
the SpiderGL library, these features will give the users the possibil-
ity to implement an arbitrary visualization scheme, while keeping
simple the implementation process. To better explain the philos-
ophy and capabilities of this technology, we will describe the im-
plementation of the web version of a specific visualization method,
demonstrating how it can deal with both the requirements of sci-
entific rigor in manipulating the data and the necessity to produce
flexible and appealing rendering styles.

CR Categories: I.3.2 [Graphics Systems]: Distributed/network
graphics—; J.3 [Life and Medical Sciences]: Biology and genetics
—;

Keywords: Web platform,Molecular Biology, Molecular Surface
Visualization, Protein Structure, physico-chemical properties, In-
teractive 3D, WebGL

∗e-mail: callieri@isti.cnr.it
†e-mail: r.andrei@sns.it
‡e-mail: dibenedetto@isti.cnr.it
§e-mail: mzoppe@ifc.cnr.it
¶e-mail: scopigno@isti.cnr.it

1 Introduction

Interactive visualization of molecular structures and physico-
chemical data is an important and interesting research field which
span from the Computer Graphics world to the Biological and
Molecular studies. The amount of complex structures that is avail-
able through public repositories and the level of detail of biochem-
ical datasets which can be manipulated by physico-chemical tools
has greatly increased in the last years, making it essential to employ
dedicated visualization techniques to make an effective use of these
data. While it may be easy to draw even large molecular datasets as
a series of atoms (Van der Waals spheres) using simple rendering
methods based on impostors and other tricks, the precise rendering
of a high resolution molecular surface involves the management of
more complex geometry. Furthermore, when it is necessary to rep-
resent interaction between different molecules or to introduce the
rendering of further 3D elements and data layers (as in the examples
of Figure 1), the required computational and rendering capabilities
do increase significantly.

A previous work in the field of visualization of molecular struc-
tures, QuteMol [Tarini et al. 2006], has shown that, by using ad-
vanced shading techniques, it is much easier to convey the infor-
mation regarding the geometry and structure of the molecule. We
believe the same reasoning may also be applied to the visualization
of other physico-chemical data: by using custom shading and ren-
dering techniques the same improvement in clarity and expressive-
ness can be attained. This is however quite difficult at the moment,

since it is rarely possible to finely control the rendering pipeline and
shading process inside existing visualization tools, especially when
working on on-line platforms. Here are some possible scenarios we
are considering:

• a research group interested in proposing a new visualization
method may want to publish a web page which shows an in-
teractive version of such visualization;

• a public repository of biological data structures may want to
let its users view the available data using a custom shading,
designed to effectively show the characteristics of the pro-
vided information;

• an educational-oriented entity may want to present biologi-
cal phenomena to a large public, possibly including a non-
specialist audience, by using visualization method that are not
just scientifically accurate, but also visually pleasant.

These three scenarios exemplify the need for advanced visualiza-
tion methods, but also for the use of the web platform. Pervasive
and easy to access, the web platform is becoming more and more
important for sharing data, processing methods and visualization
techniques. It is easy to foresee that the research community work-
ing on visualization for cellular and molecular biology will find in
the web platform the ideal media for the purposes of research, edu-
cation and science divulgation.

Up to now, the capabilities of web browsers to efficiently manip-
ulate and display 3D content have been very limited. The task
of putting online three-dimensional data has exploited the use of
commercial or custom browsers plugins, and has been character-
ized by a series of problems, like low portability (each plugin/ex-
tension would work only on a subset of browsers and operating
systems), scarce flexibility (in most cases the visualization plug-
ins offered no way to configure the drawing pipeline or add special
rendering modes) and poor performance (the different software lay-
ers of network, O.S., sandbox and plugin introduced lag and com-
putational overhead, separating too much the rendering from the
hardware layer). A suitable solution for this problem may reside
in the upcoming standard of WebGL [Group 2009b], which is an
API specification which defines the web-oriented analogous of the
OpenGL API. The most interesting feature of this API is that it is
implemented directly inside the browser, with direct control over
the graphics hardware. This will help overcoming the compatibil-
ity problems and result in a much more efficient and performing
platform. Deriving from the specifications of OpenGL-ES, WebGL
provides a completely customizable rendering pipeline and the en-
tire shading process is controlled through hardware-level GLSL
shaders. This shader-based nature of WebGL is perfectly suited
to cope with the need of creating a custom visualization scheme.
Direct access to the hardware layer means not only better perfor-
mances, but also the possibility to exploit the full repertoire of tech-
niques and experience accumulated in years of computer graphics
research.

Of course, WebGL alone is not enough to answer the needs of peo-
ple interested in biochemical visualization (which are likely not ex-
perts in graphical programming); following the design philosophy
of OpenGL, WebGL is a very low-level API which requires a good
knowledge of computer graphics techniques and coding skills. It is
therefore necessary, to ease the use of this technology, to introduce
a library able to wrap the most low level function, while giving the
user the ability to dive into implementation details, when needed.
As the WebGL standard is taking shape, different wrapping libraries
are appearing on the web [DeLillo 2009; Brunt 2010; Kay 2009];
one of these libraries, SpiderGL [Di Benedetto 2010], seems to pro-
vide the right balance between the ease of use of the higher level
functions and the possibility to fully control the rendering pipeline.

We believe that the use of WebGL through the SpiderGL library
will prove to be a very powerful platform to implement visualiza-
tion methods on the web for the molecular biology and physico-
chemical research community.

We review in Section 2 some of the previous work in the field of
both molecular visualization and on-line publishing of 3D content.
Then, in Section 3, we introduce the basic ideas of the proposed
technology describing its main philosophy and by presenting the
core library used. Finally, as an example of the use of this technol-
ogy, we show in Section 4 how a specific visualization method has
been adapted to the web platform.

2 Previous Work

2.1 Molecular visualization Off-Line and On-Line

The solution of the 3D structure of myoglobin in 1958 by
Kendrew [Kendrew et al. 1958] marked the beginning of the new
era of protein structural biology. Since then, a large number of pro-
tein structures have been solved and today the Protein Data Bank
counts over 60.000 entries [Berman et al. 2003]. With the availabil-
ity of all these data and the advance of computer graphics technolo-
gies, many research groups have developed tools for the manipu-
lation and visualization of 3D structures such as VMD [Humphrey
et al. 1996], SPDBViewer [Guex and Peitsch 1997], Chimera [Pet-
tersen et al. 2004] and PyMOL [Delano 2002]. Beside working on
the atomic structure, most programs can nowadays also calculate
surface features such as electrostatic potential (using, for example,
tools like APBS [Baker et al. 2001] or DelPhi [Rocchia et al. 2002])
and hydropathy [Kyte and Doolittle 1982].

In addition to the many standalone visualization tools, there are also
web viewers especially designed for molecular structures, such as
Jmol [jmo 2002] and MDL Chime, which represent a simple way
to visualize molecules directly on browser. MDL Chime, used by
the Protein Explorer website was gradually phased out in favor of
Jmol, which is nowadays the most used plugin for molecular vi-
sualization, used by websites such as Proteopedia and RCSB PDB
Protein Data Bank.

Following the advance of techniques for the generation of CG
movies, in the last few years many different groups focused on
the creation of animated movies depicting biological molecules and
cellular processes. The movies range from the simple representa-
tions of the mechanical functioning of a single protein, to complex
events involving many subjects. These works are important scien-
tific efforts and add to their educational value the bonus of rising
interest in the general public to approach biology. Some of these
examples are collected on websites [McGill 2010; SCIVIS 2005].

2.2 3D Content on Web

The web platform has acquired through the years the ability to effi-
ciently incorporate and deliver many different kinds of digital data
such as still images, videos and sound. With respect to these addi-
tions, the management of 3D content through the web comes with a
considerable delay. The reasons for this delay are likely to be found
in the higher requirements of 3D graphics in terms of computational
power, but also because the lack of a strong unifying standard be-
hind the 3D content.

Several technologies have been developed over the years to
achieve this integration. The Virtual Markup Modeling Language
(VRML) [Raggett 1994] (then replaced by X3D [Don Brutzmann
2007]) was proposed as a text based format for specifying 3D
scenes in terms of geometry and material properties and for the

definition of basic user interaction. The format itself was a stan-
dard, but the rendering in the web browser was relaying on specific
plugins. The Java Applets are probably the most used method to
add dynamic content, not necessarily 3D, in the web browsers. The
philosophy of Java applets is that the URL to the applet and its
data are put in the HTML page and then executed by the Java Vir-
tual Machine, a third part component. The implementation of JVM
on all the operating systems made Java applets ubiquitous and the
introduction of binding to OpenGL such as JOGL [JOG] added
control on the 3D graphics hardware. A similar idea lies behind the
ActiveX [Microsoft Corporation 1996] technology, developed by
Microsoft from 1996. Unlike Java Applets, ActiveX controls are
not bytecode but dynamic linked Windows libraries which share
the same memory space as the calling process (i.e. the browser),
and so much faster to execute. These technologies enable the incor-
poration of 3D graphics in a web page but they all do it by handling
a special element of the page itself with a third party component.

WebGL [Group 2009b] is an API specification produced by the
Khronos group [Group 2009a] and, as the name suggests, defines
the JavaScript analogous of the OpenGL API for C++. WebGL
closely matches OpenGL|ES 2.0 and, extremely important, uses
GLSL as the language for shader programs, which means that
the shader core of existent applications can be reused for their
JavaScript/WebGL version. Since WebGL is a specification, it is
up to the web browsers developer to implement it. At the time of
this writing, WebGL is supported in the nightly build versions of
the most used web browsers (Firefox, Chrome, Safari), and a num-
ber of JavaScript libraries are being developed to provide higher
level functionalities to create 3D graphics applications. For exam-
ple WebGLU [DeLillo 2009], which is the WebGL correspondent
of GLU [OpenGL ARB], provides wrappings for placing the cam-
era in the scene or for creating simple geometric primitives, other
libraries such as GLGE [Brunt 2010] or SceneJS [Kay 2009] uses
WebGL for implementing a scene graph based rendering and ani-
mation engines.

Figure 2: Lipophilic Potential mapped on the surface of a Calcium-
bound Calmodulin. On right, visualization using standard color
ramp; on left, visualization using advanced shaders. The light color
and the specularity clearly indicates a liphophilic patch on the right
part of the molecule, while the dark, dull and rough surface indi-
cates a more hydrophilic area.

3 Building a custom web-based Visualization
Scheme

As stated in the introduction, the aim of this work is to pro-
pose a technology for the implementation of advanced visualiza-
tion schemes for molecular and biochemical data on a web plat-
form. We are interested in a base technology that is able to cope
with the needs of a completely customizable rendering while pro-
viding enough basic structures and higher level functions to be us-

able without a major programming effort.

Our idea is that the WebGL standard is able to provide the perfor-
mances and fine-control over the rendering, since it directly uses the
hardware layer for rendering, is built around the idea of a fully cus-
tomizable rendering pipeline and gives access to the use of GLSL
shaders, a really powerful instrument to achieve the desired visual
output. While these features are absolutely necessary to reach our
goal, they are not sufficient to provide a really usable development
platform because the available functions are too low level to be ef-
fectively used (especially by a community of people with little or
no experience in CG programming). By introducing a wrapping
library as SpiderGL, it is possible to enrich this platform with a se-
ries of higher level functions that may be used as building blocks
to implement the desired rendering method. As a final ingredient,
we have also to consider what can be attained by a clever use of the
JavaScript. Exploiting the ease of use and the expressive power of
this language it is possible to read the source scientific data and do
all the needed calculation.

3.1 SpiderGL

The core library used in this work is SpiderGL: a recent, ongoing
project which aims to provide an easily usable but powerful wrap-
ping to the lower-level WebGL functions. Most of the available
JavaScript graphics libraries and browser plugins for 3D data man-
agement are based on the paradigm of scene graph. This choice is
perfectly natural, in the sense that it mimics the idea of a three-
dimensional scene composed of objects, rendered from a given
point of view. However, this solution cannot fully answer the need
of scientific visualization, where it is often needed to use very di-
verse data, and render them in a very controlled way. SpiderGL, on
the other hand, does not follow this paradigm, but provides a set of
data structures and algorithms to support the management of geo-
metric and mathematical entities, in order to simplify the creation
of arbitrary visualization prototypes. The idea of this library is to
provide a complete wrapping layer to WebGL that, while hiding
the details through higher level functions, allows full access to the
native API.

To ease the creation of graphical applications, SpiderGL provides a
series of classes and functions which cover the various aspects and
levels of implementation of a CG program:
Basic structures: linear algebra algorithms for 3D points and
vectors are very common tools for the CG developer; the geometry
module of SpiderGL implements the essential mathematical
objects such as vectors (2,3 and 4 components), quaternions and
matrices, along with basic operations on them.
2D/3D Data: one of the fundamental parts of a graphics library is
the management of data structures for the definition of 3D objects
(meshes), textures and the other components used in the rendering
process. While at low level, WebGL works directly on streams
of vertex attributes and indices, SpiderGL, to provide a more
structured object to manage, implements a mesh object, based on
the usual paradigm of vertices+triangle connectivity. For a flexible
but efficient use, SpiderGL supplies two different data structures:
the first one, SglMeshJS, can be freely accessed and modified
within the user script; the other, SglMeshGL, is generated from
the first and used at GPU level for rendering. Management of
textures is done through some specific functions which enable
the creation of texture from images or raw data, texture sampler
options and texture unit binding. A final set of classes is used to
manage vertex shaders, fragment shaders and shader programs,
with support from compilation feedback, binding and attribute
management.
Scene management: while not introducing a scene-graph,
SpiderGL provides some specific helpers to place entities in the

3D space, set the viewpoint and simplify the user interaction
with the 3D elements. The matrix stack, legacy of the OpenGL
library, is still extremely useful when populating a scene and it
is implemented in the SglTransformStack object, which
offers many different methods to manipulate and access these
matrices. Other helpful classes include a camera object which
implements the typical paradigm used in first-person shooter
games (SglFirstPersonCamera) and a trackball manipulator
(SglTrackball) for object inspection with pan, zoom, rotation
and scaling operations.
Rendering: WebGL redering is a long series of function used
to manage all the data streams, bind streams to attributes, select
shaders and control the GL status. In SpiderGL, 3D mesh rendering
is managed through the SglMeshGLRenderer helper class.
This class takes care of all the setup steps required by WebGL
and tries to simplify the stream mapping process by automatically
match all the most used attributes. Additional helper classes give
finer control over the mapping of data streams and deal with the
management of shader parameters.
Application: interactivity is one of the focus of this library;
for this reason, SpiderGL provides an event-based mechanism
which is able to collect events from all the DOM and efficiently
dispatch them to multiple listeners. Other application-level support
structures like a log system are available through specific classes.
Another extremely useful feature on the web platform is the
asynchronous loading: many rendering algorithms requires the
ability of asynchronous loading of data. Even if JavaScript does
still not support multithreading, SpiderGL implements a simple
mechanism based on the XMLHttpRequest object to queue data
to be loaded and set a callback functions which will be invoked
whenever the transfer of the requested data has completed.

3.2 Data Importing and Management

While using JavaScript it is not possible to read binary data, this
may not be a major problem for the need of importing data from
molecular databases or physico-chemical tools. Many biological-
related file formats use ASCII coding, which make the parsing re-
ally straightforward. As an example, the importer for the PDB file
format, which describe the structure of a molecule, is just a few
lines long. Here it is possible to see part of the importing code and
how the predefined JavaScript functions for tokenization help its
parsing:
f u n c t i o n AtomListFromPDB (atomlist , pdb_txt){
[.]
v a r lines = pdb_txt .split ("\n") ;
f o r (v a r lineIndex i n lines) {
/ / atom l i n e example
/ /ATOM 16 O ASP A 2 1 0 . 6 5 . 1 −6.1 0 . 0 0 . 0 O

tokens = line .split (" ") ;
i f (tokens [0] == "ATOM") { / / atom l i n e

v a r atomtype = tokens [1 1] ;

v a r position = [] ;
position .push (parseFloat (tokens [6])) ;
position .push (parseFloat (tokens [7])) ;
position .push (parseFloat (tokens [8])) ;

[.]

More recent biochemical tools may also export data in XML for-
mat, which is directly readable by JavaScript. Three-dimensional
geometries are normally stored using one of the many standard file
formats, and can generally be converted from one format to another;
SpiderGL does at the moment support OBJ and COLLADA formats
(other importers will follow), and different other formats may be

parsed by using JavaScript. Less structured data may be imported
also by making the data source export in the JSON format, which
is quite easy to write and is natively supported by JavaScript inter-
preters. Since most physico-chemical tools have a scripting layer
which can be used to specify custom data exporters, this is often a
viable option.

Most of the more interesting visualization methods, however are
not just based on loading existing data and displaying it in a con-
trolled fashion, but also relies on some kind of data processing.
JavaScript may be an effective ally also in this case, thanks to its
ease of use, the great flexibility in data structure (dynamic typing,
associative arrays, an advanced garbage collector), the presence of
many built-in functions and its expressive power. And if it is true
that probably JavaScript will never reach the computational effi-
ciency of compiled C++ code, the newest interpreters and the in-
troduction of just-in-time compilers have significantly reduced the
gap. It is possible to say that, in this specific scenario, where most
of the computational requirements have been moved from CPU to
GPU, the difference between the two language is neglectable.

It is also interesting that, since all the computation is done at the
JavaScript level and all the visualization code is embedded in the
page, it is not possible to effectively hide the data or their process-
ing. This impossibility of building a closed, protected system may
be perceived as a serious limitation for industrial-related applica-
tions. However, in these context, this same limitation may turn out
to be a very positive feature, since the transparency of the data pro-
cessing (you may check that no hidden tweaking is done on the
data) and the possibility of sharing knowledge (by letting others
reuse your visualization code) are of capital importance in the fields
of research and educational tools.

3.3 Implementation

Having all the necessary building blocks to load, manipulate and
render the data, it is possible to build the desired visualization
method. The setup of the scene and the definition of the render-
ing pipeline work similarly to a standard visualization application.

Looking at a webpage with dynamic SpiderGL content, it is possi-
ble to see that all of the page logic is defined in the scripting part of
the HEAD section, while on the BODY section there is just the page
structure and the interface elements that will be used for user inter-
action (like buttons, text areas and other controls). Among these
elements, the most important is an html canvas object, that is the
place where the WebGL layer does the on-screen rendering.

<canvas id="SGL_CANVAS" style="border: 1px solid gray" ←↩

width="900" height="600"></canvas>

This canvas is registered as the output area at the end of the script-
ing; a specific function connects the various events of the canvas to
a script object.

v a r glMolViewer = new SpiderGLMolViewer () ;
sglRegisterCanvas ("SGL_CANVAS" , glMolViewer , 3 0 . 0) ;

The glMolViewer object is the main actor for the scene setup and
rendering of our molecular visualization. The structure of this ob-
ject employs the event handling subsystem provided by SpiderGL,
which is inspired from the one used by the GLUT library [Kilgard].
Each event coming from the canvas triggers a specific function with
a given name and parameters; SpiderGL exploits the JavaScript lan-
guage feature to give the possibility to dynamically add or remove
listeners and redirect events. In this simple example, the only lis-
tener is the main object itself.

SpiderGLMolViewer .prototype = {

load : f u n c t i o n (gl) { [. . .] } ,
unload : f u n c t i o n (gl) { [. . .] } ,

update : f u n c t i o n (gl , dt) { [. . .] } ,

keyDown : f u n c t i o n (gl , keyCode , keyString) { [. . .] } ,
keyUp : f u n c t i o n (gl , keyCode , keyString) { [. . .] } ,
keyPress : f u n c t i o n (gl , keyCode , keyString) { [. . .] } ,
mouseDown : f u n c t i o n (gl , button , x , y) { [. . .] } ,
mouseUp : f u n c t i o n (gl , button , x , y) { [. . .] } ,
mouseMove : f u n c t i o n (gl , x , y) { [. . .] } ,
mouseWheel : f u n c t i o n (gl , wheelDelta , x , y) { [. . .] } ,
click : f u n c t i o n (gl , button , x , y) { [. . .] } ,
dblClick : f u n c t i o n (gl , button , x , y) { [. . .] } ,

resize : f u n c t i o n (gl , width , height) { [. . .] } ,

draw : f u n c t i o n (gl) { [. . .] } ,
} ;

Most of the initialization and data loading is done in the load func-
tion: it is here that the main properties of the rendering are chosen,
the input data is loaded and the shaders are compiled.

load : f u n c t i o n (gl) {
[. . .]

t h i s .xform = new SglTransformStack () ;
t h i s .camera = new SglFirstPersonCamera () ;
t h i s .camera .lookAt (0 . 0 , 0 . 0 , 1 . 5 , 0 . 0 , 0 . 0 , 0 . 0 , ←↩

sglDegToRad (0 . 0)) ;
t h i s .viewMatrix = t h i s .camera .matrix ;
t h i s .trackball = new SglTrackball () ;

[. . .]
t h i s .prog = new SglProgram (gl , [sglNodeText ("←↩

MY_VERTEX_SHADER")] , [sglNodeText ("←↩

MY_FRAGMENT_SHADER")]) ;
[. . .]

v a r TextureOptions = {
generateMipmap : t r u e ,
minFilter : gl .LINEAR_MIPMAP_LINEAR ,
onload : t h i s .ui .requestDraw
} ;
v a r ColorTexture = new SglTexture2D (gl , "←↩

molecule_color.png" , textureOptions) ;
[. . .]

t h i s .meshJS = new SglMeshJS () ;
t h i s .meshJS .importOBJ ("molecule.obj" , t r u e , f u n c t i o n (←↩

m , url) { [. . .]
t h i s .meshGL_MOL = that .meshJS .toPackedMeshGL (gl , "←↩

triangles" , 65000) ;
[. . .] }) ;

[. . .]
v a r pdbtxt = sglLoadFile ("mol.pdb") ;
t h i s .atomslist = [] ;
v a r res = AtomListFromPDB (t h i s .atomslist , pdbtxt) ;

[. . .]
t h i s .timeOffet = 0 . 0 ; / / p a r t i c l e a n i m a t i o n o f f s e t
t h i s .stereoEnabled = f a l s e ; / / s t a r t w i th no s t e r e o
t h i s .particlesEnabled = t r u e ; / / s t a r t w i th p a r t i c l e s

} ,

This monolithic way of managing data is fine for webpages devoted
to the visualization of a single, compact dataset. More advanced
examples may benefit from the asynchronous loading mechanism
which allows efficient use of large datasets, streaming/progressive
data or letting user dynamically load remote files.

The draw function contains the code for the actual rendering:

draw : f u n c t i o n (gl) {
gl .clearColor (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
gl .clear (gl .COLOR_BUFFER_BIT | gl .DEPTH_BUFFER_BIT | ←↩

gl .STENCIL_BUFFER_BIT) ;
gl .viewport (0 , 0 , w , h) ;

t h i s .xform .projection .loadIdentity () ;
t h i s .xform .projection .perspective (sglDegToRad (4 5 . 0) , ←↩

w /h , 0 . 1 , 1 0 . 0) ;
[. . .]

v a r uniforms = {
u_mvp : t h i s .xform .modelViewProjectionMatrix ,
u_normal_mat : t h i s .xform .viewSpaceNormalMatrix ,
u_dotrasp : t h i s .atomsEnabled ,
u_mousepos : [t h i s .ui .mousePos .x , t h i s .ui .mousePos .←↩

y]
} ;
v a r samplers = {
s_texture_c : t h i s .ColorTexture ,
s_texture_b : t h i s .BumpTexture
} ;

[. . .]
gl .enable (gl .DEPTH_TEST) ;
gl .enable (gl .CULL_FACE) ;
sglRenderMeshGLPrimitives (t h i s .meshGL_MOL , "triangles←↩

" , t h i s .prog , n u l l , uniforms , samplers) ;
[. . .]
} ,

This function may be called continuously or on demand: when reg-
istering the canvas with the sglRegisterCanvas function, if
the last parameter is 0, then the canvas is only redrawn by explicit
commands, otherwise, the parameters represent the desired frame
rate. At each ”tick” the SpiderGL will call the update func-
tion and then the draw. In both cases, the html rendering engine
will then issue a page composition operation whenever it detects
changes to the associated WebGL framebuffer.

GLSL shaders are included in the web page as script entities in the
HEAD section:

<script id="MY_VERTEXSHADER" type="x-shader/x-vertex">
[. . .]
</script>

The resulting code is very schematic and organized in such a way
that following the various setup and rendering steps is quite easy.
This simple example is an optimal starting point for experimenta-
tion.

This development process is straightforward for someone with an
experience in graphical programming, while may prove to be diffi-
cult for users with a different background, like biology, physics or
chemistry. This kind of setup is for sure more difficult to master
with respect to setup of other existing platforms, like Jmol which,
true to their nature, provide much simpler (but restrictive) access to
their scene graph, with specific functions to import data and a series
of predefined rendering modes. However, the gain in terms of flex-
ibility and expressive power vastly compensate the initial steeper
learning curve. Moreover, the learning of this technology is made
easier by the possibility of initially use the higher level structures
and functions implemented by SpiderGL to easily setup a basic vi-
sualization scheme and then start playing with lower level functions
to obtain more complex effects. It is also important to note that
most of the available JavaScript utility/UI libraries on the net may
be used in conjunction with SpiderGL, adding more ready-made
components to assemble a powerful, interactive, webpage.

4 Visual Mapping of Molecular Properties

As an example of the strategy described in the previous section,
we will describe how a specific visualization scheme may be im-
plemented using the proposed technology in a very straightforward
way.

Figure 3: Interaction between two molecules: the particle flow
shows the electrical attraction between the Calmodulin and the
MLCK head.

The aim of this visualization method [Andrei et al. 2010], designed
in the framework of the creation of a CG short movie, was to display
two specific biochemical properties on the surface of molecules.
The two surface properties were the Molecular Lipophilic Potential
(MLP) and the Electrostatic Potential (EP). The ability of a molecu-
lar surface to establish bonds with water is called Hydrophilicity; its
opposite, which is the ability to establish bonds with fat, is called
Lipophilicity. The Electrostatic Potential is easier to understand:
each atom in a molecule may have a charge, the various charges
in the molecule produce an electric field in the surrounding of the
molecule. The main idea of this visual mapping has been to ex-
ploit perceptual associations between the values to be mapped and
visual characterization of real-world objects. Ideally, by using al-
ready established perceptual association, the viewer would be able
to understand the provided information more naturally, without the
use of explicit legends.

For the mapping of the MLP property, it was necessary to choose
two opposite surface characterizations, able to convey a sense of
affinity to water or to oil. In our real-world experience, a very
smooth, hard surface (like porcelain) is completely impervious to
water but can be easily coated by oil. The opposite visual feed-
back is associated to grainy, crumbly, dull surfaces (like clay bricks
or biscuits) which can be easily imagined being soaked in water.
These considerations led to the association of highly lipophilic ar-
eas as white, shiny, smooth material and of highly hydrophilic areas
as dark, dull and rough. While the MLP value is obviously only
observable on the surface itself, electrical phenomena are associ-
ated to the idea of an effect projected in the volume surrounding a
charged object, and able to affect other objects (like the high school
textbook-favorite amber rod attracting paper bits). Field lines are a
common way to describe the effect of the electrical field. EP value
is therefore represented by showing small particles, moving along
the path defined by field lines, visualizing a higher concentration of
particles in areas where the electrical fields is stronger.

A peculiar characteristic of this visual mapping is that it only
uses shades of gray to represent the two molecular properties; this
choice, which seems restrictive at first glance, is however capable
to efficiently convey the two layers of information while leaving
the utilization of color space for the description of other biochem-
ical information. This visualization method is perfect to show the
capabilities of the proposed strategy, since it involves data coming
from BIO tools and rely on a controlled use of shading (bump map-
ping and specular map for MLP) and rendering effects like particles
(moving along the field lines for EP). Moreover, the focus of this

visual mapping is not only towards the scientific accuracy, but also
towards the visual appeal of the representation.

4.1 From Scientific Data to Rendering

This visual mapping has been designed with the explicit purpose
of being used in a CG movie [SCIVIS 2005], produced using the
3D modeling and rendering tool Blender. For this reason, most
of the input data, coming from scientific tools, have been heavily
processed in order to be converted in a format easily used inside
Blender.

The geometry of the molecular surfaces of the depicted proteins has
been generated using PyMOL starting from their atomic structure
contained in their PDB files. The two properties have been calcu-
lated by using scientific tools, starting from atomic structure and
reference tables for atomic electrical and lipophilic contributions.
The lipophilic potential data, calculated using a dedicated python
script (pyMLP) developed by a molecular scientist, is stored as a
series of samples in the proximity of the molecule. These sam-
ples are then mapped on the molecular 3D surface using interpola-
tion. This mapped value are used to generate color, specular and
roughness texture map. The Electrostatic potential, calculated in-
side another physico-chemical tool (APBS), is basically a volumet-
ric dataset which describes the electrostatic value computed in a
regular grid surrounding the molecule. Using this data, it was easy
to compute the potential gradient and use it to generate the field
lines. The obtained lines were used in the movie rendering to ani-
mate a particle system.

In our example, we will start from the processed data, which
is somehow in between biochemical data and standard computer
graphics data, and then consider the kind of problem and possibili-
ties introduced by the direct use of scientific data. In this conversion
from the CG movie to the realtime web environment, it was possible
not only to obtain the same look and feel of the rendered movie, as
visible in Figure 4, but also to introduce additional elements which
are only possible in an interactive context. Beside the usual inter-
activity which may be attained by the use of simple widgets like
a trackball, the ability to configure the rendering pipeline make it
possible to change rendering parameters on the fly, mix multiple
rendering styles to visualize multiple data layers at the same time
and add effects like the direct rendering in anaglyph-stereo. Again,
the important point, more than the mentioned effects, is the pos-
sibility of overcoming the limits of the predefined rendering that
characterize similar systems.

In the next sections we will detail how each component of the ren-
der has been implemented in order to obtain the same look and feel
presented in the video. For each section we discuss possible alter-
natives for data source and rendering methods to show how it is
possible to directly use biochemical data or create more complex
visualizations.

4.2 Geometry

There are many different methods used in molecular biology to vi-
sualize the three-dimensionality of a molecule. There is a clear dis-
tinction between the representation of the molecular structure and
of its surface. The molecular structure is generally displayed atom
by atom (using a Van der Waals spheres, sphere+stick or licorice
rendering) or as a series of structure elements (ribbon, rod+arrow).
Conversely, the molecular surface [Connolly 1983], defined as the
set of points which are ”accessible” to a given solvent (typically wa-
ter), is a more complex three-dimensional structure and it is gener-
ally displayed as a triangulated mesh, or as a series of nurbs patches.

Figure 4: Comparison of the molecular surface visualization ren-
dered by Blender for the movie (bottom), and rendered using
SpiderGL and WebGL (top).

In this context we are more interested in the rendering of the molec-
ular surface, since the two properties we visualize show their effect
in proximity of this surface. Many biochemical tools (like PyMOL,
used in this work) are able to compute the geometry of the molec-
ular surface starting from the atomic description of the molecule
itself. The result of this process is generally a triangulated mesh,
which can be exported, depending on the tool, in different 3D file
formats.

For the movie, the used file format was OBJ which is directly
readable from SpiderGL: these models were also the starting point
for the online visualization. We decided to import precalculated
geometries in the scene as they were already available from the
pipeline used to create the movie, but also because this is the most
sensible option. In theory, it would be possible to compute the
molecular surface on the fly starting from the atomic structure of
the molecule, but this process would require a non-trivial amount
of time and system memory.

As previously stated, to render the structure of the molecule using
Van der Waals spheres, it is necessary to know the position, radius
and color-coding of each atom. The standard way to represent a
molecule structure in biochemical applications is through the use
of a PDB file. A PDB file is just an ASCII file which contains
(among other molecular-related info) a list of atoms with an associ-
ated position. Using JavaScript is quite easy to parse it (as shown in
Section 3) and render with SpiderGL a series of colored spheres of
appropriate size in the correct position. The atomic representation
of the molecule shown in Figure 5 has been generated using this
method. A more complex visualization of the molecular structure,
like ribbon, may also be generated on the fly by starting from the
parsed PDB file and a series of pre-defined 3D element templates.
As we said before, since there are many molecular databases avail-
able online, the PDB file could also be retrieved directly from such
a repository.

The availability of alternative representations of a protein structure,
makes also possible their combination in a single scene, providing
the user the ability to switch between the different representations.
Again, this is quite common and nothing new but, since we can
configure the rendering pipeline we can, for example, show the su-
perimposition of the molecular surface and the Van der Waals rep-
resentation by using transparency effects. As shown in Figure 5, it
is possible to implement a ”fresnel” transparency which depends on
the viewing angle, or a more focused ”x- ray vision” transparency
area which follows the mouse pointer. These kinds of transparency
effects are really simple to implement using GLSL shaders and let
perceive both representations at the same time, to better understand
the relationship between the surface properties and the underlying
structure.

4.3 Lipophilic Potential

The visual mapping of lipophilic potential rely on a combination
of color, surface roughness and specularity: these three effects are
mapped on the molecular surface according to the local lipophilic
potential value. For the rendered movie, the potential value has
been used to generate the color/specular and bump texture maps in-
side Blender by baking on the textures a procedural material. To
render these effects, we decided to use the same texture maps used
in the rendering of the movie and to write a shader which uses
simple shading techniques. Bump Mapping and Specular Map-
ping are standard shading techniques, but it is possible to apply a
fine-control over their appearance by having the full control of the
shader setup, which is not generally possible in commercial soft-
ware for web publishing or in general purpose visualization tools.
The result is pleasant and, as visible in the left side of Figure 2, the
characterization of the surface is quite effective.

Again, the use of precomputed texture is the fastest way to produce
this kind of effect. However, it is also possible to start from the
initial data from which those textures have been generated. As in
the case of the molecular structure file, the lipophilic information
is contained in an ASCII file, which can be parsed using JavaScript
and mapped onto the 3D surface as it was done when baking the
texture. Once the values are mapped to the surface, a simple shader
may be used to produce the same effect of the textures using a pro-
cedural approach. Basically, the color of the surface, the intensity
of the roughness and the specularity only depends on the lipophilic
value: there is nothing which cannot be done in the shader. Having
the mapped lipophilic potential makes also possible a more classi-
cal rendering style which uses color ramps (right side of Figure 2).
This second input method is more generic, since it uses directly the
data generated by the biochemical tool, but may be slower (since
no precalculation is done and the mapping has to be done at load-
ing time) and less compact (since the lipophilic data may be larger
than the textures).

4.4 Electrostatic Potential

Field lines are a widely used method to depict vector fields, es-
pecially for electrical and magnetical phenomena. However, the
main problem with field lines is how many and which lines are
needed: too few lines do not convey the necessary information and
too many will obscure entirely the object of interest. The visualiza-
tion method used for the movie tried to compute, from the infinite
possible field lines, a ”meaningful” subset of lines. The aim was to
generate a distribution of lines proportional to the surface EP value:
more lines would rise in the more electrically active areas, and the
total number of lines would be proportional to the global level of
potential of the molecule (in absolute value). This operation was
done by using a Monte Carlo sampling, weighted with respect to
the potential value of the surface in each area. The selected lines
were then exported as a sequence of points, forming various poly-

Figure 5: Showing the superimposition of the Molecular Surface and the underlying Atomic Structure using a transparency based on view
angle (left) and a localized transparency area which follows the mouse (right)

lines. Instead of rendering these entities as solid lines (as visible
in Figure 1) each curve was used to drive a particle system. By
using moving particles, in fact, it is easier to perceive the flow di-
rection of the field and thanks to their small size and movement,
they do not hide the underlying molecular surface. The easiest way
to load the lines inside the web implementation was to apply just a
small change in the code for line calculation, in order to export the
polylines JSON format. It was then possible to parse them using
JavaScript. The loaded data may be rendered as a series of solid
line strips, or used to produce a particle effect similar to the one
used in the movie. In this case, since the particles flow on fixed
lines, it is not really necessary to create a particle system, but it is
possible to visualize the moving particles using a fragment shader
which renders only small fragments of the imported polylines ac-
cording to a periodic function, animated using an offset.

uniform float u_timeOffset;
varying float v_texcoord;
void main(void)
{
const float part_density = 4.0;
const vec3 part_color = vec3(0.8,0.8,1.0);
float val = fract((v_texcoord+u_timeOffset)/part_density);
if (val < 0.7)
discard;

else
{

val = smoothstep(0.9, 0.7, val);
gl_FragColor = vec4(part_color * val, val);

}
}

This effect is much more simple and less CPU/GPU demanding
than a real particle system, while still effective in conveying the
carachteristics of the electrical field surrounding the molecule, the
areas of higher electrostatic potential and their polarity. The field
particles are also useful to show the electrical interaction between
different proteins: in Figure 3 it is shown a calcium-bound Calmod-
ulin approaching an MLCK head, at that distance the two electro-
static field do start an interaction process which will eventually lead
to the docking of Calmodulin, and this is shown by the particles
flowing from one protein surface to the other. Also in this case it
is possible to start directly from the raw physico-chemical data: the
volume data of the Electrostatic Potential is saved in ASCII for-
mat and can be easily read using JavaScript. With these data, it
is possible to compute the potential gradient field and extract the
field lines according to the desired parameters. This option would
give full control on the lines extraction and make it possible to con-
trol the selection parameters on the fly during rendering: given the
importance of the line selection, as previously described, this fea-

ture may be useful to study the electrical field of the molecule. In
any case, being able to load the entire volumetric information may
open up new possibilities to visualize the electrostatic field around
the molecule. Rendering methods such as ray-casting, interactive
slicing and volume splatting are possible on this platform.

5 Future Development

The proposed technology is far from being complete: the WebGL
standard is not yet completely finalized and also the SpiderGL
wrapping is still an ongoing project. To provide a complete plat-
form for the development of specialized visualization tools for the
web platform, some more work will be needed to make this tech-
nology accessible to people with not much experience in computer
graphics programming. This effort should ideally result in the cre-
ation of a reusable library of basic functions which will ease the cre-
ation of simple visualization schemes and, at the same time, serve
as a code base for more complex results. In perspective, to give a
useful instrument to the general public of molecular biology scien-
tist, we will have to work in three different directions:

• a series of importers from different file formats which are
common to the biology community: more readable formats
means more diverse data to play with;

• utility functions to manipulate data: because visualization is
always a matter of filtering data using standard mathemati-
cal/statistical approaches;

• a series of standard shaders to be used for rendering: a shader
library would save the time required to write simple visual-
ization techniques and give the base for experimentation in
creating advanced custom shaders;

An active research problem in the biology community is the cal-
culation of protein motion (i.e. the description of atomic trajecto-
ries while transiting from one conformation to another), this kind
of online visualization technology would prove quite useful for the
evaluation and sharing of new results with the research commu-
nity. It is however still difficult to display animation of the molec-
ular surface in a way that is biologically accurate but at the same
time computationally effective. Animating a structure representa-
tion of a molecule (atomic sphere, balls+sticks, ribbon) may be easy
enough, since it involves rigid roto-translation of rigid entities. On
the contrary, the motion of molecules make the surface undergo
major modification and radical change in topology (genus change,
merging/dividing parts) thus making it impossible to use animation
techniques like skeletal or keyframe. The use of techniques like

metaballs may produce surfaces in realtime, but with very low ac-
curacy from the biological point of view. A better idea could be to
exploit the GPU processing power to generate the animated geom-
etry on the fly using, for example, ray-casting methods. An effi-
cient storage and retrieval of such animations is another interesting
problem, especially in the context of web-based applications, which
present additional constrains of low resources and low bandwidth.

6 Conclusions

We have presented here a technology, based on the WebGL stan-
dard, which can be profitably used to build, on the web platform, in-
teractive 3D visualization schemes for the scientific data produced
by molecular and cellular biology research. By using the low-level
features of WebGL, enriched by the utility functions and higher-
level classes provided by the SpiderGL library, it is possible to build
web-based visualization prototypes which are not only completely
custom, but also use advanced shading and rendering techniques.
We have discussed the possibilities offered by this technology, de-
scribing the available components and how they are used in the cre-
ation of an interactive visualization scheme. Moreover, we have
shown how it was possible to use this technology to port a specific
visualization method on the web platform, and how it was possible
to enrich it with additional visual elements, made available by the
use of this technology. This technology is still not complete, since
the WebGL standard is not yet completely fixed, and the SpiderGL
library still an ongoing project; nevertheless, this combination of li-
braries and working strategy is a promising instrument to deal with
the needs of the molecular and cellular biology research commu-
nity.

Acknowledgements

This work has been financed from Regione Toscana through the project ”Studio An-
imazione 3D” to Monica Zoppè. This work sprouted from the collaboration between
the VC Lab of ISTI-CNR and the SCIVIS Group of IFC-CNR, the authors want to
thank all components of both groups for their support.

References

ANDREI, R. M., CALLIERI, M., ZINI, M. F., LONI, T., MARAZ-
ITI, G., AND ZOPPÈ, M. 2010. Intuitive visualization of surface
properties of proteins. BMC bioinformatics - in review.

BAKER, N. A., SEPT, D., JOSEPH, S., HOLST, M. J., AND MC-
CAMMON, J. A. 2001. Electrostatics of nanosystems: applica-
tion to microtubules and the ribosome. Proceedings of the Na-
tional Academy of Sciences of the USA, 98, 10037–10041.

BERMAN, H., HENRICK, K., AND NAKAMURA, H. 2003. An-
nouncing the worldwide protein data bank. Nature Structural
Biology, 10, 980.

BRUNT, P., 2010. GLGE: WebGL for the lazy.
http://www.glge.org/.

CONNOLLY, M. L. 1983. Solvent-accessible surfaces of proteins
and nucleic acids. Science, 211, 709–713.

DELANO, W. L., 2002. The pymol molecular graphics system.

DELILLO, B., 2009. WebGLU: A utility library for working with
WebGL . http://webglu.sourceforge.org/.

DI BENEDETTO, M., 2010. SpiderGL: 3D Graphics for Next-
Generation WWW. http://spidergl.org/.

DON BRUTZMANN, L. D. 2007. X3D: Extensible 3D Graphics for
Web Authors. Morgan Kaufmann.

GROUP, T. K., 2009. Khronos: Open Stan-
dards for Media Authoring and Acceleration .
http://http://www.khronos.org.

GROUP, T. K., 2009. WebGL - OpenGL ES 2.0 for the Web.
http://www.khronos.org/webgl/.

GUEX, N., AND PEITSCH, M. C. 1997. Swiss-model and the
swiss-pdbviewer: an environment for comparative protein mod-
eling. Electrophoresis, 18, 2714–2723.

HUMPHREY, W., DALKE, A., AND SCHULTEN, K. 1996. Vmd:
visual molecular dynamics. Journal of Molecular Graphics, 14,
33–38.

2002. Jmol: an open-source Java viewer for chemical structures in
3D. http://www.jmol.org/.

JOGL Java Binding for the OpenGL API.
http://kenai.com/projects/jogl/pages/Home.

KAY, L., 2009. SceneJS . http://www.scenejs.com.

KENDREW, J. C., BODO, G., DINTZIS, H. M., PARRISH, R. G.,
WYCKOFF, H., AND PHILLIPS, D. C. 1958. A three-
dimensional model of the myoglobin molecule obtained by x-ray
analysis. Nature, 181, 662–666.

KILGARD, M. J. GLUT - The OpenGL Utility Toolkit .
http://www.opengl.org/resources/libraries/glut/.

KYTE, J., AND DOOLITTLE, R. F. 1982. A simple method for
displaying the hydropathic character of a protein. Journal of
Molecolar Biology, 157, 105–132.

MCGILL, G., 2010. MolecularMovies.org:
a Portal to Cell & molecular Animation.
http://www.molecularmovies.com/.

MICROSOFT CORPORATION, 1996. Microsoft activex controls.
http://msdn.microsoft.com/en-us/library/
aa751968(VS.85).aspx.

OPENGL ARB. GLU OpenGL Utility Library .
http://www.opengl.org/documentation/specs/
glu/glu1 3.pdf.

PETTERSEN, E. F., GODDARD, T. D., HUANG, C. C., COUCH,
G. S., GREENBLATT, D. M., MENG, E. C., AND FERRIN,
T. E. 2004. Ucsf chimera–a visualization system for exploratory
research and analysis. Journal of Computational Chemistry, 25,
1605–1612.

RAGGETT, D. 1994. Extending WWW to support platform in-
dependent virtual reality. Proceedings of INET’94, the Annual
Conference of the Internet Society.

ROCCHIA, W., SRIDHARAN, S., NICHOLLS, A., ALEXOV, E.,
CHIABRERA, A., AND HONIG, B. 2002. Rapid grid-based con-
struction of the molecular surface and the use of induced surface
charge to calculate reaction field energies: applications to the
molecular systems and geometric objects. Journal of Computa-
tional Chemistry, 23, 128–137.

SCIVIS, 2005. Scientific Visualization Unit, IFC CNR.
http://www.scivis.ifc.cnr.it/index.php/videos.

TARINI, M., CIGNONI, P., AND MONTANI, C. 2006. Ambient
occlusion and edge cueing to enhance real time molecular vi-
sualization. IEEE Transaction on Visualization and Computer
Graphics 12, 6 (sep/oct).

