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Figure 1: (Left) An input mesh of quads induces a cross field with an entangled graph of separatrices defining almost eight thousand
domains; (center) the graph is disentangled with small distortion from the input field to obtain just twenty parametrization domains; (right)
parametrization is smoothed to make it conformal; an example of remeshing from the parametrization.

Abstract

We present a method for the global parametrization of meshes that
preserves alignment to a cross field in input while obtaining a para-
metric domain made of few coarse axis-aligned rectangular patches,
which form an abstract base complex without T-junctions. The
method is based on the topological simplification of the cross field
in input, followed by global smoothing.

CR Categories: I.3.5 [Computer graphics]: Computational geom-
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1 Introduction

Finding a high-quality parameterization f : D → M for a given
3D polygonal mesh M is a prerequisite in a number of applica-
tions, such as quad-based semiregular remeshing, texture mapping,
compression, fitting high order surfaces, physical simulations, tan-
gent space geometry processing, and even tasks outside computer
graphics, like physical modeling with metal sheets.

The definition of quality for f depends on the application, but usu-
ally encompasses criteria like injectivity, isometry (implying angle
preservation and area preservation), smoothness (continuity of gra-
dient vectors), and alignment of gradient vectors with geometric
features of M . This problem has been addressed with a wide arse-
nal of tools [Hormann et al. 2008] and good automatic results are

becoming increasingly common.

A recent trend is to first define a cross field C over M , and then
to find f such that its gradient vectors match C as much as pos-
sible. Interestingly, each of the criteria above can be redefined in
terms of desired properties of C. Thus the task is shifted from the
definition of a good parameterization to the definition of a good
cross field C for a given M . High quality parametrization can be
obtained following this approach [Ray et al. 2006; Bommes et al.
2009]. It is now appearent that the definition of a good cross field
C implies, among other things, the good placing of a few irregular
points (a.k.a. cone singularities). Irregular points tend to be needed,
for example, in places where M exhibits high Gaussian curvature.

In this paper, we focus on an important additional criterion for the
quality of f , which we refer to as the simplicity of domain D (see
below for an informal definition). Simplicity determines how much
a parametrization f will be effectively useful in most applications,
just as much as the other criteria listed above. As we will show, a
cross field C designed to satisfy all the above conventional criteria,
but not simplicity, will usually fail producing an acceptably sim-
ple domain. Still, it is often the case that a slightly modified cross
field C′ exists, which is able to generate a parametrization f with a
dramatically simpler domain, while preserving to a large extent the
other qualities of C. This work presents a way to obtain the cross
field C′, given C.

1.1 Objective: Domain Simplicity

For topologies of M other than the disk, the domain D must neces-
sarily include discontinuities (a.k.a. cuts, or seams): two infinitesi-
mally close points m0 and m1 of M lying of different sides of the
cut may be mapped by f−1 to arbitrarily distant positions d0 and d1

of D. The values d0 and d1 are often constrained to be reciprocally
associated with a “transition function” associated to that cut.

Simplicity of domain D is a concept encapsulating: how many dis-
continuities are needed (the fewer, the simpler); how simple the dis-
continuity lines are in D (e.g., straight axis-aligned lines are sim-
pler than curved or jagged lines); and also how constrained and
straightforward the transition functions are (the more constrained,
the simpler). For example, a domain D consisting of a single flat
unit square, with no seams, would exhibit the maximal possible
domain simplicity (possible only for disk-like M ). On the other
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extremum, a 2D packing of all single faces of M , each one laid
separately, would be so complex to make parametrization useless
for any practical purpose. When, like in our case, D is defined as
a collection of patches separated by cuts (also known as an atlas),
domain simplicity means to have fewer and more regularly shaped
patches, properly aligned and connected by simple transitions.

In our work, we consider the use of a domain D consisting of
a collection of n integer sized, axis-aligned rectangular patches
D0, D1, · · · , Dn (see Sec. 4). Rectangles have a side-to-side adja-
cency relation, mapping the entire side of a rectangle Di to the en-
tire side of another rectangle Dj , (i.e., there are no “T-junctions”),
thus making the transition between them straightforward. For small
n, this type of domains can be considered extremely simple, allow-
ing, for example, straightforward applications to tasks like regu-
lar remeshing at arbitrary resolutions, texture mapping, GPU based
computations in parametric space, and so on.

For a parametrization f strictly following a cross field C, the sim-
plest domain of this kind is determined by cutting M along the
separatrices connecting the singularities of C. Such separatrices de-
fine a graphG embedded onM , which may contain crossing nodes.
Even when C has relatively few singularities and separatrices con-
necting them, graph G can contain many crossing nodes and, thus,
it can induce a very high number of patches. This happens because
separatrices will often make long tours, crossing other separatrices
(or even themselves) a very large number of times. See the left side
image of Fig. 1 for an example.

1.2 Main contributions

The main contributions of this paper are:

1. A new general algorithm for simplification of the graph of
separatricesG generated by a cross field C. A modified cross-
field C′ is trivially induced from the simplified graph of sepa-
ratrices. Notwithstanding the dramatically simpler graph that
it generates, C′ is similar to C (see Sec 3).

2. A practical way to implement the above algorithm on a semi-
regular quad-mesh Q, taken in input as a way to describe C:
edges of Q are aligned with directions of C, and irregular
points of Q correspond to singularities of C (see Sec 3.8).

3. A new kind of parametrization domainD, consisting of a col-
lection of axis-aligned 2D rectangles with predefined side-to-
side manifold connectivity. This type of domain arises nat-
urally from a graph G induced by C, and it exhibits an high
degree of simplicity by construction. Global smoothing of an
existing parametrization defined over D, and quad remeshing
(see Sec. 4).

Contributions 1 and 3 could be adopted independently in different
scenarios. In the following, we integrate all three contributions in
a pipeline, ultimately aimed at parameterizing a semi-regular quad
mesh over a simple domain.

1.3 Overview

Our pipeline consists of the following phases:

1. Input: an initial semi-regular quad-based domain Q;

2. A graph of separatricesG is trivially extracted fromQ (Fig. 1,
left);

3. Graph simplification: a new “disentangled” graph of separa-
trices G′, defined over Q, is constructed from G (Fig. 1, cen-
ter);

4. A “simple” abstract domainD is constructed fromG′, as well
as an initial parametrization f : D → Q (see Sec. 4.4);

5. Global smoothing: parameterization f is globally smoothed
(see Sec. 4.4).

A new semi-regular remeshing (or embedded domain) Q′ can be
found by applying f to a regular sampling of D. Mesh Q′ is natu-
rally partitioned into few rectangular regions corresponding to the
various faces of D. See the image on the right side of Fig. 1.

2 Related work

Mesh parametrization has been studied thoroughly in the literature
(e.g. see [Hormann et al. 2008] for a survey). Here we consider
just those global parametrization works addressing simplicity of do-
main.

Geometry Images [Gu et al. 2002] map a whole triangular mesh
onto a squared parametric domain. However, this mapping is possi-
ble just for surfaces of genus zero, and mapping can be affected by
a large amount of distortion. Distortion can be reduced with Mul-
tichart Geometry images [Sander et al. 2003] where the domain is
decomposed into a set of irregularly shaped flat patches. Because
of their irregular borders, multi-chart geometry images have a com-
plicate handling of discontinuities. Polycube-maps [Tarini et al.
2004] produce a seamless parametrization by projecting the geom-
etry onto the faces of a polycube embedded in 3D space. Poly-
cube mapping provides a very compact yet simple representation,
and interpolating parametric positions involves just a simple 3D re-
projection operation. Although techniques for the automatic gen-
eration of Polycube-maps have been proposed [Lin et al. 2008],
generation of high quality embeddings still remains a manual task.

Methods based on mesh simplification [Lee et al. 1998; Kho-
dakovsky et al. 2003; Pietroni et al. 2010] automatically produce a
parametrization domain composed of a set of equilateral triangles,
producing very coarse domains. However they do not take into ac-
count alignment of parametrization to shape features or to a given
cross field. Moreover, they cannot be used to produce a quadrilat-
eral remeshing. Other recent methods [Dong et al. 2006; Daniels
et al. 2009] can produce simple parametric domains composed of a
set of adjacent quads. These techniques do not allow control over
the quad alignment. Spectral surface quadrangulation has been ex-
tended in [Huang et al. 2008] to take into account alignment to ge-
ometric features. However, methods based on Morse-Smale com-
plexes force the size of quad patches to be uniformly determined
by the underlying field. For this reason, as noted in [Huang et al.
2008], it is difficult to deal with cases with close feature lines.

Most recent approaches use a precomputed quadrilateral feature
aligned quadrilateral mesh, either directly modeled by a human, or
computed with methods such as Quadcover [Klberer et al. 2007],
PGP [Ray et al. 2006], Mixed Integer [Bommes et al. 2009], or
Standing Wave [Zhang et al. 2010], as a base to gather a simplified
parametric domain. Meshes generated automatically have a high
quality, but they usually contain far too many quads to be used as
parametrization domains for practical applications. Such meshes
may in fact provide an input for our method.

Motorcycle Graphs [Eppstein et al. 2008] partition a quadrilateral
mesh into a set of quadrilateral patches by allowing T-junctions. A
similar idea has been further exploited in [Myles et al. 2010] to im-
prove simplicity of the domain. This method exhibits a great degree
of adaptivity, i.e patches can vary noticeably their size over the sur-
face to conform to details at different scale. However the presence
of T-junctions complicates the structure of the parametric domain



and may hinder its use for several applications (see additional ma-
terials for a deeper discussion and comparisons).

Very recently, a method has been presented in [Bommes et al.
2011], to simplify the structure of a quadrilateral mesh while pre-
serving its alignment. The optimization method is based on an ex-
tension of the polycord collapse operations [Daniels et al. 2008]
and consists of a greedy application of grid preserving operators di-
rectly on the quad mesh, aimed at removing helical configurations.
Similarly to what we propose here, this method has also the effect
of simplifying the graph of separatrices induced by the quad mesh.
While the method of [Bommes et al. 2011] manipulates the under-
lying quad mesh, our method is defined in general for cross fields,
and it works directly on the graph itself, without changing the mesh
(see additional materials for further details).

Finally, the topology of vector and tensor fields has been studied in
the context of flow visualization techniques [Delmarcelle and Hes-
selink 1994]. In order to avoid visualization cluttering, many ap-
proaches for simplifying the topology of fields have been proposed,
like for example [Tricoche et al. 2001; Chen et al. 2008]. Our ap-
proach faces this task from a totally different (and complementary)
perspective: instead of targeting removal of critical points, we focus
on the problem of simplifying the graph of separatrix lines.

3 Cross-field topology simplification

In this section, we describe an algorithm to “disentangle” the graph
G of separatrices induced by an input cross field C, producing a
simpler but still consistent graph G′. This implicitly produces a
modified cross field C′ that has G′ as separatrix graph. We strive
to keep the differences between C′ and C small, even if G′ is dra-
matically simpler than G. Specifically, C′ and C share identical
irregular points (with the same indices). In terms of parametriza-
tion, as discussed, this means that we trade some alignment for a
simpler domain topology.

3.1 Preliminaries

Let C be a smooth cross field defined on a 2-manifold M . For
all general definitions and properties about cross fields, we refer
to [Ray et al. 2008]. We assume that C has only a finite set S of
isolated singularities. Each point of M , which is not a singularity
of S, will be said to be regular.

A streamline of C is a line on M that is tangent/orthogonal to the
directions defined by C at each point. A streamline with endpoints
at singularities is called a separatrix. Field C is regular within each
patch, i.e., patches are actually “gridded” by the streamlines of C.

For a singularity of index k
4

, there are exactly k − 4 incident sep-
aratrices. The network of separatrices is a graph embedded on
M , describing the topology of C. Separatrices cross at a finite set
X of regular points of M , called the crossing nodes. Only two
(possibly not distinct) separatrices cross at each node. Crossing
nodes subdivide separatrices into arcs of a set E. The planar graph
G = (V,E), where V = S ∪ X subdivides M into quadrangular
patches.

For each singularity v ∈ S, let s1, . . . , sk be the separatrices in-
cident at v, and let tv,si be the unit tangent vector of separatrix si

at v, pointing outwards v in the direction of s. Each vector tv,si is
called a port of v.

By design, the simplified graph G′ = (S ∪ X ′, E′) will have the
same set of irregular points, ports, and separatrices of the original
graph G = (S ∪ X,E). The objective of the simplification is the
reduction of the number of crossings |X ′| and, thus, of edges |E′|.

3.2 Graph energy

Given the graph G of separatrices, we aim at obtaining another
graph G′ = (V ′, E′) such that V ′ = S ∪ X ′, with |X ′| < |X|
and having the same features of G: nodes of S maintain the same
ports; nodes of X ′ are regular; patches induced on M are quadran-
gular; separatrices are smooth lines defined by chains of arcs.

We introduce a measure of “drift” and “extension” for a line l on
M . Drift δ(l) measures the misalignment of l with respect to C.
Extension η(l) measures the length covered by l following C.

Assume l is parametrized by arc-length: l : (0;λ(l))→ M , where
λ(l) is its total length. Let µ(t), t ∈ (0;λ(l)), be the unit vector
of C(l(t)) - one out of four - which is closest to ∇l(t), and θ(t) be
the angle between vectors µ(t) and ∇l(t). Then δ(l) and η(l) are
defined as:

δ(l) =
∫

l
| sin(θ(t))|dt, η(l) =

∫
l
cos(θ(t))dt,

We define the energy of a graph as the sum of the energies associ-
ated to all its separatrices. We define the energy of a separatrix s as
weighted sum of its extension and its drift:

kδ(s) + η(s)

with a parameter k setting the relative importance of the two terms.
The first term forces the graph to follow the original field C. The
second term is minimized when shorter separatrices are used, which
implies a simpler graph with less crossings. We could penalize di-
rectly the (discrete) number of crossings, instead of the separatrix
estensions. However, the two terms of energy as defined above use
the same unit of measure (metric length), thus making k indepen-
dent of rescaling. Parameter k is the only one in our framework, and
it balances the need to preserve the initial field C with the amount
of simplification. Empirically, we found a good value of k to be 5,
which was used in all our experiments.

3.3 Graph reduction algorithm

In the initial graphG, which follows C exactly, there is no drift, and
the total energy is given by the sum of the extensions of the sepa-
ratrices, which for each separatrix amounts to its (geodesic) length.
Our algorithm follows a greedy strategy, trying to reduce the en-
ergy of the graph by substituting some of its separatrices with dif-
ferent lines, while maintaining its topological structure consistent.
The algorithm performs a sequence of simplification cycles, each
consisting in a sequence of moves: an opening move; a sequence of
(zero or more) continuation moves; and a closing move. Each move
is composed of at most two sub-operations: an opening move con-
sists of a deletion sub-operation; a continuation move consists of
a deletion sub-operation, immediately followed by a creation sub-
operation; a closing move consists of a creation sub-operation.

The deletion sub-operation is simply the removal of a separatrix.
One open port is created at each end, i.e., two ports remain with no
associated separatrix. A graph is consistent only if it has no open
ports.

The creation sub-operation connects two given open ports p0 and
p1 with a new separatrix, thus closing both. The new separatrix is
plotted over the surface: it starts from from p0, it may cross other
separatrices (but never any singularity), and it ends at p1. At both
ends, the new separatrix matches the tangent directions of the open
ports it connects to.

Some constraints must be fulfilled when the new separatrix l is
traced, to ensure consistency. We impose the drift to be monotonic,



Figure 2: Two open ports (left) can be connected with several dif-
ferent separatrices traveling in the same corridor: the separatrix
minimizing the energy is selected (depending on the field, not nec-
essarily the shortest one).

i.e., such that θ(t) is either positive (right drift) or negative (left
drift) along the whole line. We also impose |θ(t)| < π/4, posing
a limit on the accepted pointwise drift of a separatrix. This means
that µ(t) can only change with continuity over l (in other words, l
is not allowed to switch the direction of the field it is aligned to).
Fianlly, two separatices can cross only if their two vectors µ at the
crossing point are orthogonal.

If a separatrix fulfilling these requirements cannot be drawn to con-
nect the two open ports, then the move is rejected. There can be
several valid ways to connect, even very different from each other
(e.g. see Fig. 2): the one with the least associated energy is selected.

3.4 Selecting moves

A cycle starts with a consistent graph without open ports. The open-
ing move creates two open ports; each continuation move creates
two more open ports (separatrix deletion), but immediately closes
other two (separatrix creation), so that a total of two ports remain
open during the entire cycle; the closing move closes the two open
ports, bringing the graph back to a consistent state.

A deletion sub-operation necessarily decreases the total energy of
the graph (removing the contribution of the deleted separatrix),
whereas a creation sub-operation necessarily increases it (adding
the contribution of the new separatrix). Therefore an opening move
always decreases energy, and a closing move always increases en-
ergy (but it is necessary to close the cycle). A continuation move
changes the energy of the difference between the deleted and the
created separatrix energies, which can be positive or negative.

At every step, we list and evaluate all potential moves.

• When there is no open port (i.e. at the beginning of each cy-
cle), potential moves are opening moves: there is one for each
separatrix (deleting it).

• When two open ports are present, there can be several poten-
tial continuations moves, and sometimes a potential closing
move too. They are all detected, as explained in Sec. 3.5.

In any case, the effect of each potential move on energy is evaluated.
A potential move is considered valid only if, after performing it, the
total change of energy of the current cycle remains strictly negative.
This guarantees that overall energy is decreased by the cycle.

If a valid closing move is available, it is always preferred over any
other move (the closing move leaves the graph consistent, so that
a new cycle can be started by selecting an opening move again).
If no valid closing move is available, we choose the move, among
all possible valid ones, that decreases the energy the most (which
sometimes can be an energy increasing move). If no valid move is
available, a backtracking mechanism is triggered (see Sec. 3.6).

Figure 3: The corridor stemming from an open port t at v: t can
be connected with singular nodes v′ (or v′′) on the walls, with a
continuation move, which would first delete separatrix s′ (or s′′),
shown dotted in black, then connect t with v′ (or v′′), with the top
(or bottom) orange dashed line. In case the other open port p at
w is reachable along the corridor, then a closing move is possi-
ble, which connects t with w (with the middle orange dashed line).
Crossings are shown as blue squares.

3.5 Enumerating continuation and closing moves

Let t be an open port (see Fig. 3). In order to maintain a consistent
structure of graph G′, any new separatix starting at t must neces-
sarily be contained in a corridor bounded by two chains of arches,
which we term the walls. The left wall of the corridor is defined
as follows (refer to Fig. 3). Let tl be the port next to t by rotating
counterclockwise about its node, let t′l be the port opposite to tl
on the same arc, and let t′′l be the port next to t′l by rotating coun-
terclockwise about its node. The left wall starts at t′′l ; it continues
at each next node by skipping one port in counterclockwise order,
and taking the next port; and it stops when reaching either the node
of t or the node of t′′l . The right wall of the corridor is defined
analogously (rotating clockwise).

Ports skipped at intermediate nodes along the walls connect oppo-
site walls through transversal arcs. If the other open port p belongs
to a vertex w lying along one of these arcs, and p is directed to-
wards the beginning of the corridor, then a potential closing move
which connects t to p is reported as possible. In this case, the end
wall of the corridor is made of the two transverse arcs emanating
from p. Otherwise, the corridor is circular and it ends at one of the
two transverse arcs emanating from t itself.

For each port p stemming from singular nodes that lie on walls
and point towards the beginning of the corridor, there is a possible
continuation move that connects t to p. This move consists in the
deletion of the separatrix currently starting from p, followed by the
creation of a separatrix connecting port t to p.

That procedure is repeated starting from each of the two open ports,
finding the set of all potential continuation (and possibly closing)
moves.

Recall the delta of energy associated to a potential move is com-
puted as the difference between the energy associated the separatrix
to be plotted (except opening moves), minus the energy associated
to the separatrix to be deleted (except closing moves). To evaluate
the former, we need to compute drift and the extension of the sep-
arator s′ which would be plotted. The latter is quickly evaluated
recording the drift and extension of each separatrix.



Figure 4: A simple example of the graph simplification algorithm in action. A floor reflecting the surface is shown to make the lower part
visible. The algorithm starts from a cross-field with eight singularities of index 1/4, for a total of 24 ports, connected by 12 separatrices,
which cross 10 times and divide the surface into 16 rectangular patches. Valid configurations are pointed by gray arrows. The algorithm
performs two cycles: each cycle starts with a opening move (“op”), a single (in this case) continuation move (“co”), and finishes with a
closing move (“cl”). In this specific case, the algorithm removes all the crossings, producing a graph where only 6 rectangular patches are
needed to cover the object. A third cycle (not shown) is then attempted, in which a total of 54 moves are performed and eventually rolled back
as they do not lead to a configuration with lower energy. The algorithm then returns the rightmost configuration.

3.6 Exploring the space of solutions

If no valid move is available, i.e. when not even the best possible
move would result in a strictly negative overall energy change for
the current cycle, then the last performed move is rolled back. The
cycle continues by picking the next best potential move at that con-
figuration, if there are any valid ones left. Else, another rollback is
performed, and so on.

Iterating this simple strategy is equivalent to a depth-first visit of
the tree of possible states reachable by valid moves: the root is the
consistent graph at the beginning of the cycle, intermediate nodes
are inconsistent graphs, leaves are consistent graphs with less asso-
ciated energy, and links are valid moves.

This search for a closing move for the current cycle can be either
successful or not. If a valid closing move is found, then it is per-
formed and the current cycle is over. The valid graph reached in
this way is necessarily different, and it has a strictly smaller energy,
than before. After that, a new cycle can be started.

Conversely, if the search fails (this happens when there are no open-
ing moves left at the root of the tree) the algorithm is over, and the
current graph (which is consistent) is returned as the final result.

The non-negative energy reduction constraint serves as a heuris-
tic pruning of the tree during the search. In theory, the number of
reachable nodes of the tree is still gigantic, but a dynamic program-
ming approach makes the search feasible. A graph with n ports can
connect them, pairwise, in n!

(n/2)!2n/2 different ways (the vast ma-
jority of which is not consistent or not reachable). We hash each
such configuration, and we reject any move that would produce a
configuration already seen, during the simplification process, with
a lower or equal associated energy.

The algorithm is greedy and it does not give any guarantee of re-
turning the best configuration, but in practice it dramatically im-
proves over input configurations, unless they are optimal.

3.7 Crease preservation

For surfaces representing mechanical objects, it can be important
that separatrices pass exactly along sharp creases. In our algorithm,
it is easy to prevent losing separatrices which are aligned to creases,
simply by tagging them and disallowing any opening or continua-
tion move which would remove them. This is a conservative option,
but it reduces the degrees of freedom of the algorithm, resulting in
a less simplified graph (see for example Fig. 5, second image).

Another viable strategy is to let crease separatrices be lost in this
phase, and then force nearby separatrices to snap into their place
during the smoothing phase (see rest of Fig. 5, and Sec. 4.5).

3.8 Implementation on semi-regular quad meshes

We show a practical implementation of the graph reduction algo-
rithm which takes as input a semi-regular quad mesh Q, which im-
plicitly provides a discretized cross field C. Edges of Q represent
directions of C. Irregular vertices of Q represent singularities of C,
and edges stemming from them are their ports. For simplicity, we
further assume that, as it commonly results from remeshing algo-
rithms, all edges of Q have approximately the same length, which
we will use as the unit length (this is not an intrinsic limitation:
implementation for a more general setting would only require sum-
ming the lengths of traversed edges, rather than just counting their
number). In this setting, the algorithm described above can be im-
plemented in a simple and efficient manner.

Each separatrix s is composed of a sequence of edges of Q. The
initial graph of separatrices G can be extracted trivially from Q by
tracing all chains of edges stemming from irregular vertices. Any
drifting separatrix generated during graph reduction is stored as a
jagged sequence of edges (see Fig. 6). This choice can at first look
problematic, as separatrices will not be smooth lines in general.
However, it will be easy to remove these artifacts in a subsequent
smoothng phase (see Sec. 4), taking advantage of the simplicity of
global parametrization domain.

Length and drift of a separatrix can be computed by a simple count
of the edges agreeing and disagreeing with the reference direction



Figure 5: Preservation of creases. From the left: initial graph; graph simplified by hard constraints on creases; graph can be simplified
more without constraints, but some creases are lost; related domains just after simplification; final domain of parametrization: creases lost
during unconstrained simplification can be recovered through snapping during the smoothing phase.

Figure 6: On a quad mesh, a drifting separatrix s′ of G′ consists
of a chain of either field-aligned or trasverse edges of Q. The one
depicted here has a value of extension of 24 units, and a value of
drift of 8 units.

of the starting port. The constraint on pointwise drift of a separatrix
(see Sec. 3.3) translates into a prohibition of having two consecutive
disagreeing edges.

The operations described in Sec 3.5 to find candidate ports to be
connected with open ports can be easily implemented by navigat-
ing over Q along edges. The length and drift, and therefore the
energy, of the corresponding potential new separatrix can be com-
puted during the same process.

4 Parameterizing over the abstract quad-
mesh domain

A graph of separatrices G over mesh Q partitions the surface of Q
into rectangular patches. Each patch can be easily parameterized
over a flat, axis aligned rectangular domain Di. Let D be the col-
lection of all D1, D2, · · ·Dn. D will serve as the domain of our
final parametrization f : D → Q.

This section discusses the properties ofD and f , and shows the op-
erations that can be performed over them, including global smooth-
ing. These operations have the following aims: removing jagged
artifacts introduced by the algorithm in 3.8; computing a globally
smooth parametrization over Q (whereas tracing separatrices only
defines it along these lines); optimizing the placement of singular-
ities and cross points (to comply with the new graph); optionally,
recovering lost feature lines.

In this section it is easier to consider the triangle mesh M obtained
from Q by diagonal splits and a corresponding parametrization
f : D →M . Since the connectivity of Q is unaffected by all oper-
ations, its original connectivity can be recovered at any time simply
by removing the extra edges of M . If Q was in turn computed as
a quad re-meshing of an initial mesh Mo, then in this smoothing
phase the original mesh Mo can be used instead.

4.1 Properties of the parameterization and its domain

A position p ∈ D consists of a tuple p = (k, α, β), k being the
index of a rectangle Dk in D, and α β being the Cartesian coordi-
nates of p inside [0, wk] × [0, hk], where wk and hk are the width
and height of Dk, respectively.

Rectangles D0, D1, ..., Dn in D are logically connected edge-to-
edge: each of the four edges of each Di is shared with exactly one
other edge of some Dj (i and j being not necessarily distinct), and
the two edges are constrained to have the same length: this means
that the frame of Dj can be rotated (by a multiple of π/2) and
translated to become the continuation of the frame ofDi. Likewise,
each corner of eachDi is considered to be logically coinciding with
a certain number of corners of other rectangles. We call the domain
D abstract in the sense that, even if it has the logical connectivity of
a manifold quad mesh, it is not embedded in a 3D Euclidean space.

As commonplace, parametrization f : D → M is defined by dis-
cretely sampling its inverse φ, e.g., by explicitly assigning a para-
metric position pi = φ(vi) ∈ D to each vertex vi of M . This
per-vertex assignment can be propagated, by interpolation, over the
entire mesh M . In fact, as we will show (Sec. 4.2), D allows for
interpolations of positions, even among different rectangles. The
only necessary assumption is that, for a triangle t in M , its three
vertices are mapped into rectangles of D with at least one common
coinciding corner (i.e., t does not span an excessively large area in
parametric domain). Note that we do not require any position pi to
be on the boundaries or at the corners of rectangles in D, meaning
also that we do not require, in the final parameterization, that patch
boundaries coincide with edges of M .

4.2 Interpolation domains

Positions in D lying in the same rectangle Di can be interpolated
linearly, as usual. For the purpose of defining interpolations among
positions in D lying in different rectangles, two or more adjacent
rectangles of D can be temporarily assembled into larger “interpo-
lation domains”. This approach follows the spirit of [Pietroni et al.
2010], where a similar concept is introduced for triangle-based do-
mains.

We term “interpolation domain” Ei a 2D region where a set of k
logically contiguous rectangles Da1 , Da2 , · · ·Dak are mapped by
a corresponding invertible function gEi : ∪j∈(1..k)Daj → Ei.
These functions and their inverses will be defined in closed form
and easy to evaluate. We use three kinds of interpolation domains.

An “Edge” interpolation domain Ee
i unifies two rectangles Di and

Dj of D, logically sharing an edge, into a larger rectangle. The
associated function gi is the identity for Di, while, for Dj , it is the
roto-translation which moves Dj so that the corresponding sides of
the two rectangles coincide (see Fig. 8, middle left).



Figure 7: Leftmost image: mesh M is partitioned into
f(D1), (D2), · · · , (Dn) (each vertex v is coded according to do-
main φ(v), but triangles connecting fixed vertices are darkened).
Other images: the same is repeated using different set of domains
E1, E2 · · · , (Em), partitioning of D. Note that each vertex of M
is not a fixed vertices in at least one of the partitions.

Figure 8: Middle: a domain D composed of patches D1 · · ·Dn,
marked by calligraphic uppercase letters. Left, from top: an exam-
ple of a Vertex, Edge and Face interpolation domain, and associ-
ated functions g. Right, from top: other examples of Vertex domain
for vertices of D with valency 3 and 5 respectively. Top: an inter-
polation domain used to define the interpolation between the two
red dots ∈ D. The result of the interpolation is the green dot in D.

A “Vertex” interpolation domain Ev
i unifies all n patches sharing

a given corner. In the regular cases, i.e., when n = 4, Ev
i is a

rectangle (see Fig. 8 and the associated function gi is simply made
of appropriate rigid roto-translations of the various rectangles in-
volved. For irregular vertices (n 6= 4), roto-translation is combined
with an exponential map (with exponent k = 4/n) which is known
to be conformal, and the interpolation domain is a star shaped re-
gion (see Fig. 8 right). Centering the origin in the shared corner and
expressing positions pi in polar coordinates (ρ, α), the exponential
map is the function (ρ, α) 7→ (ρk, α · k).

It will ease method description to also define a trivial “Face” in-
terpolation domain Ef

i which is identical to a single patch Di (see
Fig. 8, bottom left); the associated function gi is the identity.

There is exactly one Edge domain for each shared edge of D, one
Face domain for each rectangle of D, and one Vertex domain for
each shared corner of D. Any position p ∈ D belongs to one Face
domain, four Edge domains, and four Vertex domains.

An interpolation domain allows to interpolate, in parameter space,
between any pair of positions p0, p1 ∈ D, as long as they belong
to two domains D0 and D1 which share at least one vertex. First,
one interpolation domain Ea (either an Edge, Face, or Vertex one)
is selected such that both D0 and D1 are included in it. The inter-
polation can be then computed as g−1

a (I(ga(p0), ga(p1))), where
I is the common linear interpolation operator (see Fig. 8 top for a

Figure 9: Two semi-regular meshes obtained by resampling the
parametric domain Left: parametric domain resulting from the sim-
plification of Fig. 4: patches are separated by visibly jagged lines.
Right: after global smoothing (see Sec. 4.4), the jagged lines are
gone, and irregular points moved to aligned, optimized positions.

graphical representation of this formula).

We employ interpolation domains also for the task of globally
smoothing an existing parameterization, as explained in Sec. 4.4.

4.3 Construction of an initial parameterization

After graph simplification (Sec. 3), we define the parameter do-
main D and an initial rough parameterization of M over it, which
will then be globally smoothed to obtain the final parameterization
(Sec. 4.4).

Recall that defining a parameterization over M means to assign to
each vertex vi of M a unique parametric position pi in D, pi =
(ki, αi, βi).

Initially, i.e. after graph simplification (Sec. 3), separatrices are de-
fined as collection of edges of M , which partitions the faces of M
into disjoint groups, each one surrounded by four arcs of the graph
G. We create a rectangle Di of D for each group of faces, and all
the vertices of these faces are assigned to such a rectangle (vertices
of M shared by faces belonging to different groups are arbitrarily
assigned to any of these groups). This amounts to assign an initial
ki to each vertex of M . The connectivity among rectangles in D is
likewise extracted from the graph of separatrices.

For any vertex of a face ofM touched by a separatrix ofG, we also
assign an initial parametric position αi, βi close to the appropriate
border of the rectangle Dki . The exact positioning is not crucial as
the final values of αi, βi will be determined during the subsequent
smoothing phase (Sec. 4.4).

For all other vertices of M , initial positions αi, βi are determined
by applying a single-patch energy-minimization parametrization
technique inside every patch. We use [Hormann and Greiner 2000],
but many other methods could be used in its place. This method
tends to produce conformal mapping and, due to the shape and size
similarities between the Di and φ(Di), it also delivers a certain
degree of isometry.

The dimensions of Di in parametric space are determined using a
separate procedure, described in Sec. 4.6.

4.4 Global smoothing of the parametrization

Once an initial parameterization is found, we perform a global
smoothing of the parameterization. A common strategy to perform
global smoothing over a domain with cuts is to define transition
functions connecting the two sides of the cuts, and to embed them



into a single energy minimization system [Bommes et al. 2009].
While we have transition functions implicitly associated to pairs of
shared sides of rectangles in D, we cannot adopt this approach be-
cause in our case we need the smoothing process to optimize which
rectangle of D each vertex of M belongs to.

Global smoothing is done in a sequence of passes, in a “quincux”
style algorithm. The idea is that, at each pass, some vertices are kept
fixed while the positions of the remaining vertices are optimized,
and passes are alternated in such a way that all vertices can undergo
the smoothing process.

At each pass, we extract a different set of interpolation domains
S = {E0, E1..Ei} which forms a partition D, i.e., such that each
rectangle Di belongs to exactly one interpolation domain of S. Set
S is determined with a simple heuristic. Starting from an empty set,
a Vertex domain EV

0 is inserted into S, only if is composed of rect-
angles of D not already included in any Ek ∈ S. Once all Vertex
domains have been scanned, this process is repeated for Edge do-
mains. Finally, the isolated rectangles Di still not included in any
Ek ∈ S are inserted as Face domains. Before each pass, we keep a
count, for each edge and each vertex ofD, of the number of consec-
utive passes that element lies on the boundary of the interpolation
domain embedding it. Such count is used to prioritize insertion of
Vertex and Edge domains into S. Fig. 7 shows an example of four
consecutive sets S0, S1, S2, S3 chosen in this way.

For a vertex vi with associated parametric position pi insideDj , the
unique interpolation domainEk ∈ S includingDi is identified, and
a temporary position p′i ∈ Ek is found by p′i = gk(pi). If an edge
ofM connects two vertices vi and vj whose temporary positions p′i
and p′j lie in different interpolations domains, then both p′i and p′j
are marked as fixed for the current pass; then, inside each Ek ∈ S,
temporary positions of non-fixed vertices are smoothed, again using
a single patch conformal energy minimizer [Hormann and Greiner
2000]. After the smoothing, vertices are remapped into D by the
functions g−1

k of respective interpolation domain, and a new pass is
started. Note that this process can cause a parametric position pi to
change rectangle in D, if this reduces the global energy.

The process converges to a minimum of global conformal energy.
The reason is that, at each pass, functions g and their inverse pre-
serve conformal energy, and the smoothing operation monotoni-
cally decreases it.

By finding positions pi ∈ D associated to mesh vertices, the opti-
mization process implicitly determines boundaries of patches over
M (recall that we do not require pi to lie on the boundaries of rect-
angles in D, nor patch boundaries to pass thorough edges of M ).

Results of this smoothing process are depicted in Fig. 11 and 9.

4.5 Recovering lost feature lines

As mentioned in Section 3, during the graph simplification we can
choose not to preserve creases in Q (and therefore in M ). When
this is the case, we can demand to the smoothing phase the task of
realigning patch borders to the geometric features of M .

Specifically, this can be done when the parametrization is being op-
timized over an interpolation domain. Edges ofM tagged as feature
edges can be snapped, and then constrained to lie on a 2D straight
internal line l = g(ek), ek the appropriate edge of a rectangle in D
(see Figure 5).

4.6 Isometry

Each 2D rectangle in the domain D is assigned to an extension in
each of its two dimensions. The dimensions are chosen to maximize

the isometry of mapping f , by solving a separate system. For sim-
plicity, the isometry is approximated by summing the area weighted
contributions of solely the triangles of M which are mapped en-
tirely into a single rectangle ofD. The system has two variables for
the two sides of each rectangle, but rectangles logically connected
side-to-side are constrained to have matching lengths in the respec-
tive dimension, reducing the number of variables in the system.

As mentioned, one of the possible uses of the final parameterization
is to build a semi-regular quad-remeshingM ′ ofM (vertices ofM ′

are sampled overM at each integer coordinates inside rectangles of
D). If this is the case, sizes of rectangles need be constrained to be
integer numbers. This is enforced after solving the system, by mul-
tiplying each resulting dimension by a scalar w (determining the
required density of the re-sampling) and rounding each dimension
to the nearest non zero natural number. Value of w is picked inside
a user determined interval so to minimize rounding errors.

The process of determining the dimensions (and thus the aspect ra-
tios) of rectangles in D is interleaved with the smoothing passes
(Sec. 4.4), because the portion of M mapped inside each patch of
D can vary during smoothing.

5 Results

In this section, we show a gallery of results obtained on sev-
eral datasets commonly used as benchmarks. Our input fields
come from quad meshes either kindly provided by the authors of
[Bommes et al. 2009] (drill-hole, fandisk, fertility, joint, rocker-
arm), or produced with an independent implementation of the same
method (bimba, bunny, cube-blob, fertility-sym, holes3, kitten) and
cover a spectrum of mechanical and natural objects, with simple
and complicated shapes. Table 2 provides statistics on the datasets
and results. For each input mesh we provide: number of facets;
number of irregular and crossing nodes of the graph of separatrices
and number of domains induced by this graph; number of cross-
ing nodes and domains for the simplified graph. The number of
patches is invariably dramatically reduced. This drastic simplifi-
cation of the domain comes at an expense of a slight deterioration
of parametrization quality, measurable in the loss of quad quality
in remeshings, in terms of edge orthogonality and aspect ratios, as
reported in Table 1. The entire process took between 20 seconds
(holes3) and 10 minutes (fertility) using commodity hardware.

In Fig. 10 we show results of the simplification phase from two
datasets also used in [Bommes et al. 2011], for comparison. In the
drill-hole dataset, exactly the same input mesh has been used, and
our result provides a simpler domain. In the rockerarm dataset, a
finer mesh has been used, which provides a more entangled input
field. In spite of that, our result also provides a simpler domain.
In both cases, original alignment is preserved (Fig. 10 just depict
the graph of separatrices: some lines are jagged because they are
traced in a discrete way on the underlying mesh; jags are eliminated
with the subsequent phase of smoothing, as shown in results from
the same datasets in Fig. 14). More comparisons are available as
additional materials.

In Fig. 11 we show the effect of smoothing on the bimba dataset.
Fig. 14 shows results from the two phases of the algorithm on sev-
eral other datasets. In Fig. 12 we show how sharp creases can be
preserved by freezing them during simplification. Note that also
sharp creases that were not captured by separatrices, like the bor-
der of the big hole in the left image, can be recovered during the
smoothing phase thanks to the snapping mechanism. In Fig. 13
we show how results can be improved by providing a better place-
ment of singularities of the cross field: the result shown on top
is obtained from an input mesh returned by the Mixed Integer al-
gorithm (dataset fertMI); the result shown on bottom is obtained



Figure 10: Graph simplification: the input graph of separatrices
may be more or less entangled, in all cases our graph reduction
algorithm manages to dramatically reduce the complexity of the
domain while preserving alignment to the input field.

Avg. right angle Avg Min/Max
Model: discrepancy (deg) Edge Ratio

input output input output
rockerarm 5.3 4.9 0.83 0.68
holes3 4.8 4.0 0.81 0.60
bimba 7.3 10.2 0.79 0.64
fertility 5.9 7.8 0.78 0.60
drillhole 3.1 3.7 0.79 0.70

Table 1: Original meshing quality vs. quality of remeshing.

from an input mesh which has been computed by placing singulari-
ties of the cross field more symmetrically with respect to the shape
(dataset fert-sym). In both cases, the initial graphs are extremely
entangled (most edges belonging to separatrices). It is evident, es-
pecially from the top view, how a better placement of singularities
allow us to obtain a smaller number of simpler domains, and a bet-
ter remeshing (see also statistics in Table 2).

6 Concluding remarks

We have proposed a method for producing quad-based domains for
global mesh parametrization, which improves domain simplicity,
while maintaining alignment to an input cross field. The method has
been implemented to take in input a cross field induced by a quad
mesh - which may be already the base domain of a parametriza-
tion - and it produces a parametrization having an abstract com-
plex of axis-aligned rectangles as base domain. Our results ex-
hibit simpler domains than other proposals at the state-of-the-art
and parametrizations are directly suitable for most applications.

The method consists of two main ingredients: an algorithm for
simplifying the topology of the cross field, and an algorithm for
smoothing parametrization across abstract quad domains. Even if
we presented an implementation working on quad meshes (used as
a discretization of the input cross field), the simplification algorithm
is fully general, and could even be applied to any N-symmetry field
[Ray et al. 2008], provided that an initial graph representing the
topology of the field is given in input. However, finding such a
graph in general, e.g., from a field defined on a triangle mesh, is
still an open problem.

Our algorithm strives to preserve alignment with the input cross
field (by penalizing drift on separatrices traced during simplifica-
tion). The unique parameter used in the whole method (value k in

Figure 11: Smoothing: an initial parametrization is computed by
assigning vertices of the input mesh to domains induced from the
simplified graph (left); parametrization is smoothed to make it con-
forming (right).

the energy) allows us to trade off between topology simplification
and faithfulness to the input field. Our method also allows pre-
serving sharp creases, either through hard constraints during graph
simplification, or through a snapping mechanism during smoothing.

One main limitation of the proposed approach is its reliance on the
quality the pre-existing cross field C. If C presents poorly placed,
or too numerous singularities, the simplified graph will still be far
too complicated to be useful in most contexts. However, in our
experience, practically any graph is strongly improved, unless it is
already optimal in terms of simplicity of the domain.
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