

Apparent Contrast and Brightness Enhancement

Karol Myszkowski MPI Informatik

- Image display
 - Limited dynamic range of existing display technology
 - Cannot match to physical contrast and brightness of real world scenes
 - Physical match not really required for good reproduction of image appearance
- Modern tone mapping operators good at optimizing the physical contrast and luminance use
- Human preference
 - Enhanced contrast and brightness improve image appearance
- Can we still boost the contrast and brightness impression?

Human perception

Spatial vision

 Image appearance can be strongly affected by skillful introduction of intensity gradients between neighboring pixels

- Cornsweet illusion
 - Apparent contrast boost

- Glare illusion
 - Apparent brightness boost

Contrast Enhancement: Motivation

HDR image

(reference)

tone mapping result

- Usual contrast enhancement techniques
 - either enhance everything
 - or require manual intervention
 - change image appearance
- Tone mapping often gives numerically optimal solution
 - no dynamic range left for enhancement

Overview

Measure
Lost Contrast
at Several
Feature Scales

Enhance
Lost Contrast in
Tone Mapped Image

communicate lost image contents

maintain image appearance

Cornsweet Illusion

- Create apparent contrast based on Cornsweet illusion
- Countershading
 - gradual darkening / brightening towards a contrasting edge
 - contrast appears with 'economic' use of dynamic range

Details of Contrast Illusion

- Contrast between areas caused by luminance profiles
- 2. Properties:
 - shape of the profile matches the shape of the enhanced feature
 - amplitude of the profile defines the perceived contrast
 - noise (texture) does not cancel the illusion
 - profiles should not be discernible

Construction of Simple Profile (1/2)

Construction of Simple Profile (2/2)

Well preserved signal is exaggerated by unsharp masking

Correct Profile for Textured Area

- Profile constructed directly from the reference image contains high frequency features which exaggerate texture
- Sub-band components allow to select features
 - high frequency component present only at high contrast edge

Multi-resolution Contrast Metric

Reference HDR Image

Measure
Lost Contrast
at Several
Feature Scales

$$C_{l} = \frac{|Y - Y_{mean}|}{Y_{mean}}$$

Tone Mapped Image

$$R_l = \frac{C_l^{inp}}{C_l^{ref}}$$

Contrast ratios at several scales

Link: Contrast Metric & Profiles

- 1. Contrast ratio at each scale defines the sub-band amplitude (blue)
- 2. Contrast for larger scales appears also on smaller scales
 - the full profile is always reconstructed (red)
- 3. Scale of contrast measure defines the profile size

Formula: Countershading Profile

- 1. Contrast ratio R_l on scale l drives the amplitude of sub-band component profile at size l
- 2. Sum of N sub-band components gives the countershading profiles P that match the contrasts in the reference image

Adaptive Countershading

final contrast restoration

progress of restoration

Objectionable visibility of countershading profiles

Visual Detection Model

Luminance masking

- absolute luminance level L defines minimum perceivable
 luminance difference ΔL
- defined by t.v.i. functions

Spatial contrast sensitivity

contrast sensitivity

- reduced sensitivity to low frequencies
- defined by CSF functions
- improved by supra-threshold measurements of Cornsweet profile

sensitivity to Cornsweet profile

Hiding Countershading Profiles siggraphasia2011 Hong Kong

- Contrast masking
 - existing contrast masks new signals of similar orientation and frequency
 - defined by a power function of contrast present in an area
- Essential improvement
 - previous models allow for rather small amplitudes of profiles

Limits of Countershading Profiles

- Measurements plot for the Cornsweet effect
 - contrast at the profile edge (x) and the matching contrast at the step edge (y)
- Masking allows for stronger enhancement
- Maximum correction depends on profile size
 - natural images unlikely require correction of a large contrast with a small profile

Adaptive Countershading

without visual model

with visual model

Restoration of TM Images (1/3)

(a) global tone mapping

(b) contrast equalization tone mapping

Restoration of TM Images (2/3)

Restoration of TM Images (3/3)

C-shading vs. Unsharp Mask

Countershading Variants

- Traditional countershading
 - performed in the achromatic channel to enhance perceived luminance contrast

Cross-modal approach

- Use depth signal to derive countershading profile
- Countershading over chromatic channels enhances the overall image contrast

Color2Grey:

- dimensionality reduction 3->1: may lead to information loss
- countershading in the achromatic channel used to reproduce lost chromatic contrast

Purpose: Contrast Restoration

Measure
Missing Contrast
at Several
Feature Scales

Luft et al. SIG2008

Depth Map as Contrast Reference

adaptive countershading

depth darkening [Luft2006]

Luft et al. SIG2008

Colourfulness Countershading

- "Strasbourg": Gradient method tone mapping, strong global contrast loss so strong restoration effect.
- Colourfulness contrast at border between sky and buildings
 - promotes FG/BG separation
 - creates impression of greater dynamic range
 - increases impression of depth

Countershading Results (original)

Countershading Results (chroma enhancement)

 Isoluminant color pattern transformed to grey G using Helmholz-Kohlraush effect, which takes into account the contribution of chromatic component into brightness

Figure 1: Lightness values from various H-K effect predictors applied to a spectrum of isoluminant colours, compared to $CIE\ L^*$.

ullet G'_{L^*} : The effect of adding multi-resolution countershading correction $h_i(G_{L^*})$ (upper-left) to the greyscale image G_{L^*} (lower-left)

$$G'_{L^*} = G_{L^*} + \sum_{i=0}^{n-1} k_i \lambda_i h_i(G_{L^*})$$

The correction is driven by contrast in chroma channels of the original image *I* (*upper-left*)

$$\lambda_i = \left(\frac{\Delta E(h_i(I))}{|h_i(G_{L^*})|}\right)^p$$

Smith et al. EG2008

Smith et al. EG2008

Countershading in 3D?

3D Cornsweet Illusion

Purves-Lotto illusion: much stronger effect in 3D

Scene-aligned Countershading

S. Dalí, Landscape with butterflies

Scene-aligned Countershading

G. Seurat, Bathers at Asnieres

3D Unsharp Masking

3D Unsharp Masking

3D unsharp masking

Original image

3D blurred signal

Enhancement signal

Mesh

2D unsharp masking

Adjustable Effect

Width σ

x = 0.23 (13AD)

2D vs. 3D Unsharp Masking Comparison

2D

Signal

Smoothing

Representation

Smoothness of

Strength \(\lambda \)

Image

(Gaussian) Image Blur

Pixels

Image distance

Factor

3D

Lit Surface

Laplacian Surface Blur

Lit vertices and pixels

Geodesic world distance

Factor

3D Unsharp Masking: Scene Coherence SIGGRAPHASIA2011 HONG KONG

Complex Mesh

3D unsharp masked rendering

Original rendering

Ritschel et al. SIG2008

Enhanced Text Contrast in the Shadow SIGGRAPHASIA2011 HONG KONG

3D unsharp masking

Original image

3D blurred signal

Enhancement signal

Mesh

Results – Legibility

Normal Enhancement

Only geometric term

- Shadows?
- Hightlights?
- Reflectance ?
- Vertex resolution
- 3D unsharp masking: Pixel resolution

Cignoni et al. '05, C & G Vol. 29

Exaggerated Shading

Object enhancement

- Illuminate each vertex at grazing angle
- Improves geometry understanding
- Highlights?
- Shadows?
- Scene enhancement
 - Change everything
- Both have applications

Rusinkiewicz et al., SIGGRAPH'06

Specular Shading

- Goals
 - Find suitable settings
 - See limitations
 - Rank preference
- Method of adjustments
 - Strength λ : adjustable
 - Fixed width σ: low, medium, high
 - 4 scenes, 15 participants
 - Task: Find such λ that:
 - 1.Added enhancement is *just noticeable*
 - 2.Added enhancement becomes *objectionable*
 - 3.Image appearance is preferred

- 2 JND
 - preferred
- 4 JND
 - objectionable

Better communicate image contents with a minimal change to image appearance

- Application of Cornsweet illusion to image enhancement
 - Generalization of unsharp masking
 - Automatic enhancement given the reference data:
 - HDR image
 - depth information
 - shading in 3D scene
 - Scene consistent 3D unsharp masking leads to even stronger effects

Glowing effect [Zavagno and Caputo 2001]

Glare Illusion

"Alan Wake" © Remedy Entertainment

Glare Illusion in Different Media

Arts

Computer Games

Photography

- Simple approximation: convolution with Gaussian
- Already does a good job in conveying brightness

Yoshida *et al.* (2008)

Kawase, Practical Implementation of High Dynamic
 Range Rendering, Game Developer's Conference 2004

Glare in Realistic Rendering

- Optics-based models for rendering glare illusion
 - [Nakamae et al. 1990]
 - [Rokita 1993]
 - [Ward Larson et al. 1997]
 - [Kakimoto et al. 2004, 2005]
 - [Van den Berg et al. 2005]

[Spencer et al. 1995]

Psychophysical Experiment

- Goal
 - Measuring the brightness boosts caused by glare illusion
- 2 methods, 6 patterns for each
 - Gaussian: blurring kernel
 - Cheap approximation
 - Spencer et al.: human eye's PSF (disability glare)
 - Optical correctness
- 10 subjects
 - 20 minutes per person
- Barco Coronis Color 3MP Diagnostic Luminance Display (max. 430 cd/m²)
- Dimly illuminated room (60 lux)

Stimuli

Perceptual Experiment

Task: Adjust the target disk luminance as close as possible to that of the reference but slightly yet visibly darker/brighter.

Method I (Gaussian)

Method II (Spencer et al.)

Trade-offs

Dynamic Glare

- Realism
 Colorful haloes around bright lights by camera or eyes
- Temporal glare
 Changes over time (in eyes)
- Motivation
 Model of dynamic human eye to simulate temporal glare
- Can temporal glare boost even further boost brightness?

Ritschel et al. EG2008

Point spread function

- PointSpreadFunction
- Key to glare modeling
- Describes, how
 a pixel maps to
 a pattern under
 an aperture

Our Simplified Model

Diffraction: Single vs. Multi Aperture Planes

$$L_{i}(x_{i}, y_{i}) = K \left| \mathcal{F} \left\{ P(x_{p}, y_{p}) E(x_{p}, y_{p}) \right\}_{p = \frac{x_{i}}{\lambda d}, q = \frac{y_{i}}{\lambda d}} \right|^{2}$$

$$K = 1/(\lambda d)^{2}$$

$$E(x_{p}, y_{p}) = e^{i\frac{\pi}{\lambda d}(x_{p}^{2} + y_{p}^{2})}$$

SIGGRAPHASIA2011 HONG KONG

Diffraction: Fraunhofer vs. Fresnel

$$L_{i}(x_{i}, y_{i}) = K \left| \mathcal{F} \left\{ P(x_{p}, y_{p}) E(x_{p}, y_{p}) \right\}_{p = \frac{x_{i}}{\lambda d}, q = \frac{y_{i}}{\lambda d}} \right|^{2}$$

$$K = 1/(\lambda d)^{2}$$

$$E(x_{p}, y_{p}) = e^{i \frac{\pi}{\lambda d} (x_{p}^{2} + y_{p}^{2})}$$

Temporal Glare Pipeline

Aperture: Pupil

Adaptation

- Can convert HDR image into pupil size
- Pupillary hippus:
 Strong contrast between glare source and background
- Stronger for smaller pupils, i.e. bright conditions

Aperture: Pupil

Aperture: Lens

Aperture: Lens

Aperture: Gratings / Lens fibers

Aperture: Gratings / Lens fibers

Aperture: Vitreous Humor

Aperture: Vitreous Humor

Aperture: Eyelashes (optional)

Chromatic Blur

- Compute one wavelength Get others for free!
- They are scaled copy of base wavelength, i.e. 575 nm (approximation)

$$F_{s}(\mathbf{x}) = \sum_{i=0}^{n-1} s(\lambda_{i}) F_{575 \text{ nm}}(\mathbf{x}_{i})$$

$$\lambda_{i} = 380 \text{ nm} + i \frac{770 \text{ nm} - 380 \text{ nm}}{n}$$

$$\mathbf{x}_{i} = \mathbf{x} \frac{575 \text{ nm}}{\lambda_{i}}.$$

Convolution

Convolution

Convolution

Billboard

SIGGRAPHASIA2011 HONG KONG

Temporal Glare Pipeline

Results: Study

- Two-alternative-forced-choice (bright, attractive, real)
 ^{10 subjects}
- Method of adjustment
 4 subjects

- Two-alternative-forced-choice (bright, attractive)
 10 subjects
- 2. Method of adjustment: dynamic glare ~5% brighter

SIGGRAPHASIA2011 HONG KONG

Summary/Limitations

- Glare illusion might boost apparent brightness up to 30%
- Comprehensible model of light scattering in the eye taking into account dynamic eye elements
- Real-time rendering
- Model might miss important parts
- Model might contain unimportant parts
 - No differential study
- Other temporal low-level eye physics like
 - Floaters
 - Local adaptation ("After images")

Acknowledgements

I would like to thank Grzegorz Krawczyk, Tobias Ritschel, Kaleigh Smith, Akiko Yoshida, and Matthias Ihrke for help in preparing slides.

