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A survey on solid texture synthesis

Nico Pietroni, Paolo Cignoni, Miguel A. Otaduy, and Roberto Scopigno

Abstract—In this survey, we illustrate the different algorithms proposed in literature to synthesize and represent solid textures. Solid
textures are an efficient instrument to compactly represent both the external and internal appearance of 3D objects, providing practical
advantages with respect to classical 2D texturing. Recently, several methods have been proposed to synthesize solid textures. For
some of those, which are commonly referred as procedural, colors are obtained by means of functions that algorithmically encode
appearance and structure properties of the texture. Alternatively, example-based methods aim to capture and replicate the appearance
as described by a set of input exemplars.

Within this framework, we propose a novel classification of solid texture synthesis methods: boundary-independent and boundary-
dependent methods. In the case of boundary-independent methods, the shape of the object to be textured is irrelevant and texture
information can be freely generated for each point in the space. Conversely, boundary-dependent methods conform the synthesis
process to the actual shape of the object, so that they can exploit this information to orient and guide the texture generation. For better
understanding the different algorithms proposed in the literature, we first provide a short introduction on 2D texture synthesis methods,
focusing on the main principles which are also exploited for 3D texture synthesis. We review the different methodologies by considering
their strengths and weaknesses, the class of appearances they can successfully synthesize, and failure cases. In particular, we focus

our attention on advantages and drawbacks of boundary-independent methods with respect to boundary-dependent ones.

Index Terms—texture synthesis, solid texture

1 MODELING THE INTERIOR OF AN OBJECT

It is common belief that textures provide a simple and
efficient way of modeling 3D objects by separating
appearance properties from their geometric description.
Textures have been profusely used in computer graphics
for modeling the external structure of objects, either
through photographs or through procedural models
[1]. While traditional 2D textures are usually used to
encode information about the external surface of an
object; extensions have been proposed for providing
volumetric information, allowing the encoding of
the internal appearance of objects, i.e., appearance
properties are provided for each point belonging to
a predefined volumetric domain D C R3. This class
of textures is usually referred in the literature as solid
textures.

In surface texturing, one usually relies on a planar
parameterization for associating texture attributes to
a 3D object. A planar parameterization maps each 3D
point belonging to an object’s surface to a 2D domain,
which encodes texture attributes. This 3D — 2D
mapping may introduce a distortion, which is generally
dependent on the complexity of the object’s topology
and shape. Finding a good planar parameterization,
i.e., a parameterization which minimizes the amount
of introduced distortion, still remains a challenging task.

e N. Pietroni, P. Cignoni and R.Scopigno are with the Visual Computing
Lab at Instituto of Science e Tecnologie dell’Informazione (ISTI), Na-
tional Research Council (CNR), Pisa, Italy E-mail: pietroni, cignoni,
scopigno@isti.cnr.it

o Miguel A. Otaduy is assistant professor at the Modeling and Virtual
Reality Group,Department of Computer Science URJC Madrid, Spain. E-
mail: miguel.otaduy@urjc.es

Several methods have been proposed in the literature
to synthesize colors directly on the surface without the
need of a planar parameterization (See [2], [3]). This
task relies on two main steps: create an orientation
field over the surface, and perform texture synthesis
according to the orientation field. Thanks to the fact that
the texture is orientated according to the underlying
geometry, those methods may produce interesting
results. Unfortunately, they lack reusability, i.e., since
the color information is specifically defined for a given
surface, then it cannot be reused to colorize a different
one.

Solid textures provide two main advantages at the same
time: first, we do not need any planar parameterization
(since 3D coordinates of the surface constitute a valid
parameterization); second, we can, in general, use the
same solid texture to colorize different surfaces. Indeed,
by simply carving out a surface from a solid texture,
we define its color attributes. On the other hand,
guaranteeing that a texture is free from visual artifacts
is more complex in 3D than in 2D. In practice, a high
quality solid texture must show a plausible appearance
along any oriented slicing plane.

Solid textures exhibit advantages in several application
domains. For example, they can be used to encode
volumetric information needed to perform high-quality
sub-surface scattering. In simulation of fracturing
objects, solid textures can be used to synthesize the
appearance of the internal surfaces revealed by fracture.
Moreover, particular classes of materials, such as wood
or rocks, can be more efficiently defined by using solid
textures rather than 2D textures.
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The major issue concerning solid textures is their
accessibility. While external appearance of an object may
be easily captured, for example, by taking photographs
and “pasting” them onto a 3D model, producing
a coherent solid texture representing its internal
properties is a more complex task. Let us consider
the example of capturing the internal appearance of
a solid block made of marble. One possibility could
be to repeatedly slice such block to get pictures of its
internal sections, or, alternatively obtain a volumetric
dataset by using a CT scan system. Since those strategies
require some complex machinery, they are not useful
in practice, and it appears more practical to synthesize
internal colors from a reduced set of photos.

Algorithms for solid texture synthesis are mainly char-
acterized by their generality and controllability.
The generality of a texture synthesis algorithm is its ca-
pacity of capturing and reproducing features which are
present at different scales in the input image. Generality
is one important characteristic of a synthesis algorithm,
since it measures its versatility in modeling the different
appearances present in the real world. The controllability
is the level to which the user can guide the final result
of the synthesis process.
According to the regularity of their appearance, textures
can be classified on an interval which smoothly varies
from Structured regular to Stochastic :

o Structured regular textures
These textures present regular and structured pat-
terns. An example of a structured regular texture is
a brickwall.

o Structured irregular textures
These textures present structured patterns which are
not regular. An example of a structured irregular
texture is a stonewall.

 Stochastic textures
This class of textures look like noise showing a high
degree of randomness. An example of a stochastic
texture is roughcast or grass.

Such 2D texture classification is extensible to 3D textures,
by considering the presence of regular patterns along the
three directions, instead of two, of a solid texture. Since
algorithms for modeling an objects’s internal color are
often defined by extending basic concepts of 2D texture
synthesis, we briefly introduce some basic concepts re-
garding 2D texture synthesis algorithms in Section 2.

The internal appearance of an object M can be defined
by a function F which maps each point p belonging to M
to the respective color attribute color(p) = F(p),p € M.
As previously stated, this mapping is extrapolated by
using a reduced input provided by the user. We divide
the methods for modeling the internal appearance of an
object into two main categories: boundary-independent and
boundary-dependent solid texturing:

« Boundary-dependent solid texturing methods
The texture conforms to the boundary of the object

on which they are mapped.

» Boundary-independent solid texturing methods
The texture does not rely on boundary information,
and is computed on a boundary-free 3D domain.

Sections 3 and 4 make this classification more clear, pro-
viding an exhaustive description of existing approaches.
These two classes of methods are finally compared in
Section 5.

2 A BRIEF INTRODUCTION TO 2D TEXTURE
SYNTHESIS

The problem of texture synthesis is typically posed as
producing a large (non-periodic) texture from a small
input data provided by the user. In the next sections
we provide a brief overview of existing 2D texture
synthesis techniques, classifying existing methods as:
procedural, statistical feature-matching, neighborhood
matching, patch-based, and optimization-based. The last
four categories (all except for procedural methods) can
be grouped under the denomination of example-based
synthesis methods, as they all use a small user-provided
exemplar image to describe the characteristics of the
output texture. The algorithm captures the appearance
of the example texture so that it is possible, in a further
step, to synthesize a new image (usually larger and
non-periodic), which visually resembles such example
texture. We refer to [4] for a more detailed description
of existing methods for example-based 2D texture syn-
thesis.

2.1 Procedural Methods

Procedural methods synthesize textures as a function of
pixel coordinates and a set of tuning parameters. Among
all procedural methods, the most used in Computer
Graphics is Perlin Noise[1]. Perlin noise is a smooth
gradient noise function that is invariant with respect to
rotation and translation and is band-limited in frequency.
This noise function is used to perturb mathematical
functions in order to create pseudo-random patterns.
Perlin noise has been widely used in various applica-
tion domains, to cite a few: rendering of water waves,
rendering of fire, or realistic synthesis of the appearance
of marble or crystal.

Different classes of textures, such as organic texture
patterns, may be efficiently synthesized by simulating
natural process (usually modeled as small interacting
geometric elements distributed on the domain).

2D procedural methods are, in general, efficient and
easily extendable to solid texture synthesis.

2.2 Statistical Feature-Matching Methods

The main strategy of this class of methods consists in
capturing a set of statistical features or abstract charac-
teristics from an exemplar image and transfer them into
a synthesized image.

Heeger et al. [5] uses an image pyramid to capture
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statistical properties which are present in the exemplar
image at different levels of resolution. The synthesized
texture is initialized with random noise. Then, Histogram
matching operations (see Section 3.3.1 for details) are
repeatedly applied in order to make each level of the
synthesized pyramid converge to the appearance speci-
fied by the exemplar image pyramid. This method and
its extension [6] work well on stochastic textures, but
their quality degrades in general if the example texture
is structured.

2.3 Neighborhood Matching Methods

The main idea of neighborhood matching methods con-
sists of enforcing and deploying the relation between
pixel color and its spatial neighborhood. After an initial
phase of training, where each pixel of the example tex-
ture is correlated to its neighborhood kernel, the target
image is synthesized pixel by pixel. The synthesis step
consists in substituting each pixel with the one that has
the most similar neighborhood, chosen from the example
texture [7]. Wei et al. [8] extends this algorithm in a
multi-resolution fashion using Gaussian pyramids.

The neighborhood matching methods discussed above
are inherently order-dependent, i.e., the resulting image
depends on the order in which pixels are synthesized.
Wei et al. [9] modified their original neighborhood
matching algorithm to make it order-independent. The
main idea can be summarized as follows: the value of
a synthesized pixel is stored in a new image (instead
of overwriting), while the kernel used for neighborhood
search is made by pixels that were synthesized in the
previous step.

In [10] the order-independent synthesis is performed
on the GPU. In this case, synthesis can be performed in
real-time, opening new application scenarios.

2.4 Patch-Based Methods

This class of methods relies on a different philosophy:
the example texture is divided into a set of patches,
which are re-arranged in the output image.

In [11], an overlap region is used between adjacent
patches to appropriately quilt them making sure they all
fit together. Patches that minimize an overlap error are
chosen step-by-step randomly from a set of candidates,
and iteratively placed over the synthesized image. Once
patches are placed, the overlap region is quilted appro-
priately to minimize the error. Kwatra et al. [12] improve
this approach by minimizing the error using a different
strategy: a graph-cut algorithm.

2.5 Texture Optimization Method

This technique, introduced in [13], relies on a global
optimization framework to synthesize a new texture. It
consists essentially of minimizing an energy function
that considers all the pixels together. This energy func-
tion measures the similarity with respect to the example

texture and it is locally defined for each pixel. The local
energy contributions coming from pixels are merged
together in a global metric that is minimized.

This method produces very good results, furthermore
the energy formulation can be easily extended to create
flow-guided synthesis.

3 BOUNDARY - INDEPENDENT SOLID TEX-

TURES

Solid texturing copes with texture functions defined
throughout a region of three-dimensional space instead
of a 2D image space. A common approach, which we call
boundary-independent, consists of synthesizing a volu-
metric color dataset (which commonly corresponds to a
cube), from a reduced set of information without taking
into account the target object’s shape onto which the
color is mapped. In this sense, this approach is similar
to the classic 2D texture synthesis formulation problem
(see Section 2): given a reduced set of information that
encodes internal properties, produce a volumetric color
dataset that visually resembles as much as possible the
input data, along any arbitrary cross section.

A generic object can then be colorized by simply
embedding it into the synthesized volumetric domain.
Similarly to 2D texture synthesis, boundary-independent
methods for the synthesis of solid textures can be clas-
sified into:

o Procedural methods

The color is a function of the 3D position and a set
of parameters provided by the user.

« Statistical feature-matching methods

Statistics are extracted from 2D textures and repli-
cated on the solid texture.

o Neighborhood matching methods

The color of each voxel belonging to the solid tex-
ture depends on its neighbors.

o Optimization-based methods

The solid texture is the result of a global minimiza-
tion.

In the following sections, we present the most significant
approaches according to this classification.

3.1

We introduce a simple notation used in the following
sections. The reader may refer to Figure 1 for better
understanding. We call voxels the cells belonging to a
solid texture to distinguish them from the pixels that
belong to a 2D texture. The 3D neighborhood of a voxel
v is formed by assembling 2D neighborhoods centered
in v and slicing the solid texture along each axis. A 3D
slice refers to each orthogonal 2D neighborhood defining
a 3D neighborhood.

Notation

3.2 Procedural Methods

Procedural methods for the synthesis of solid textures
are, in general, derived directly from the 2D methods.
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Fig. 1. A 3D neighborhood composed of three orthogonal
3D slices (See section 3.1).

(a) (b) (© (d)

Fig. 2. Examples of solid textures produced us-
ing Perlin noise [1] (see Section 3.2 ). Source
www.noisemachine.com/talk1/ courtesy of Ken Perlin.
(a)Simply the Perlin noise() function. (b)A fractal sum of
noise calls > 1/f(noise) where f(noise) = noise(p) +
1/2noise(2p) + 1/4noise(4p).. generates cloudy patterns.
(c)Fire may be simply generated as > 1/f(|noisel).
(d)Marble patterns can be generated as sin(z +
>>1/f(|noise|)) where x refers to the coordinate of the
surface.

 §

Indeed, thanks to their “dimension-independent” for-
mulation, procedural methods are, in general, easily
extendible to the 3D case.

For example, the noise functions defined by Perlin
[1] can be used to synthesize solid textures. Solid noise
is a 3D function used to perturb a basis 3D function
in order to create realistic solid patterns. Perlin noise
has been largely used in computer graphics to produce
solid textures of marble, clouds or fire (see Figure 2 for
application examples).

Procedural methods for solid texture synthesis are, in
general, easy to implement and computationally light.
Since the color of a voxel is a function of its coordinates,
procedural methods can synthesize each voxel indepen-
dently, while the majority of the other methods require
the synthesis of the entire solid block.

Potentially, procedural methods are general enough to
synthesize every possible pattern, furthermore the user
may have a direct control of the result by tuning pa-
rameters. Unfortunately, from the point of view of the
final user, it is difficult to express procedurally a desired
texture appearance. Specifically, the user must elaborate
an analytic description of the desired texture effect.
Although theoretically any pattern may have its analytic
description, in general it does not correspond to an
intuitive formulation.

Recently, Lagae et al. [14] have proposed a novel noise

formulation which provides more intuitive parameters.

3.3 Statistical Feature-Matching Methods

Similarly to the 2D case, the main purpose of this method
is to extract a set of statistical properties from an exem-
plar image in order to replicate it in the synthesized tex-
ture. However, solid texture synthesis is a more complex
scenario: properties are defined in a 2D image, while the
synthesis is performed in 3D. Since no 3D information
is provided, these methods transfer statistical properties
defined over a 2D space to a higher order space, i.e., the
3D space embedding the solid texture.

3.3.1 Histograms matching

In [5] (which has been introduced in section 2.2), authors
generalize the proposed method to the synthesis of solid
textures. Since the CDF' (Cumulative Distribution Func-
tion) expressed by the image histogram is independent
with respect to dimensionality of the input data, it is
possible to apply the same histogram matching on a
solid texture, rather than an image. In this specific case,
input histograms rely on 2D steerable pyramids of the
exemplar image, while output histograms rely on 3D
steerable pyramids of the solid texture.

More precisely, color range belonging to 2D exemplars
and 3D solid texture are quantized separately into a set
of uniform interval bins, each of which represents the
probability of a pixel to fall into such interval (evaluated
using color distribution).

Histogram matching is used to match the color distribu-
tion of the synthesized texture with the color distribution
of the exemplar. Histogram matching is based on the
Cumulative Distribution Function CDFyy : [bins] — [0, 1]
and its inverse CDFy' : [0,1] — [bins]|, were H is an
image histogram. Given an output image / (which in
this specific case is the synthesized solid texture) and an
input image I’, and considering their histograms H; and
Hp, histogram matching consists of substituting each
color of the output image v € I with the one having
the same C'DF value in the input image I”:

v' = CDF;} (CDFy(v)) (1)

The overall algorithm proposed by [5] can be finally
outlined as follows: the output solid texture is initialized
with random noise; then histogram matching between
noise and example textures is performed; the algorithm
continues by iteratively applying histogram matching
across each pair of steerable pyramid levels; and, finally,
the image is fully reconstructed from the processed
pyramid levels.

Notice that this method treats each color channel
independently, i.e., histograms are calculated and
matched independently for each channel. Finally, the
synthesized texture is obtained by reassembling the
processed color channels. In general, since statical
methods de-correlate color channels, they may produce
visual artifacts.
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(a) (b)

Fig. 3. (a) Examples of solid textures produced by [5]
(see Section 3.3.1). The textured model is carved from the
synthesized texture block. (b) Anisotropic solid textures
generated by [15] using multiple example textures.

3.3.2 Spectral analysis

Ghazanfarpour et al. [16] propose to use spectral analysis
for solid texture synthesis. Spectral information is ex-
tracted from the example texture using the Fast Fourier
Transform (FFT), and used to obtain a basis and a noise
function. Finally, the solid texture is obtained procedu-
rally as in [1]. This method is extended by [17] to use
multiple images. Each image defines the appearance of
the solid texture along an imaginary axis-aligned slice.
The algorithm is built upon the assumption that the
appearance of axis-aligned cross-sections are invariant
with respect to translation, while the non-orthogonal
ones blend the appearance of the three example textures
according to their orientation. Modifications are obtained
by using spectral and phase processing of image FFT. The
synthesis process takes as input a solid block initialized
with noise, and modifies axis-aligned slices, extracted
from the solid texture, according to the correspond-
ing example texture. Since each voxel belongs to three
different slices, it defines three possible colors, which
are simply averaged. By repeating this step, the noise
block slowly converges to the appearance of example
textures. In [15] this approach was modified to avoid
phase processing. The solid texture is generated by
repeatedly applying spectral and histogram matching.
While methods based on spectral analysis([16],[17] and
[15]) produce pleasant results when applied to stochastic
textures, they usually perform worse with structured
textures. The reader may refer to [18] for a survey on
spectral analysis methods.

3.3.3 Stereology

A significantly different approach in generating struc-
tured textures is proposed by Jagnow et al. [19]. Their
method is limited to the synthesis of a particular class of
materials that can be described as “particles embedded
in a homogenous material”. It is based on classical stere-
ology, an interdisciplinary field that provides techniques
to extract three-dimensional information from measure-
ments made on two-dimensional planar sections. Figure

~
IS

(8 (h)
Fig. 4. The synthesis pipeline of [19] (see Section 3.3.3

for details) : The initial image (a) is filtered to extract two
components: a profile image (b) and a residual image (c).
The profile image, together with the shape of particles (f)
is used to infer, through stereology, the 3D distribution
of particles (e) (encoded as triangle meshes), while the
residual image is used to synthesize a residual solid
texture (d). The final solid texture (h) is obtained by adding
the residual solid texture, which encodes the fine details,
to the solid texture obtained from the distributed particles
(9), which encode the rough structure.

4 gives an overview of the method.

In this method, stereology relates the particle area
distribution in the profile image with particle area distri-
bution revealed by an arbitrary cross-section of the solid
texture. Profile image and particle shape concur to define
the 3D particle distribution, since:

o The profile image captures the distribution of par-
ticle area. This distribution must be replicated in
the solid texture, so that it is preserved along every
cross-section.

e On the other hand, a cross-section of the solid tex-
ture cuts some particles defining an area distribution
that is obviously related to particle shape. Authors
propose to capture the area distribution generated
by a particle by cutting randomly its meshed model
(Figure 4.f).

These probability distributions concur to extract a particle
density function which defines implicitly how particles
have to be distributed.

In [20], Jagnow et al. present an interesting analysis
about how different methods for approximating particle
shape influence the perception of the generated solid tex-
ture. This stereology-based synthesis technique produces
very realistic results, however it can be applied only to
the specific class of textures that can be described as
particles distributed on a homogenous material.

3.3.4 Aura 3D textures

Aura 3D textures [21] is the most general among the sta-
tistical based methods. Aura 3D solid texture synthesis is
based on Basic Gray Level Aura Matrices (BGLAM)[22].
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Fig. 5. Displacement configurations of [21] generated by
a 32 kernel.

The information stored in BGLAMs characterizes the co-
occurrence probability of each grey level at all possible
neighbor positions, which are called also displacement
configurations (see Figure 5). The synthesis algorithm
is based on the consideration that two textures look
similar if their Aura matrix distance is within a certain
threshold. Aura matrix distance between two images
is defined considering their BGLAMs. This approach,
similarly to [17] and [15], produces a solid texture given
a set of oriented example textures. Usually two or three
axis-aligned example textures are enough to define the
anisotropic nature of a solid texture, nevertheless this
method supports an arbitrary number of input textures.
As previously introduced, the structure of a texture
is captured by the BGLAM. More precisely, given a
grey level image I quantized into G grey levels, and
considering the n x n squared neighborhood of a pixel
t, there are (n? — 1) = m possible BGLAMs, one for
each possible displacement configuration with respect
to t (see Figure 5). The BGLAM distance A; € REX¢ for
a given displacement configuration ¢ : 0 < ¢ < m is
computed as follows:
o Initialize A; with zero.
o For each pixel s belonging to I, consider its neighbor
k defined by the current displacement configuration
1.
o Increment A;[gs][gx] by 1. Where g; and g, are
respectively the grey levels of s and k.
« Normalize A;, such that Y5 Ali][j] = 1.
Then, the distance D(A, B) between two BGLAMs is
defined as follows:
i<m

D(A,B)= 3 |[A;~ B, @
=0

where [|A]| = 35 Afil[j].

This formula relates only two 2D textures. In the case
of solid texture synthesis, it has to be extended in order
to consider the distance of a voxel (with its volumetric
neighborhood) from a set of oriented slices. Such exten-
sion is the Aura matrix distance. Aura matrix distance is
defined by blending appropriately the BGLAM distances
between 3D slices and example textures. This method
can be generalized to support an arbitrary number of
example textures. As usual, the solid texture is initialized

(d)

Fig. 6. (a) Successful examples of textures synthesized
by Aura 3D synthesis [21] (see Section 3.3.4). (b) Effect
of convergence to a local minimum. (c) Independent syn-
thesis of decorrelated channels leads to visual artifacts
(courtesy of [23]). (d) An inconsistency generated by an
oriented structural texture.

with random noise, then the synthesis process consists
in minimizing the Aura matrix distance of each voxel
with respect to example textures. In detail, the algorithm
repeats the following steps:

o Choose randomly a voxel v.

o Among all possible grey levels 0...G — 1, select the
subset of candidates Cg that reduces the current
Aura matrix distance from example textures.

« Substitute the grey value of v, by choosing randomly
from Cg.

Since BGLAM works only with grey levels, as in [5],
color channels must be decorrelated in a way such that
the algorithm can work independently on each chan-
nel. The algorithm produces good results, especially for
structured textures (see Figure 6.a), we may assert that
this methods is the most general among the statistical-
based. On the other hand Aura 3D synthesis is not
interactive, and, since it decorrelates color channels, it
may lead to visual artifacts ( as in in [5]). It also may
produces inconsistencies in the case oriented structural
textures were used as exemplars.

3.4 Neighborhood Matching Methods

Pixel-based methods for 2D texture synthesis (previously
discussed in 2.3) have also been extended in order to
synthesize solid textures. Similarly to the 2D neighbor-
hood matching synthesis, the main intuition consists
of characterizing a voxel by using only its neighbors.
Again, the solid texture is produced by modifying a



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Fig. 7. Examples of solid textures produced by [24] (see
Section 3.4).

single voxel at a time, searching in the example texture
for the candidate which has a similar neighborhood.
While the underlying principles are the same, volumetric
synthesis entails novel problems:

o How to compare the 3D neighborhood of a voxel
with 2D pixel neighborhoods coming from example
textures.

o How to handle multiple oriented example textures
that concur to define a single voxel color.

Wei extended [8] to synthesize textures from multiple
sources [24]. This method, originally proposed to synthe-
size 2D textures by mixing multiple sources, is modified
to create solid textures from a set of oriented slices. As
in [17], [15], [21], the user defines the appearance of the
solid texture along its principal directions by providing
a set of axis-aligned slices T’;,T),,T.. For each voxel v,
the best-matching pixel from the example textures is
selected by using 3D slices. As in [8], three candidate
colors pg,py,p, are selected by minimizing the energy
function E, defined as the squared differences between
3D slices and 2D neighborhoods:

Eo(v,p2) = v = pal” + |11z — N(pa)|I%; 3)
Ey(v,py) = v _pyH2 + Iy — N(py)||2§ 4)
E.(v,pz) = |lo = pz|* + II- = N(p:)[1%; ®)

where p,,p,,p. are pixels chosen form the respective
example textures T, Ty, T., and N(p;) represents the 2D
neighborhood of a pixel p;. A voxel’s color is finally
assigned by averaging the candidate colors ps,py,p..
The synthesis process starts with a block of noise and
runs over voxels changing the colors. As in [8], the
entire process is performed in a multi-resolution fashion
by using Gaussian pyramids. This method is simple
to implement but, as shown in Figure 7, the resulting
textures may exhibit some blurring and have difficulty
to preserve patterns that are present in the example
textures.

3.5 Optimization-Based Methods

The 2D optimization-based texture synthesis method [13]
(see Section 2.5 for details) has been extended by Kopf et
al. [23] to synthesize solid textures. As in [13], the main
goal of this method is to make the solid texture look
like the 2D example texture by globally minimizing an
energy function.

For the case of solid texture synthesis, the global energy

equation Er is reformulated in order to consider a 3D

neighborhood:
2 > |

vi{e}) = Ey " (6)
v ie{x,y, z}

Where the voxel v iterates across the whole solid texture,
Sy,; are 3D slices at voxel v, and E,; are is the 2D
neighborhood of the candidate for the voxel v, coming
from the exemplar image ¢. Minimization is performed
by using again the same Expectation-Maximization pro-
cess of the 2D case, which consists of two main phases:
o Optimization phase
Keeping E, fixed, minimize Er by modifying S*.
In other words, the color of a voxel S? is modified
to resemble locally, as much as possible, to the
precomputed candidate.
By setting the derivative of Er with respect to S” to
zero, it turns out that the optimal value for a voxel
is expressed by the following weighted sum:

Zie{g,"y,z} ZMENT(U) wuwivauJ»U

Sy =
Z:ie{ﬂv,y,z} ZueNi(v) Wy, 3,0

D

where N;(v) are the different slices forming the 3D
neighborhood of the voxel v.

o Search Phase
Keeping S, fixed, minimize Er by updating FE,,.
For each synthesized pixel v, the corresponding
candidate E, is updated by using best-matching
neighborhood search in the exemplar image.

Since this minimization process takes in account only
local information, it may converge to a local minimum.
To take into account global statistics, [23] proposes to
modify weights of equation 7 using the histograms of
the synthesized texture and the exemplar images. More
precisely, they reduce the weights that increase the differ-
ence between the current histogram and the histograms
of the example textures.

Starting from a solid block initialized by choosing
colors randomly from the example textures, the synthesis
is performed in a multi-resolution fashion. To enforce
preservation of strong features, it is possible to include
a feature map in the synthesis process.

The ability of this method to preserve sharp features

is superior if compared with earlier works (see Figure
8.(c)). Moreover, using a user-defined constraint map, it
is possible to tune the minimization to create predefined
patterns (see Figure 8.(b)).
Since the optimization is performed globally, this
method requires to synthesize the entire volumetric data.
Furthermore, the time needed for the minimization pro-
cess is very long (from 10 to 90 minutes to synthesize a
1283 block).

3.6 Order-independent / Parallel Methods

Dong et al.[25] proposed a method to synthesize solid
textures called “lazy solid texture synthesis”. The main
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[24]

(21] (23]

Fig. 8. (a) Comparison of different methods in solid tex-
ture synthesis from 2D exemplars. [23] preserves sharp
features, while [24] and [21] introduce blurring. (b) An ex-
ample of constrained synthesis. (c) Examples of surfaces
carved from a texture block synthesized using [23] (see
Section 3.5).

Fig. 9. The candidate of [25]. Left: Three exemplars
composing a candidate. Right: The overlap region defined
by a candidate (see Section 3.6).

advantage provided by this method is the possibility to
synthesize textures in parallel, which makes it partic-
ularly suitable for interactive simulations such as real-
time fracturing or cutting. More precisely, two main
characteristics make this method suitable for real time
applications:

o Parallelism
The algorithm can be parallelized. The authors pro-
pose a GPU parallel implementation that provides
real-time synthesis.

o Granularity of the synthesis
Thanks to its locality, this algorithm can synthesize
a small subset of voxels near to a visible surface
instead of synthesizing the whole volume.

Similarly to neighborhood matching methods [24], the

algorithm proceeds by substituting each voxel of the out-
put solid texture with a candidate chosen from example
textures, which has a similar neighborhood. A candidate
is a 3D neighborhood created by selecting slices from the
exemplar images . The cardinality of possible candidates
is huge if we consider that we can create candidates
by combining triples of 2D neighborhoods selected from
example textures. To speedup the computation, [25] ex-
tends the k-coherence algorithm [26] to the 3D case.
In a preprocessing step, for each pixel of the exemplar
images, they assemble a candidate set. This set is initially
composed by using the pixel itself and two pixels coming
from the other exemplar, along with their respective 2D
neighborhoods. Then, each candidate set can be reduced
by pruning candidates that produce color incoherences.
More precisely, each candidate can be classified accord-
ing to two metrics:

o Color Consistency
Given that each candidate defines an overlap region
(see Figure 9), color consistency is measured as the
coherence of a candidate along its overlap region.
Based on similarity of colors, it is evaluated by
summing squared color differences in the overlap
region.

o Color Coherence
It is the ability of the candidate to form coherent
patches from example textures. It is evaluated by
considering the amount of neighboring pixels that
form contiguous patches.

During the synthesis process, the algorithm maintains

for each voxel a triple of 2D texture coordinates referring
to exemplar images. The color of a voxel is defined by
the average of the three colors referred by such texture
coordinates.
The synthesis is performed in a multi-resolution fashion,
from coarse to fine level, by using Gaussian pyramids.
Starting from an initial block, which is formed by tiling
the best candidate for each pixel, the synthesis pipeline,
as in [10], is divided into three main steps:

o Upsampling

This step is used when the algorithm switches to
a finer resolution level. Upsampling is simply per-
formed by texture coordinate inheritance.

o Jittering

It introduces variance in the output data. It is pe-
formed by deforming colors in the solid texture.

o Correction

It makes the jittered data look like example textures.
For each voxel, a 3D neighborhood is extracted from
the solid texture. Then, according to k-coherence, a set
of candidates is defined as the union of the different
candidate sets referred by texture coordinates. The
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g \
NN
Fig. 10. Some examples of solid textures synthesized by

lazy solid texture synthesis [25] using single or multiple
exemplars. (see Section 3.6).

search for the best match is limited within such
space. Similarity, as usual, is measured as squared
difference of color values. Once the best match is
found, texture coordinates are substituted.

To enforce parallelism, the whole synthesis process

must be independent with respect to the order in which
voxels are processed. To achieve order-independency, as
in [9], [10], synthesis is performed considering the data
that has been evaluated on the previous step.
As previously stated, thanks to the locality of the data
involved in the process, it is possible to synthesize
on demand a block of voxels instead of synthesizing
the complete volumetric dataset. The granularity of the
synthesis is limited by neighborhood size. It follows
that, when one wants to texturize a triangle mesh, the
synthesis can be limited to a solid shell following the
surface. As shown in Figure 10, this method produces
nice results for a wide variety of input textures.

4 BOUNDARY-DEPENDENT SOLID TEXTURES

Boundary-independent methods do not adapt the color
information to the object’s boundary. Alternatively, the
object’s volume can be used as the domain on which

r—

BB

Fig. 11. Examples of layered textures created by [27] (see
Section 4).

~

the synthesis is performed, and the interior texture can
conform to the known texture on the boundary or the
known shape of the boundary: we call this class of
approaches boundary-dependent. The main challenge of
boundary-dependent methods consists of creating an
appropriate representation of the object’s volume and
use it as the synthesis domain.

Since in boundary-dependent methods the synthesis
process is constrained by the boundary surface, it is
possible to obtain interesting effects, such as orient-
ing the textures to follows the surface’s shape, or to
define a layered texture. Boundary-dependent methods
are, in general, semi-automatic: the user specifies some
appearance property of the object and the system infers
how to synthesize the interior. Furthermore, the existing
methods do not need to store explicitly the color of each
voxel, as it is implicitly defined by the domain model.

We consider [27] as the first example of boundary-
dependent synthesis method. In this method, the interior
of on object is defined by using a simple scripting
language that allows the definition of nested textures.
This effect is realized by using a signed distance field.
Despite the interesting results shown in the paper, tex-
tures are generated procedurally, so the set of possible
appearances is limited.

41

Owada et al. proposed a novel boundary-dependent
method to model the internal appearance of an object
[28]. The user specifies the interior of an object by using
a browsing interface and a modeling interface. The browsing
interface is a model viewer that allows the user to
visualize the internal structure of an object (See Figure
12.a). The user freely sketches 2D path lines on the screen
to specify the direction along which the object should
split. These paths are projected onto the 3D mesh to
define cross-sections. Once the surface is split into two
parts, its internal surface is re-triangulated, according to
the split section, such that internal appearance can be
finally rendered.

The modeling interface provides an intuitive way to
specify the internal structure of the model. When an
object reveals its internal surface it is possible to specify
a texture for each closed volumetric region. That allows,
for example, to define multiple appearances in the case
that the domain contains multiple closed regions (see
Figure 12.e). That information is used, together with the
triangle mesh, to perform synthesis on cross-sections.

Volumetric lllustrations
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Fig. 12. (a) The browsing interface of [28] (see Section
4.1) (b) Isotropic texture. (c) Layered texture. (d) Oriented
texture. (e) Example of subdivided domain (bone and
meat) modeled by [28].

More precisely, once each region of the mesh is linked
with the respective example texture, then cross sections
can be synthesized on-the-fly using a 2D synthesis al-
gorithm. That operation requires the parametrization of
cross-sections, since no volumetric textures are created.

The system allows the use of three different kinds of
textures:

o Isotropic textures
Such textures do not depend on the surface; they
can simply be synthesized in the parametric space
of a cross-section using a standard 2D synthesis
algorithm such as [8] (see Figure 12.b).

o Layered textures
Their appearance changes according to depth. A
smooth 2D distance field is calculated in the cross-
section. Then, synthesis is performed using 2D tex-
ture synthesis algorithm, but with some texture
variation according to a distance field (see Figure
12.0).

o Oriented textures
Such textures have distinct appearance in cross-
sections that are perpendicular and parallel to a flow
orientation (an example of oriented texture is shown
in Figure 12.d). The user defines by sketching a main
flow direction, and the system uses this vector to
orient a 3D flow field defined inside the volume. A
reference volume is synthesized simply by sweeping
the texture image along the y direction. This ref-
erence volume is used, together with the 3D flow
field, to texturize properly the cross-section. A 2D
neighborhood matching texture synthesis technique
[8] is used to synthesize colors of the parameter-

Fig. 13. The synthesis pipeline of [29] (see 4.2 ) : using
an interactive editor, photos of internal surfaces of real
objects are placed in the local reference frame of a 3D
model. Then, after a preprocessing step, it is possible to
color internal surfaces with highly realistic texture, or to
carve 3D models out of organic objects in real-time.

ized cross-section. To make the synthesis process
dependent on surface orientation, the neighborhood
search step should be modified as follows: Given a
pixel p, with normal n, the set of candidates used in
coherent search is formed by slicing patches of the
reference volume along planes orthogonal to n.

As shown by Figure 12, the user can easily produce
nice results with some mouse clicks. Thanks to the user-
friendly interface, this method is an interesting solution
for producing scientific illustrations (useful in medicine,
biology or geology). However, the expressive power of
the method is limited.

4.2 Texturing Internal Surfaces from a Few Cross
Sections

Pietroni et al. proposed to capture the internal structure
of an object by using a few photographs of cross-sections
of a real object [29]. In a preprocessing step, the user
places the cross-section images in the local reference
frame of the 3D model, and the images are initially
smoothly deformed to fit with the models boundary.
Then the synthesis is performed in real-time by morphing
between the different cross sections.

Splitting iteratively a 3D object with planar cuts pro-
duces a BSP tree, which constitutes the interpolation
domain on which colors are synthesized. Since cross
sections can intersect, then they may be subdivided
in several planar sub-domains, which are, individually,
topologically equivalent to a disk. Therefore, the whole
object’s volume is split among the different regions
defined by the BSP tree. Each region is bounded by a
set of planar sub-domains and, possibly, a portion of
the external surface. The color of a point is a function
of the different planar sub-domains defining the BSP
region on which such point falls into (See Figure 13).
More precisely, each voxel that has to be synthesized
is projected onto each sub-domain bounding its BSP
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Fig. 14. Example of real-time synthesis for cutting simu-
lation using [29] (see 4.2).

region, identifying a set of source texels. Such projection
is defined by a path-line field emanating from each sub-
domain and smoothly covering the entire BSP region,
possibly following the external boundary’s shape.

Pairwise bijective mapping functions, called warpings,
relate the exemplars that bound common BSP regions.
More precisely, warpings minimize the feature misalign-
ment between pairs of images. Pairwise warpings are
computed in a preprocessing step by using an extension
of the algorithm defined by Matusik et al [30]. Warping is
used to morph between the different source texels such
that sharpness is preserved. The morphing formulation
proposed by [30] is approximated in order to synthesize
colors in real time.

The color ¢(v) of a voxel v is defined as:

c(v) =Y wic; (Pi + (ijWz-;l(Pi))), ®)
i J#i
where p; are the different source texels whose colors are
identified by the function c¢;; W' is the inverse of the
warping function; and weights w; are calculated by using
Shepard interpolation w; and normalized such
Finally, in order to reintroduce high frequencies
present in the original image, a histogram matching
approach is adopted, based on local neighborhoods. This
histogram matching can be efficiently performed in real
time.
Once the warping is precomputed, we can summarize
the real-time synthesis pipeline for a voxel v as follows:
o First, identify the region of the BSP tree in which v
falls into;
o Then v is projected onto the different planar sub-
domains in order to identify source texels p;;
o The color of v is determined by equation 8;
o A local histogram matching is finally used to en-
hance features.
As shown by Figure 14, this algorithm captures global
and medium-scale features, reintroducing small features

_ 1
lv=pil

Fig. 15. 2D Lapped textures [31] (see Section 4.3): (a)
The continuous tangent field and the 2D patch. (b) The
local surface parameterization. (¢)&(d) Some results.

through local histogram matching. The synthesis can be
performed in real time since the algorithm can synthe-
size a 141 x 141 image/sec (on a 1.7 GHz Intel Centrino
processor and 1 GB of RAM, [29]). Since the method
is based on morphing, it works well with highly struc-
tured textures, while it cannot synthesize a stochastic
3D distribution of features, as in [19]. Furthermore it
requires the base domain mesh should be closed (at least
in correspondence with cross sections) in order to fits the
example textures correctly within the geometry.

4.3 Lapped Solid Textures

Lapped textures [31] is a technique to synthesize textures
on surfaces. It consists mainly of overlapping properly
a set of irregular patches to cover the entire surface.
Figure 15 illustrates how lapped textures work: by using
a continuous tangent field and a 2D patch (Figure 15.a),
the surface is locally parameterized (Figure 15.b), so that
it is possible to texturize it by repeatedly pasting patches
(Figure 15.c and Figure 15.d). The method does not
require storing explicitly the color, since it is implicitly
defined by texture coordinates.

Takayama et al.[32] propose to extended lapped tex-
tures to fill volumes instead of surfaces. The basic con-
cepts behind the 2D and the 3D versions are similar. As
already mentioned, 2D lapped textures paste irregular
patches over triangles, and similarly 3D lapped textures
paste and blend solid texture patches over tetrahedra.
Moreover, 2D lapped textures use a tangent field on
the surface to orient textures, and similarly 3D lapped
textures use a smooth tensor field (three orthogonal
vector fields) along the volume to arrange solid patches.
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Fig. 16. Classification of solid texture appearance accord-
ing to [32] (see Section 4.3).

Furthermore, like in 2D lapped textures, 3D lapped
textures require storing only the 3D texture coordinates
of each vertex belonging to the tetrahedral mesh. Fi-
nally, in order to avoid artifacts in the final texturing,
[31] propose to use a “splotch” alpha mask (shown in
Figure 15), while the 3D lapped-textures algorithm uses
a volumetric alpha mask to produce a “splotch” shape.

[32] classify solid textures by considering both their
anisotropy and variation (See Figure 16). Anisotropy level
describes how the appearance of a cross section varies
with respect to the orientation of the slice, while variation
level expresses the number of directions along which the
texture changes. The tileability of the texture depends on
the variation level, i.e., a solid block is tileable along the
directions that preserve the appearance.

The user first selects the appearance class (according
to a table) he or she wants to model. Then, if required
by the texture class, the user specifies directions by
sketching strokes (the interface is similar to the one
in [28]). In case the solid texture is anisotropic, the
system creates a consistent global tensor field to force
the texture to follow the orientations. The tensor field
is calculated by Laplacian smoothing of user-defined
directions along the tetrahedral mesh. The algorithm can
be summarized as follows: Initially, a patch is pasted by
the user in the object’s volume; then, tetrahedra that are
inside the alpha mask are marked as “covered”; then
the “covered” region is expanded until it mdudes the
entire tetrahedral mesh, by repeatedly pasting patches.
Each pasting operation implies that covered tetrahedra
must be transformed in texture space according to the
tensor field, such that it is possible to assign per-vertex
3D texture coordinates.

This method can model a wide variety of textures
(as shown by Figure 17), and requires low memory
consumption. However, it has one strict requirement: the
initial set of solid textures has to be provided a priori,
together with alpha masks.

(0) (d)
Fig. 17. Lapped solid textures [32] (see Section 4.3):

(a) The alpha mask with “splotch” shape used to modify
the shape of volumetric samples used for the synthesis

process. (b) & (c) & (d) Examples of results.

5 DiIScussION

There are similarities and differences between boundary-
dependent and boundary-independent methods.

o Reusability

Solid textures produced by boundary-independent
algorithms can be reused to color every possible
surface. Indeed, by simply embedding any object
into the solid texture domain (which is typically a
cube) one may derive the color information.
Boundary-dependent methods are designed to be
strictly coupled with the object on which they
are defined. However, it is possible to make them
reusable. For example, for sake of clarity, if we
use a cube as external boundary we can generate
a homogeneous texture volume, then, in a further
step, by simply embedding a generic object into
such cube, we can define its internal appearance
with an approach similar to boundary-independent
methods. Unfortunately, such strategy does not ex-
ploit the main advantages provided by boundary-
dependent methods.
Furthermore, it is important to notice that to build
the spatial structures needed to use boundary-
dependent methods, the boundary geometry should
be well conditioned. For example, to apply [28],
the geometry has to be subdivided, in order to
synthesize from multiple exemplars, and closed,
to parameterize the internal surfaces on which 2D
synthesis is performed. In the case of [29], the ge-
ometry has to be closed, at least in correspondence
with cross sections, while to apply [32] it must be
tetrahedralized.

o User interaction and controllability
Boundary-independent solid texture creation is,
usually, completely automatic. With example-based
methods, once the user has provided the exam-
ple texture, the system automatically constructs the
solid texture. In the case of procedural methods the
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user may directly control the final result by tuning
parameters.

Boundary-dependent methods often require some
user-interaction. For example, [28] and [32] may ask
the user to provide a direction to orient textures
inside the volume, while [29] requires the user to
place the cross sections onto the 3D model. That is
not necessarily a drawback since they empower the
user with an interface to design the final appearance
of the solid texture.

Boundary constraints

Boundary-dependent methods conform to bound-
ary constraints. This means it is possible to obtain a
large variety of volumetric effects including layered
textures or textures that follow the shape of the
object. That is, precisely, one of the main aspects that
has motivated researchers to develop such methods.
In particular, [28] and [29] focus on interaction and
provide user control.

The distinction between boundary-independent and
boundary-dependent methods can become fuzzy if
boundary-independent methods are extended to use
some sort of guidance that considers the object’s
boundary. For example, in [23], the synthesis can
be constrained by a 2D mask which approximates
the external boundary of an object. Also, [24] and
[25] may be extended to synthesize from multiple
sources according to a given mask. That strategy
allows boundary-independent methods to create
layered textures. Furthermore, given a 3D tangent
field it may be possible to orient the synthesis. In
particular, if such tangent directions follow an ob-
ject’s shape, consequently the synthesis will follow
such shape.

In general boundary-independent methods do not
have any intrinsic limit to conforms to bound-
ary constraints. On the other hand, most of the
boundary-dependent methods have been designed
with the modeler in mind, providing the user an
intuitive interface to control the final appearance
based on the object’s shape.

Distortion

Boundary-independent methods introduce no dis-
tortion. Since the solid texture is explicitly main-
tained as a volumetric grid of values, then one may
obtain the color of each point belonging to such do-
main through trilinear interpolation, introducing no
distortion. On the other hand, boundary-dependent
methods use auxiliary spatial data structures as
metaphors to represent the domain volume and to
retrieve color information. For example, [28] relies
on a planar parameterization of the surface that has
to be textured, [29] needs a projection step onto the
cross sections, while [32] uses 3D texture coordinates
to repeatedly paste an example solid texture over
a tetrahedral mesh. All the operations cited above
may introduce, in different ways, a certain quantity
of distortion.

We have seen that the two classes of methods pro-
posed so far have pros and cons, and there is no ap-
proach valid for all goals. We think that an interesting
subject for future research could be to find an approach

for

synthesizing and representing solid textures that

might combine the benefits of both classes of methods.
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