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Abstract This study tackles the image color to gray conversion problem. The aim was to
understand the conversion qualities that can improve the accuracy of results when the gray-
scale conversion is applied as a pre-processing step in the context of vision algorithms, and
in particular dense stereo matching. We evaluated many different state of the art color to
grayscale conversion algorithms. We also propose an ad-hoc adaptation of the most theoret-
ically promising algorithm, which we call Multi-Image Decolorize (MID). This algorithm
comes from an in-depth analysis of the existing conversion solutions and consists of a multi
image extension of the algorithm by Grundland et al. [14] which is based on Predominant
Component Analysis. In addition, two variants of this algorithm have been proposed and
analyzed: one with standard unsharp masking and another with a chromatic weighted un-
sharp masking technique [28] which enhances the local contrast as shown in the approach
by Smith et al. [37]. We tested the relative performances of this conversion with respect
to many other solutions, using the StereoMatcher test suite [34] with a variety of different
datasets and different dense stereo matching algorithms. The results show that the overall
performance of the proposed Multi-Image Decolorize conversion are good and the reported
tests provided useful information and insights on how to design color to gray conversion to
improve matching performance. We also show some interesting secondary results such as
the role of standard unsharp masking vs. chromatic unsharp masking in improving corre-
spondence matching.
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Fig. 1: Isoluminant changes are not preserved with traditional color to grayscale conversion.
Converting a blueish text whose luminance matches that of the red background to grayscale
can result in a featureless image.

1 Introduction

This paper tackles the color to grayscale conversion of images. Our main goal was to under-
stand what can improve the quality and the accuracy of results when the grayscale conver-
sion is applied as a pre-processing step in the context of stereo and multi-view stereo match-
ing. We evaluated many different state-of-the-art algorithms for color to gray conversion
and also attempted to adapt the most promising algorithm (from a theoretical viewpoint),
thus creating an ad-hoc algorithm that optimizes the conversion process by simultaneously
evaluating the whole set of images.

Color to grayscale conversion can be seen as a dimensionality reduction problem. This
operation should not be undervalued, since there are many different properties that need to
be preserved. For example, as shown in Fig. 1, isoluminant color changes are usually not
preserved with commonly used color to gray conversions. Many conversion methods have
been proposed in recent years, but mainly focusing on the reproduction of color images with
grayscale mediums. Perceptual accuracy in terms of the fidelity of the converted image is
often the only objective of these techniques. These kinds of approaches, however, are not
designed to fulfill the needs of vision and stereo matching algorithms.

The problem of the automatic reconstruction of three-dimensional objects and environ-
ments from sets of two or more photographic images is widely studied in Computer Vi-
sion [17]: traditional methods are based on matching features from sets of two or more input
images. While some approaches [34] use color information, only a few solutions are able
to take real advantage of the color information. Many of these reconstruction methods are
conceptually designed to work on grayscale images in the sense that, sooner or later in the
processing, for a given spatial location, the algorithm will only consider a single numerical
value (instead of the RGB triple). Often, this single numerical value is the result of a simple
aggregation of color values.

While finding a good way to exploit complete RGB information in stereo matching
would be interesting, we preferred to focus on the color to gray conversion. A better ex-
ploitation of color information during the matching would need to be implemented for each
available matching algorithm in order to maximize its usefulness and to assess its soundness.
In contrast, working on an enhanced color to gray conversion step could straightforwardly
improve the performances of an entire class of existing and already well-known reconstruc-
tion algorithms. In other words we followed a domain separation strategy, since we decou-
pled the color treatment from the computer vision algorithm using a separate preprocessing
step for the aggregation of the data.

The aims of this work are twofold. Firstly, to provide a wide and accurate comparison
of the performance of existing grayscale techniques. Secondly, to develop a new conversion
technique based on the existing one by analyzing the needs of matching algorithms.

In general, three approaches can be used to evaluate the correctness of different color to
grayscale conversion algorithms:



— A perceptual evaluation, such as the one employed in Cadik’s 2008 article [8], is best
suited for grayscale printer reproduction and other human-related tasks.

— An information theory approach could quantify the amount of information that is lost
during the dimensionality reduction; to the best of our knowledge there are no other
similar studies in this context.

— An approach that is tailored to measure the results of the subsequent image processing
algorithms.

We use the third approach, by evaluating the effectiveness of different grayscale conver-
sions with respect to the image-based reconstruction problem. We chose a well-known class
of automatic reconstruction algorithms, i.e., dense stereo matching [34] and we tested the
performance of the traditional color approach compared to many different conversion algo-
rithms. In dense stereo matching, in order to compute 3D reconstructions, the correspon-
dence problem must first be solved for every pixel of the two input images. The simplest
case occurs when these images have been rectified in a fronto-parallel position with respect
to the object. A dense matching algorithm can compute a map of the horizontal disparity
between the images that is inversely proportional to the distance of every pixel from the
camera. Given two rectified images these algorithms perform a matching cost computation.
They then aggregate these costs and use them to compute the disparity between the pixels
of the images.

We separated the color treatment from the matching cost computation using a prepro-
cessing step for the grayscale conversion and we compared the results between different
conversions of the same datasets. Thanks to this approach, we were able to assess the pit-
falls and particular needs of this field of application.

Our conversion is based on an analysis of both performances and characteristics of the
previously selected algorithms, and it optimizes the process by simultaneously evaluating
the whole set of images that needs to be matched. Two variants of the base technique that
recover the local loss of chrominance contrast are also proposed and tested.

1.1 Contributions

The contributions of this work can be summarized as:

— An analysis of the characteristics of many different state of the art color to gray conver-
sion algorithms in the context of stereo matching.

— A comparison of the performances of these algorithms in the context of dense stereo
matching.

— Thanks to the wide range of techniques evaluated and the level of detail of their respec-
tive descriptions, this paper could also be seen as a survey on color to gray conversion.

— Multi-Image Decolorize (MID), an ad-hoc grayscale method based on a theoretical anal-
ysis of the requirements and the characteristics of the existing methods. This technique
can be considered as a first attempt to design a grayscale conversion specific for the task
of dense and multi-view stereo matching.

2 Related works

In this section we give a detailed overview of color to gray conversion algorithms, also con-
sidering issues in gamma compression. We then describe the role of color in stereo matching.



2.1 Color to gray conversions

Colors in an image may be converted to a shade of gray by calculating, for example, the
effective brightness or luminance of the color and using this value to create a shade of
gray. This may be useful for aesthetic purposes, for printing without colors and for image
computations that need (or can be speeded up using) a single intensity value for every pixel.
Color to grayscale conversion performs a reduction of the three dimensional color data into
a single dimension.

A standard linear technique for dimensionality reduction is Principal Component Anal-
ysis (PCA). However, as explained in [30], PCA is not a good technique for color to gray
conversion because of the statistical color properties commonly found in the input images.
This kind of color clustering undermines the efficiency of the PCA approach by underex-
ploiting the middle-range of the gamut.

It is evident that some loss of information during the conversion is inevitable. Thus the
goal is to save as much information from the original color image as possible. Hereafter we
use information to refer to the information used to produce “the best” grayscale results for a
specific task. For example, the best conversion may be the most perceptually accurate (i.e.,
the converted image is perceptually similar to the original even if color is discarded) or the
one that maximizes some specific global properties such as luminance or contrast.

Many different color spaces [4,11,31,35] are used for color to grayscale conversions and
over the last few years many advanced approaches to this problem have been proposed [3,
13-15,27,29,30,37]. Color to gray conversions can be classified into two main categories:
functional and optimizing. Functional conversions are image-independent local functions of
every color, e.g., for every pixel of the color image a grayscale value is computed using a
function whose only parameters are the values of the corresponding color pixel. Optimizing
conversions are more advanced techniques wich depend on the whole image that needs
converting. They can use spatial information and global parameters to estimate the best
mapping and to preserve certain aspects of the color information.

2.1.1 Functional Grayscale conversions

Functional conversions can be subdivided into three subfamilies: trivial methods, direct
methods and chrominance direct methods. Trivial methods do not take into account the
power distribution of the color channels; for example, only the mean of the RGB channels is
taken. Informally speaking, they lose a lot of image information because for every pixel they
discard two of the three color values, or discard one value averaging the remaining ones, not
taking into account any color properties. Direct methods are standard methods where the
conversion is a linear function of the pixel’s color values, good enough for non-specialized
uses. Typically, this class of functions takes into account the spectrum of different colors.
These first two categories are widely used by many existing image processing systems.
Chrominance direct methods are based on more advanced color spaces and are able to miti-
gate the problem related to isoluminant colors.

Trivial methods

Trivial methods are the most basic and simple ones. Despite the loss of information these
color to grayscale conversions are commonly used for their simplicity. We briefly describe
four of the most common methods in this class, roughly sorted from worst to best in terms
of the (approximate) preservation of information.



The Value HSV method takes the HSV representation of the image and uses Value V as
the grayscale value. This is equivalent to choosing for every pixel the maximum color value
and using it as the grayscale value. This method loses the information relative to which color
value is kept for a pixel. Another problem is that the resulting image luminance is heavily
biased toward white.

The RGB Channel Filter selects a channel between R, G or B and uses this channel as
the grayscale value. The green filter gives the best results and the blue filter gives the worst
results in terms of lightness resemblance. In this case, however, the color transformation is
consistent for all the pixels in the image.

Lightness HSL: takes the HSL representation of the image and uses Lightness L as the
grayscale value. This value is the mean between the maximum and the minimum of the color
values. In this method a color value is discarded from every pixel, the remaining values are
averaged and the information is lost in terms of which color value is discarded for a pixel.

The Naive Mean takes the mean of the color channels. The advantage of this method
compared to the other trivial ones is that it takes information from every channel, though it
does not consider the relative spectral power distribution of the RGB channels.

Direct methods

An easy improvement over trivial methods is to calculate the grayscale value using a weighted
sum over the color channels. Using different weights for different colors means that factors
such as the relative spectral distribution of the color channels and the human perception can
be taken into account. Many of the most used grayscale conversion are based on a method
of this family. We describe three of the most representative of these methods.

The CIE Y method is a widely used conversion that is based on the CIE 1931 XYZ color
space [16,40]. It takes the XYZ representation of the image and uses Y as the grayscale
value.

The NTSC method is another widely used conversion (NTSC Rec.601) created in 1982
by the ITU-R organization for luma definition in gamma precompensated television signals.

The QT builtin method is an example of a grayscale conversion using integer arithmetic.
It is an approximation of the NTSC Rec.601 (implemented in the qGray function of Troll-
tech’s QT framework) and is designed to work with integer representation in the [0..255]
range.

Chrominance direct methods
One problem with the above approaches is that the distinction between two different colors
of similar “luminance” (independently of its definition) is lost. Chrominance direct methods
are based on more advanced considerations of color spaces compared to the previous ones,
and have been defined specifically to mitigate this problem. These conversions are still lo-
cal functions of the image pixels, but they assign different grayscale values to isoluminant
colors. To achieve this result, the luminance information is slightly altered using the chromi-
nance information. In order to increase or decrease the “correct” luminance to differentiate
isoluminant colors, these methods exploit a result from studies on human color perception:
the Helmholtz-Kohlrausch (H-K) effect [10,11,37]. The H-K effect states that the perceived
lightness of a stimulus changes as a function of the chroma This phenomenon is predicted
by a chromatic lightness term that corrects the luminance based on the color’s chromatic
component and on starting colorspace. We examined three such predictors.

The Fairchild Lightness [10] method is a chromatic lightness metric that is fit to data [41]
using a cylindrical representation of the CIE L*a*b* color space called CIE L*a*b* LCH
(lightness, chroma, hue angle).



(a) Original colors (b) Value HSV (c) Green Filter (d) Lightness HSL

(e) Naive Mean (f) NTSC Rec.601 (g)CIEY (h) Nayatani VAC

Fig. 2: An example of some Functional grayscale conversions

The Lightness Nayatani VAC [24-26] method is based on a chromatic lightness metric
defined on the CIE L*u*v* color space and the Variable-Achromatic-Color (VAC) approach,
in which an achromatic sample’s luminance is adjusted to match a color stimulus. VAC was
used in the 1954 Sanders-Wyszecki study and in Wyszecki’s 1964 and 1967 studies [41].

The Lightness Nayatani VCC method is based on another chromatic lightness metric
defined by Nayatani [25]. It is based on the CIE L*u*v* color space and the Variable-
Chromatic-Color (VCC) approach, in which the chromatic content of a color stimulus is
adjusted until its brightness matches a given gray stimulus.

VCC is less common than VAC and its chromatic object lightness equation is almost
identical to the VAC case!. A quantitative difference between them is that VCC lightness
is twice as strong as VAC lightness (in log space). Moreover, it has been observed [25,
37] in VCC lightness that its stronger effect maps many bright colors to white, making it
impossible to distinguish between very bright isoluminant colors. For a much more detailed
description of these metrics and a clear explanation of their subtle differences see Nayatani’s
2008 paper [26].

As can be seen in Fig. 2, the first three conversions ((b), (c) and (d)) discards a lot of in-
formation (observe the color swatches) and lose features, thus affecting perceptual accuracy

I See Section 3.2 for the mathematical definition of VAC, the VCC equation differs only by having a
constant set to —0.8660 instead of —0.1340.



and also potential matching. Channel averaging (e) gives “acceptable” results at least for
human perception. There are not many noticeable differences between the last three cases

(), (g) and (h)).
2.1.2 Optimizing Grayscale conversions

We present eight advanced techniques that constitute the state of the art in this field. For
the sake of simplicity we indicate these methods using the surname of the first author and
a mnemonic adjective taken from the title of the relative paper. Some of these conversions
can be roughly aggregated in the categories described in the following.

Three perform a functional conversion and then optimize the image using spatial infor-
mation in order to recover some of the characteristics that have been lost:

— the Bala Spatial [3] method adds high frequency chromatic information to the lumi-
nance.

— the Alsam Sharpening [1] method combines global and local conversions.

— the Smith Apparent [37] method, similar to the Alsam Sharpening method.

Two methods employ iterative energy minimization:

— the Gooch Color2Gray [13] method finds gray values that best match the original color
differences through an objective function minimization process.

— the Rasche Monochromats [30] method tries to preserve image detail by maintaining
distance ratios during the dimensionality reduction.

Finally, there are other orthogonal approaches that do not closely fit with the previous
classes:

— The Grundland Decolorize [14,15] method finds a continuous global mapping which
tries to put back the lost chromatic information into the luminance channel.

— The Neumann Adaptive [27] is heavily based on perceptual experimental measures.
More specifically, the method stresses perceptual loyalty by measuring the image’s gra-
dient field by color differences in the proposed Coloroid color space.

— The Queiroz Invertible [29] exploits the wavelet theory in order to hide the colour infor-
mation in "invisible” bands of the generated grayscale image. This information encoded
into the high frequency regions of the converted image can be later decoded back to
recover part of the original color.

We briefly explain these techniques roughly in chronological order. In Section 3 we give
further details about the conversions used in our tests.

Bala Spatial In their work on the study of chromatic contrast for grayscale conversion, Bala
et al. [3] take a spatial approach and introduce color contrasts in the CIE L*a*b* LCH cylin-
drical color space by adding a high-pass filtered chroma channel to the lightness channel;
more intuitively, they enhance the grayscale image with the contours of the chromatic part
of the image. To prevent overshooting in already bright areas, this correction signal is locally
adjusted. The algorithm is susceptible to problems in chroma and lightness misalignment.

Alsam Sharpening Alsam and Kolas [1] introduced a conversion method that aims to create
sharp grayscale from the original color rather than enhancing the separation between colors.
The approach resembles the Bala Spatial method: firstly, a grayscale image is created by a
global mapping to the image-dependent gray axis. The grayscale image is then enhanced by
a correction mask in a similar way to unsharp masking [12].



Smith Apparent A recent method by Smith et al. [37] combines global and local conver-
sions in a similar way to the Alsam Sharpening method. The algorithm first applies a global
“absolute” mapping based on the Helmoltz-Kohlrausch effect, and then locally enhances
chrominance edges using adaptively-weighted multi-scale unsharp masking [28]. While
global mapping is image independent, local enhancement reintroduces lost discontinuities
only in regions that insufficiently represent the original chromatic contrast [37]. The main
goal of the method is to achieve perceptual accuracy without exaggerating the features dis-
criminability.

Gooch Color2Gray Gooch et al. [13], introduced a local algorithm known as Color2Gray.
In this gradient-domain method, the gray value of each pixel is iteratively adjusted to min-
imize an objective function, which is based on local contrasts between all the pixel pairs.
The original contrast between each pixel and its neighbors is measured by a signed distance,
whose magnitude accounts for luminance and chroma differences and whose sign represents
the hue shift with respect to a user defined hue angle.

Rasche Monochromats Rasche et al.’s method [30] aims to preserve contrast while main-
taining consistent luminance. The authors formulated an error function based on matching
the gray differences to the corresponding color differences. The goal is ti minimize the er-
ror function to find an optimal conversion. Color quantization is proposed to reduce the
considerable computational cost of the error minimization procedure.

Grundland Decolorize Grundland and Dodgson [14,15] performed a global grayscale con-
version by expressing grayscale as a continuous, image-dependent, piecewise linear map-
ping of the primary RGB colors and their saturation. Their algorithm, called Decolorize,
works in the YPQ color opponent space. The color differences in this color space are pro-
jected onto the two predominant chromatic contrast axes and are then added to the luminance
image. Unlike principal component analysis which optimizes the variability of observations,
predominant component analysis optimizes the differences between observations. The pre-
dominant chromatic axis aims to capture, with a single chromatic coordinate, the color con-
trast information that is lost in the luminance channel. Since this algorithm constitutes the
main basis of the ad-hoc adaptation Multi-Image Decolorize, a detailed description is given
in Section 3.5. The Multi-Image Decolorize is described in Section 4.

Neumann Adaptive Neumann et al. [27] presented a local gradient-based technique with
linear complexity that requires no user intervention. It aims to obtain the best perceptual
gray gradient equivalent by exploiting their Coloroid perceptual color space and its experi-
mental background. The gradient field is corrected using a gradient inconsistency correction
method. Finally, a 2D integration yields the grayscale image. In the same paper they also
introduce another technique which is a generalization of the CIE L*a*b* formula [11] which
can be used as an alternative to the Coloroid gray gradient field.

Queiroz Invertible Queiroz and Braun [29] have proposed an invertible conversion to gray-
scale. The idea is to transform colors into high frequency textures that are applied onto the
gray image and can be later decoded back to color. The method is based on wavelet trans-
formations and on the replacement of sub-bands by chrominance planes.



2.1.3 A note about gamma compression and grayscale conversions

Gamma correction is a nonlinear operation used to compress or expand luminance or tris-
timulus values in video or still image systems. All image processing algorithms should take
into account such gamma precompensation in order to be properly applied. The main prob-
lem is that, often, we do not known anything about the image’s gamma. Moreover, many
applications/algorithms ignore this issue. For these reasons, it is interesting to discuss how
the grayscale conversions considered so far are influenced by the knowledge of the image’s
gamma.

With regard to the naive methods, Value HSV and RGB channel filters are not at all
affected by the gamma, since they do not manipulate color values but only choose one of
them. The other functional techniques are relatively robust from this point of view, although
applying these conversions to gamma precompensated values is not theoretically sound.
It is difficult to predict the impact of this issue for advanced techniques, although from
practical experience, Bala Spatial, Alsam Sharpening and Smith Apparent would seem to be
the most robust, because they are basically a weighting of color values with the spatial driven
perturbations that enhance them. A study of the effects of this issue in approaches such
as Gooch Color2Gray, Rasche Monochromats, Neumann Adaptive and Queiroz Invertible
would be very complex and is out of the scope of this work.

We underline that Grundland Decolorize and, consequently, our Multi-Image Decolorize
technique are both very sensible to this issue, since they use saturation and the proportions
between the image chromaticities to choose the mapping of a color hue to increases or
decreases in the basic lightness. If the values are not linear, these ratios change significantly
and the resulting mapping is very different. We come back to this point in Section 3.5.

2.2 Color and grayscale in matching

Few articles deal with color based matching. The simplest approaches take the mean of the
three color components or aggregate the information obtained from the single channels in
some empirical way . Of the few studies on the correlations between color and grayscale in
matching algorithms we can cite Chambon and Crouzil [9] and Bleyer et al. [7] ones.

Chambon and Crouzil [9] propose an evaluation protocol that helps to choose a color
space and to generalize the correlation measures to color. They investigated nine color spaces
and three different methods of computing the correlation needed in the matching cost com-
putation phase of stereo matching in order to evaluate their respective effectiveness.

Bleyer et al. [7] continue Chambon and Crouzil’s work by inspecting the effects of
the same color spaces and methods in the specific field of global dense stereo matching
algorithms which optimizes an energy function via graph-cuts or belief propagation.

Compared with color stereo matching, our domain separation approach has several ad-
vantages. Firstly, the computational time required for the overall processing can be less
expensive. Secondly, since it is a pre-processing step it can be applied to different stereo
matching algorithms. In addition, in the experimental results (Section 5) we show that, in
some cases, a proper color to gray conversion could give better results than color processing.
Finally, the potential benefits could probably be also employed in other scenarios such as
the generation of more robust local features [38] in sparse matching and the improvement
of multi view stereo matching algorithms [39].
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3 Details about the tested conversions

When choosing the algorithms to test in the stereo matching context we wanted to cover a
wide range of approaches. Concerning functional conversions, we chose the CIE Y direct
method as a general representative and the Lightness Nayatani VAC because of its relation-
ship with the Smith Apparent technique. Among the eight optimizing techniques described
in Section 2.1.2, we selected and implemented Gooch Color2Gray, Smith Apparent and
Grudland Decolorize for the following reasons:

— Queiroz Invertible was discarded because its aim is to hide color information and not to
preserve details in the converted image. Ir therefore does not improve feature discrim-
inability with respect to classical conversions.

— Rasche Monochromats and Neumann Adaptive were not considered due to the color
quantization problem and the unpredictable behavior in inconsistent regions of the gra-
dient field.

— Of three similar techniques, Bala Spatial, Alsam Sharpening and Smith Apparent, we
decided to test the most recent one: Smith Apparent.

— Gooch Color2Gray was implemented in order to demonstrate that, although its gradient-
preserving nature could improve features discriminability, in practice it does not improve
the quality of the results because of its inherent problems with the input parameter se-
lection and its inconsistent spatial locality.

— Grundland Decolorize was implemented in order to show the differences with our Multi-
Image Decolorize, which as already mentioned is an adaptation of it.

In the rest of this section we give a detailed description of tested conversion algorithms.
We then describe Multi-Image Decolorize (MID), after a description of the requirements
analysis behind its design and development.

31CIEY

Assuming that the image is defined in the SRGB color space and has been linearized, the
grayscale value Yy, of the pixel in coordinates (x,y) is equivalent to the following weighted
sum over the color values:

Yoy = 0.212671R,, +0.71516G, +0.072169B,,, . (1)

3.2 Lightness Nayatani VAC

Assuming that the image is in linearized sSRGB space, the image is converted in the CIE
L*u*v* space and the lightness thus calculated is altered in order to take into account the
Helmoltz-Kohlrausch effect. The Lightness Nayatani VAC formula is:

Yoy = Ly 4 [—0.1340q (6yy) +0.0872K ;. | Suyy, Lay )

where sy, is a function of u and v which gives the chromatic saturation related to the
strength of the H-K effect according to colorfulness, the quadrant metric q (Byy) predicts the
change in the H-K effect for varying hues and Kp,,, expresses the dependence of the H-K
effect on the human eye’s ability to adapt to luminance.
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(a) Original colors (b)CIEY (c) Gooch Color2Gray

Fig. 3: An example of a Gooch Color2Gray conversion with a CIE Y reference on a 192 x
128 image and full neighborhood. The conversion took 106.5 seconds for Color2Gray, and
0.002 seconds for CIE Y.

3.3 Gooch Color2Gray

The Gooch Color2Gray algorithm is made up of three steps:

1. The color image is converted into a perceptually uniform CIE L*a*b* representation.

2. Target differences are computed in order to combine luminance and chrominance differ-
ences.

3. A least squares optimization is used to selectively modulate the differences in source
luminance in order to reflect changes in the source image’s chrominance.

The color differences between pixels in the color image are expressed as a set of signed
scalar values &;; for each pixel i and neighbor pixel j. These §;; are signed distances based
upon luminance and chrominance differences. The optimization process consists in finding
grayscale values g such that all the differences (g; — g;) between pixel i and a neighboring
pixel j closely match the corresponding J;; values. Specifying d;; requires user interaction in
order to obtain acceptable results. The output image g is found by an iterative optimization
process that minimizes the following objective function, f(g), where K is a set of ordered

pixel pairs (i, j):
flo="Y ((gi—g)—8))7, 3)

(i,j)eK

g is initialized to be the luminance channel of the source image, and then descends to a
minimum using conjugate gradient iterations [36]. In order to choose a single solution from
the infinite set of optimal g, the solution is shifted until it minimizes the sum of squared
differences from the source luminance values.

The user parameters, which need careful tuning, control whether chromatic differences
are mapped to increases or decreases in luminance values, how much the chromatic variation
is allowed to change the source luminance value, and how much the neighborhood size is
used to for estimate the chrominance and luminance gradients.

The computational complexity of this method is really high: O(N*), this can be im-
proved by limiting the number of differences considered (e.g., by color quantization). A
recent extension to a multi resolution framework by Mantiuk et al. [21] improves the algo-
rithm’s performance. In their approach the close neighborhood of a pixel is considered on
fine levels of a pyramid, whereas the far neighborhood is covered on coarser levels. This
enables bigger images to be converted.
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(a) Original colors (b)CIEY (c) Nayatani VAC (d) Smith Apparent

Fig. 4: An example of a Smith Apparent conversion, compared to CIE Y and to the algo-
rithm’s intermediate step Lightness Nayatani VAC.

Figure 3 shows a comparison between Color2Gray and CIE Y on a small image. It can
be seen that Gooch’s approach (c) overemphasizes the small details of the wood texture with
respect to both the original image (a) and the CIE Y (b).

3.4 Smith Apparent

The Smith Apparent algorithm can be summarized by the following two steps:

1. The color image is converted into grayscale using the Lightness Nayatani VAC technique
explained in Section 3.2.

2. The image contrast is enhanced using an unsharp masking which is adaptively weighted
according to the chrominance information.

In the second step, to counter the reduction in local contrast in the grayscale image, un-
sharp masking is used to better represent the local contrast of the original color image. At this
point our implementation differs slightly from the technique described in Smith’s paper [37].
While they use a general adaptively-weighted multi-scale unsharp masking technique [28],
we simplify it by using a single-scale unsharp masking. This technique is adapted according
to the ratio between the color and the grayscale contrast, so that increases occur at under-
represented color edges without unnecessarily enhancing edges that already represent the
original.

For an example of the conversion, Figure 4 shows a comparison between Smith Appar-
ent, Lightness Nayatani VAC and CIE Y on a colorful image. The figure also shows how
Nayatani VAC (c) improves over CIE Y (b) in the hue change of the red parrot’s wing and
how Smith Apparent (d) restores the details of the image almost to its original quality (a).

3.5 Grundland Decolorize

The Grundland Decolorize algorithm has five steps:

The color image is converted into a color opponent color space.

The color differences are measured using a Gaussian sampling.

The chrominance projection axis is found by predominant component analysis
The luminance and chrominance information are merged.

The dynamic range is adjusted using the saturation information.

RAEE Rl

The process is controlled by three parameters: the degree of image enhancement (1),
the typical size of relevant image features in pixels (o), and the proportion of image pixels
assumed to be outliers (7).
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(a) Original colors (b) CIEY (c) Grundland Decolorize

Fig. 5: An example of a Grundland Decolorize conversion with a CIE Y reference.

The first step takes a linear RGB image (with values in the [0..1] range) and converts
it into their YPQ representation. The YPQ color space consists in a luminance channel Y
and two color opponent channels: the yellow-blue P and the red-green Q channels. The
luminance channel Y is obtained with the NTSC Rec.601 formula, that is Yy, = 0.299Ry, +
0.587Gyy +0.114B,y, while P and Q with P = # — B and Q = R — G. The perpendicular

chromatic axes support an easy calculation of hue H = %tan’1 (%) and saturation S =

In the second step, to analyze the distribution of color contrasts between image features,
the color differences between pixels are considered. More specifically, the algorithm uses a
randomized scheme: sampling by Gaussian pairing. Each image pixel is paired with a pixel
chosen randomly according to a displacement vector from an isotropic bivariate Gaussian
distribution. The horizontal and vertical components of the displacement are each drawn
from a univariate Gaussian distribution with 0 mean and %0' variance.

To find the color axis that represents the chromatic contrasts lost when the luminance
channel supplies the color to grayscale mapping, predominant component analysis is used.
In the PQ chrominance plane, the predominant axis of chromatic contrast is determined
through a weighted sum of the oriented chromatic contrasts of the paired pixels. The weights
are determined by the contrast loss ratio® and the ordering of the luminance. Unlike princi-
pal component analysis which optimizes the variability of observations, predominant com-
ponent analysis optimizes the differences between observations. The predominant chromatic
axis aims to capture the color contrast information that is lost in the luminance channel. The
direction of the predominant chromatic axis maximizes the covariance between chromatic
contrasts and the weighted polarity of the luminance contrasts.

At this point (fourth step), the information on luminance and chrominance is combined.
The predominant chromatic data values are obtained by projecting the chromatic data onto
the predominant chromatic axis. To appropriately scale the dynamic range of the predomi-
nant chromatic channel the algorithm ignores the extreme values due to the level 1 of image
noise. To detect outliers, a linear time selection algorithm is used to calculate the outlying
quantiles of the image data. The predominant chromatic channel is combined with the lumi-
nance channel to produce the desired degree A of contrast enhancement. At this intermediate
stage of processing, the enhanced luminance is an image-dependent linear combination of
the original color, which maps linear color gradients to linear luminance gradients.

2 The relative loss of contrast incurred when luminance differences are used to represent the RGB color
differences.
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The final step uses saturation to adjust the dynamic range of th enhanced luminance
in order to exclude the effects of image noise and to expand its original dynamic range
according to the desired degree A of contrast enhancement. This is obtained by linearly
rescaling the enhanced luminance to fit the corrected dynamic range. Saturation is then used
to derive the bounds on the permitted distortion. To ensure that achromatic pixels retain their
luminance after conversion, the discrepancy between luminance and gray levels needs to be
suitably bounded. The output gray levels are obtained by clipping the adjusted luminance to
conform to the saturation dependent bounds.

The resulting transformation to gray levels is thus a continuous, piecewise linear map-
ping of color and saturation values.

A comparison between Grundland Decolorize and CIE Y is shown in Figure 5. This
image is “difficult” to convert into grayscale because most of the salient features are quasi-
isoluminant with respect to their surroundings. The figure shows how Grundland’s ap-
proach (c) restores almost every feature of the color image (a) compared to a standard
method such as CIE Y (b).

As already mentioned in Section 2.1.3, Grundland Decolorize is very sensitive to the
issue of gamma compression. Figure 6 shows two examples of how an incorrect gamma
assumption can decrease the quality of the results. A color image (a) has been linearized
and then converted correctly assuming linearity (b) and wrongly assuming sSRGB gamma
compression (c). To show the complementary case, an SRGB image (d) has been converted
wrongly assuming linearity (e) and correctly assuming its gamma compression (f). The loss
of information is evident in the conversion which makes the wrong assumption: light ar-
eas (c) or dark areas (e) lose most of the features because the saturation balancing interacts
incorrectly with the outlier detection. Moreover, the predominant chromatic axis is perturbed
and consequently the chromatic projection no longer retains its original meaning. Note for
example how the red hat and the pink skin (d), which should be mapped to similar gray
intensities (f), are instead mapped to very different intensities (e).

4 Multi-Image Decolorize

In this section we propose a theoretically-motivated grayscale conversion that is ad-hoc for
the stereo and multi view stereo matching problem. Our conversion is a generalization of
the Grundland Decolorize algorithm which simultaneously takes in input the whole set of
images that need to be matched in order to be consistent with each other. In addition, two
variants of the conversion are also proposed:

1. The first variant performs the original version of the proposed algorithm and then applies
an unsharp masking filter in every image in order to enhance feature discriminability.

2. The second variant is similar to the first but uses a chromatic weighted unsharp masking
filter instead of the classic one.

4.1 Requirements analysis

Our goal was to design a conversion that transforms the image set by preserving the consis-
tency between the images that are to be matched, i.e., the same colors in different images
need to be mapped in the same gray values. In the meantime it optimizes the transformation
by exploiting the color information. To make our analysis clearer we define the following
matching requirements:
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(a) Original image - linear (b) Correct assumption (c) Wrong assumption (gamma
gamma (gamma is linear) is SRGB)

(d) Original image - sRGB (e) Wrong assumption (gamma (f) Correct assumption
gamma is linear) (gamma is SRGB)

Fig. 6: Two examples of right and wrong gamma assumptions with Grundland Decolorize.

— Feature Discriminability: the method should preserve the image features discriminabil-
ity to be matched as much as possible, even at the cost of decreased perceptual accuracy
of the image?.

— Chrominance Awareness: the method should distinguish between isoluminant colors.

— Global Mapping: while the algorithm can use spatial information to determine the map-
ping, the same color should be mapped to the same grayscale value for every pixel in
the image.

— Color Consistency: besides Global Mapping, the same color should also be mapped to
the same grayscale value in every image of the set to be matched.

— Grayscale Preservation: if a pixel in the color image is already achromatic it should
maintain the same gray level in the grayscale image.

— Low Complexity: if we consider the application of this algorithm in the context of multi
view stereo matching, where a lot of images need to be processed, the computational
complexity gains importance.

In addition, the proposed algorithm should be unsupervised, i.e., it should not need user
tuning to work properly.

4.2 Analysis of the state of the art
The Multi-Image Decolorize algorithm derives from a comprehensive analysis of the re-

quirements described above. Our aim was to find the most suitable approach as a starting
point for the development of our new technique.

3 We will talk about the interesting correlations between perceptual and matching results in Section 5.6.
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Bala Spatial was considered inadequate because the spatial frequency based weighting
of the importance of the H-K effect compared to the base lightness violates the Color Con-
sistency and the Global Mapping requisites. As already mentioned, it was also susceptible
to problems in chroma and lightness misalignment.

Gooch Color2Gray violates, above all the low complexity requirement: its O(N*) com-
putational complexity was really too much for our application, and even Mantiuk’s O(N?)
improvement does not provide enough confidence in terms of to quality versus complex-
ity. Moreover there are issues with the algorithm’s dependence on parameters that could
arbitrarily affect the grayscale mapping. This is good for artistic purposes but is not useful
with for our objectives. Lastly, the gradient-based minimization process violates the Color
Consistency, Global Mapping and Grayscale Preservation requirements.

Queiroz Invertible was unsuitable for our needs since it is designed for “hiding” the
color information in “invisible” parts of the grayscale image, which does not improve feature
discriminability in any way in terms of the standard conversions.

Rasche Monochromats has problems regarding the tradeoff between complexity and
quality of the results because it quantizes colors. Moreover it applies an energy minimiza-
tion process which violates Color Consistency, Global Mapping and Grayscale Preservation
requirements.

Neumann Adaptive is not appropriate for matching because image details and salient
features may be lost by unpredictable behavior in inconsistent regions of the gradient field.
Another problem is that this approach is aimed too much towards human perceptual accu-
racy.

Grundland Decolorize respects every requirement apart from Color Consistency, thus
we used this method as a starting point to develop our algorithm, extending it in order to
respect such missing requirement.

The main problem with Alsam Sharpening and Smith Apparent is that, like Bala’s ap-
proach, they violate our Color Consistency and Global Mapping requisites because of their
unsharp masking like filtering of the images. This is a problem with respect to our theoretical
requirements. In fact, in this way colors are mapped inconsistently between different parts of
the images depending on the surrounding neighborhoods. Despite this, in some preliminary
experiments with our implementation of the Smith Apparent conversion with respect to the
Lightness Nayatani VAC we found that the advantages of unsharp masking did improve the
matching results. This is not surprising, since it is well known that the unsharp masking filter
enhances the fine details of the image. We thus also develop two variants of the Multi-Image
Decolorize by adding an unsharp masking filter to the converted image.

We would like to underline that the aforementioned requirements were sound in terms
of improving of the matching task but, obviously, other ones can be defined to obtain per-
formances improvement in the dense matching process.

4.3 The algorithm

Multi-Image Decolorize is an adaptation of the Grundland Decolorize algorithm which eval-
uates the whole set of images in order to match them simultaneously. To achieve this, we
modified our implementation of Grundland’s algorithm in order to execute each of the five
steps simultaneously for each image in the set. Initially, this seems equivalent to the follow-
ing procedure:

1. Stitch together, side by side, all the images in the set in order to make one single big
image.
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2. Compute the Grundland Decolorize algorithm on the “stitched” image.
3. Cut back the grayscale version of the original images.

Nevertheless, this simple implementation would not work correctly because, in the Gaussian
sampling step, near the common borders of the images a pixel could be paired with a pixel
near the border of another image and the color differences estimation would be altered.
Instead in order to achieve the desired result, the implementation performs each step of
Grundland’s algorithm on each image in the set before performing the next step, using the
same accumulation variables for the predominant chromatic axis and for the quantiles of
noise and saturation outliers. In this way, the matching requirements are fully applied to the
set of images. In addition, the results benefit from the following transformation proprieties:

— Contrast Magnitude: the magnitude of grayscale contrasts visibly reflects the magnitude
of color contrasts.

— Contrast Polarity: the positive or negative polarity* of gray level change in the grayscale
contrasts visibly corresponds to the polarity of luminance change in color contrasts.

— Dynamic Range: the dynamic range of gray levels in the grayscale image visibly matches
the dynamic range of luminance values in the color image.

— Continuous mapping: the transformation from color to grayscale is a continuous func-
tion. This reduces image artifacts, such as false contours in homogeneous image regions.

— Luminance ordering: when a sequence of pixels of increasing luminance in the color
image share the same hue and saturation, they will have increasing gray levels in the
grayscale image. This reduces image artifacts, such as local reversals of edge gradients.

— Saturation ordering: when a sequence of pixels with the same luminance and hue in the
color image has a monotonic sequence of saturation values, its sequence of gray levels
in the grayscale image will be a concatenation of at most two monotonic sequences.

— Hue ordering: when a sequence of pixels with the same luminance and saturation in the
color image has a monotonic sequence of hue angles that lie on the same half of the
color circle, its sequence of gray levels in the grayscale image will be a concatenation
of at most two monotonic sequences.

In Fig. 7 we show how Multi-Image Decolorize is an improvement on Grundland Decol-
orize when applied on a image pair. While Grundland’s approach gives better results when
considering the images separately, its results are inappropriate when the pair of images is
considered together. For example see the “L-G—1" corner of the cube:

— In the “right” image (a), both Grundland (c) and the original version of Multi-Image
Decolorize (e) have to cope with the presence of the green “1” side, and they obtain
similar results.

— In the “left” image (b), where the green “1” side does not appear, Grundland (d) distin-
guishes the background of the “L” from the letter color better than the original version
of Multi-Image Decolorize (f).

— If the “left” and “right” images were matched, the vast majority of the algorithms would
have a greater probability of correctly matching the Multi-Image Decolorize pair (e)
and (f) instead of the Grundland Decolorize pair (c) and (d).

This example is designed to emphasize the differences of the two approaches and to
explain the advantages of our adaptation, whereas in real life scenarios these situations occur
in a softer way, at least in stereo matching. In multi view stereo matching, where more

4 That is the edge gradient.
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(a) Original colors “right” (b) Original colors “left”

(¢) Grundland Decolorize “right” (d) Grundland Decolorize “left”

(e) Multi-Image Decolorize “right” (f) Multi-Image Decolorize “left”

Fig. 7: Difference between Multi-Image Decolorize and Grundland Decolorize in a stereo
pair when chrominance changes significantly between the left and the right images.
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Color Multi-Image Decolorize (MID)  First variant (MID with USM)  Second variant (MID with C-USM)

Fig. 8: Different conversions of a nearly isoluminant color test pattern.

images are involved, the benefits of a consistent mapping will be much more relevant even
in standard scenarios.

Like Grundland Decolorize, Multi-Image Decolorize is also sensitive to alterations in
the image gamma and, therefore, knowledge of the encoding of the starting image is essen-
tial.

4.4 First variant: classic unsharp masking

The technique described in the previous section converts input images consistently and ap-
propriately. However, because of dimensionality reduction, the contrast may be reduced. To
counter the reduction, we increased the local contrast in the greyscale image using the ap-
plication of an unsharp masking filter on the converted image. Unsharp masking (USM) is
the direct digital version of a well known darkroom analogic film processing technique [20]
and is widely adopted in image processing [2] to improve the sharpness of a blurred image.

4.5 Second variant: chromatic weighted unsharp masking

The idea of using USM filtering to improve the results derives from the experimental per-
formance of the Smith Apparent [37] technique, which is essentially a combination of the
Lightness Nayatani VAC conversion with an ad-hoc USM filter. They adopted a chromatic-
based adaptively-weighted version of the USM filter, which we simply call chromatic un-
sharp masking (C-USM), to counter the loss of chromatic contrast that derives from unac-
counted hue differences. The technique is adapted according to the ratio between colour
and greyscale contrast, so that increases occur at underrepresented color edges without un-
necessarily enhancing edges that already represent the original. Thus this filter is able to
better represent the local contrast of original colors. We used a single scale simplification of
C-USM, the same used in our implementation of the Smith Apparent method. The original
implementation used in Smith’s paper is multi-scale [37].

The effect of the local chromatic contrast adjustment is illustrated in Figure 8 where a
nearly isoluminant color test pattern is converted into grayscale using the original version of
the Multi-Image Decolorize, its first variant (MID with USM) and its second variant (MID
with C-USM). The figure shows how the second variant gives different results compared
to classical unsharp masking because it provides more contrast only where it is low in the
conversion with MID and high in the color image (such as, in the last squares of the bottom
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line). Where the contrast is good enough C-USM has a limited effect, for example, between
the squares in the last two columns of the second and third rows.

5 Experimental Results

In this section we will describe and discuss the results of the experimental evaluation of the
grayscale conversions applied in the stereo matching context. We will show how the choice
of the color to gray conversion preprocessing influences the precision of the reconstruction
of a Depth Map (DM in the following) from a single stereo pair.

After the introduction of the StereoMatcher framework used to produce the results (Sec-
tion 5.1), we will describe the various experimental components (Section 5.2). Since the
number of results generated is too large to be discussed in full detail, we will first show a
small subset in detail (Section 5.3). A comparison of Classic USM versus C-USM filtering
(Section 5.4) is then presented and the general results are discussed (Section 5.5). Lastly we
also compare the observed results with a recent study [8] of the perceptual performances of
the various grayscale conversions (Section 5.6).

5.1 The StereoMatcher framework

Stereo matching is one of the most active research areas in computer vision. While a large
number of algorithms for stereo correspondence estimation have been developed, relatively
little work focused on characterizing their performance until 2002, when Scharstein and
Szeliski presented a taxonomy, a software platform called StereoMatcher and an evalua-
tion [34] of dense two frame stereo methods. The proposed taxonomy was designed to as-
sess the different components and design decisions made in individual stereo algorithms.
The computation steps of the algorithms can be roughly aggregated as:

Matching cost computation

Cost (support) aggregation

Disparity computation / optimization
Disparity refinement

bl

We used StereoMatcher to assess the impact of color to gray conversions. StereoMatcher
is closely tied to the taxonomy just presented and includes window-based algorithms, dif-
fusion algorithms, as well as global optimization methods using dynamic programming,
simulated annealing, and graph cuts. While many published methods include special fea-
tures and post processing steps to improve the results, StereoMatcher implements the basic
versions of these algorithms (which are the most common) in order to specifically assess
their respective merits.

5.1.1 Color processing in the StereoMatcher framework

The color is treated in the first step, which involves the computation of the matching cost. In
StereoMatcher, the matching cost computation is the squared or absolute difference in color
/ intensity between corresponding pixels. To approximate the effect of a robust matching
score [6,33], the matching score is truncated to a maximal value. When color images are
compared, the sum of the squared or the absolute intensity difference in each channel before
applying the clipping can be used. If a fractional disparity evaluation is being performed,
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each scanline is first interpolated using either a linear or cubic interpolation filter [22]. It is
also possible to apply Birchfield and Tomasi’s sampling insensitive interval-based match-
ing criterion [5], i.e., they take the minimum of the pixel matching score and the score at
i%-step displacements, or O if there is a sign change in either interval. This criterion is
applied separately to each color channel to simplify the implementation. In the words of
the authors, this is not physically plausible (the sub-pixel shift must be consistent across
channels). While this treatment has the advantage of using the color information, we belive
it is inappropriate for our purposes, because when a color image is given it blindly sums
the absolute or the squared differences. Moreover, when the sampling insensitive matching
criterion is used, it may introduces significant inconsistencies.

Instead, we separated the color treatment from the matching cost computation by build-
ing a preprocessing tool to convert the original datasets and we used these resulting grayscale
datasets as inputs for the StereoMatcher. As can be seen in the results, our approach some-
times provided an improvement compared to the results of the described color processing.

5.2 Description of the experiments

To thoroughly evaluate how the choice of different grayscale conversions affects the results
computed by the StereoMatcher algorithms we performed a large battery of tests. Thou-
sands of error measures were computed, crossing different grayscale conversions with dif-
ferent StereoMatcher algorithms and with different datasets. Here, we only report the most
representative and significant results. To describe the experiments we will catalog their com-
ponents as follows:

1. Datasets: we used different datasets with groundtruth, which are some of the standard
datasets used in the Computer Vision community.

2. StereoMatcher algorithmic combinations: we used six different standard algorithms to
obtain the depth maps.

3. Classes of error measures: we used two different kinds of measures of the computed
depth maps errors.

4. Areas of interest of the error measure: we measured the errors in four different charac-
terized parts of the depth maps.

5. Grayscale conversions: we used both the original color datasets and 11 different gray-
scale conversions.

This classification, detailed in the next sections, facilitates a comparison of the advantages
and disadvantages of the grayscale conversions in terms of both the StereoMatcher algo-
rithms and the peculiarities of the datasets.

5.2.1 The datasets

As just stated, the datasets employed in our experiments comes mainly from many subse-
quent works of StereoMatcher authors [18,32], except one dataset, proposed by Nakamura
in 1996 [23] and redistributed by them. These datasets are:

The 1996 “tsukuba” dataset.

Three 2001 datasets: “sawtooth”, “venus” and “map”
Three 2005 datasets: “dolls”, “laundry” and “reindeer”.
Three 2006 datasets: “aloe” and “cloth” “plastic”.
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The datasets selected from these are: the “aloe”, “cloth”, “laundry”, “dolls” and “map”. The
“map” dataset was originally in grayscale and was used only to validate the requirement that
our conversion preserves the image quality when the colors were already achromatic.

We have no information on the gamma encoding of these datasets, however, using em-
pirical measures of the image histogram distributions, we assume that only the datasets from
2006 are gamma compressed. Comparisons between the results of the linear-assuming and
the SRGB-assuming versions of the Multi-Image Decolorize conversion seem to confirm
this hypothesis.

5.2.2 The StereoMatcher algorithmic combinations

The dense stereo matching process takes two rectified images of a three dimensional scene
and computes a disparity map, an image that represents the relative shift in scene features
between the images. The magnitude of this shift is inversely proportional to the distance
between the observer and the matched features. In the experiments, to obtain the computed
depth maps we used the following StereoMatcher algorithmic combinations:

— WTA: a Winner Take All disparity computation,
— SA: a Simulated Annealing disparity computation,
— GC: a Graph Cuts disparity computation.

The Winner Take All disparity computation algorithm simply picks the lowest matching
cost as the selected disparity at each pixel. The Simulated Annealing and the Graph Cuts
disparity computations are two iterative energy minimization algorithms that try to enhance
the smoothness term of the computed disparity maps. We refer to [19] for the Graph Cuts al-
gorithm and [34] for all the used algorithm and other StereoMatcher implementations. Each
disparity computation was paired with either Squared Differences (SD) matching cost com-
putation and Absolute Differences (AD) matching cost computation. As already explained
in Section 5.1.1, the AD matching cost simply sums the absolute RGB differences between
two pixels, while SD sums the squared RGB differences. Both cost computations truncate
the sum to a maximal value in order to approximate the effect of a robust matching score. For
every algorithm we use a fixed aggregation window (the spatial neighborhood considered in
the matching of a pixel) and no sub-pixel refinements of the disparities.

5.2.3 The classes of error measures

To evaluate the performance of the various grayscale conversions, we needed a quantitative
way to estimate the quality of the computed correspondences. A general approach to this
is to compute error statistics with respect to the groundtruth data. The current version of
StereoMatcher computes the following two quality measures based on known groundtruth
data:

— rms-error: the root-mean-squared error, measured in disparity units.
— bad-pixels: the percentage of bad matching pixels.

5.2.4 The areas of interest of error measures

In addition to computing the statistics over the whole image, StereoMatcher also focuess on
three different kinds of regions. These regions are computed by preprocessing the reference
image and the groundtruth disparity map to yield the following three binary segmentations:
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— textureless regions: regions where the squared horizontal intensity gradient averaged
over a square window of a given size is below a given threshold;

— occluded regions: regions that are occluded in the matching image, i.e., where the for-
ward-mapped disparity lands at a location with a larger (nearer) disparity;

— depth discontinuity regions: pixels whose neighboring disparities differ by more than a
predetermined gap, dilated by a window of predetermined width.

These regions were selected to support the analysis of matching results in typical problem-
atic areas. We considered only the non-occluded (nonocc) regions since this kind of measure
is the most significant one for our purposes. In fact, the other problematic areas, such as the
textureless and occluded parts, could produce results that are not reliable in evaluating how
the conversions could help the matching process.

5.2.5 The grayscale conversion

We executed the StereoMatcher algorithms and measured the various error measures for the
following versions of the datasets:

1. Original color version, because we obviously needed a starting point to understand if

the tested conversions would give worse, equal or even better results than the standard

color approach.

CIE Y was chosen as the representative of “standard” grayscale conversions.

Sharp CIE Y, that is CIE Y followed by classic USM.

Chromatic Sharp CIE Y, that is CIE Y followed by C-USM.

Gooch Color2Gray, as the representative of the iterative energy minimization conver-

sions.

Lightness Nayatani VAC as it is the starting point of Smith Apparent.

Sharp Lightness Nayatani VAC, that is Lightness Nayatani VAC followed by classic

USM.

8. Smith Apparent, that is Lightness Nayatani VAC followed by C-USM, as the represen-
tative of the optimizing conversions that use spatial information.
9. Grundland Decolorize, as it is the starting point of our Multi-Image Decolorize tech-

nique.

10. The original version of Multi-Image Decolorize.

11. The first variant of Multi-Image Decolorize, that is Multi-Image Decolorize followed by
USM.

12. The second variant of Multi-Image Decolorize, that is Multi-Image Decolorize followed
by C-USM.

Al el

N o

We computed these conversions for the five datasets just mentioned which gave a final num-
ber of 12 x 5 = 60 datasets. We thus ran StereoMatcher on 60 datasets using three algorithms
(WTA, SA, GC) with two error measures (AD and SD) for a total of 360 tests. Due to the
high number of tests done ,in the next section we detail a subset of the obtained results
that are representative of the entire data collected. General consideration are presented in
Section 5.5.

5.3 StereoMatcher results

First, the full details of three StereoMatcher algorithmic combinations with seven versions
of the “laundry” dataset are shown. This dataset, whose original stereo pair can be seen in
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Fig. 9: DM groundtruth for the “laundry” dataset

Table 1: Legend of histograms

Version

Original color version

CIEY

Sharp CIE'Y

Chromatic Sharp CIE' Y

Gooch Color2Gray

Lightness Nayatani VAC

Sharp Lightness Nayatani VAC

Smith Apparent

Grundland Decolorize

Original Multi-Image Decolorize

First variant of Multi-Image Decolorize
Second variant of Multi-Image Decolorize

INROERCONNEN ;

Figures 10(a) and 10(b) and whose true disparity map can be seen in Fig. 9, presents the
typical situation in which our approach gives results that are similar or better than the usual
color processing. The versions of the dataset that we show are:

— The original color version, in Fig. 10

- CIE Y, in Fig. 11,

— Gooch Color2Gray, in Fig. 12,

Lightness Nayatani VAC, in Fig. 13,

Smith Apparent, in Fig. 14,

Grundland Decolorize, in Fig. 15,

the original version of Multi-Image Decolorize, in Fig. 16.

The error measures of the various versions of the datasets follow the color codes presented
in the legend in Table 1. USM and C-USM variants are also included in the legend but are
not shown here. However we will use them in Section 5.4 for comparison purposes.

Since the results of the Absolute Differences and the Squared Differences variants of the
algorithms used are really similar we only show the Squared Differences. More specifically,
for every dataset version we show:

— the Reference Frame in subfigure (a),
— the Match Frame in subfigure (b),
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Fig. 10: The “laundry” original dataset and three reconstructed DMs. DM groundtruth is in
Figure 9.

11

(d) DM from SA (e) DM from GC

(a) Reference Frame (b) Match Frame (c) DM from WTA

Fig. 11: The “laundry” dataset with CIE Y preprocessing and three reconstructed DMs.

(e) DM from GC

(a) Reference Frame (b) Match Frame  (c) DM from WTA  (d) DM from SA
Fig. 12: The “laundry” dataset with Gooch Color2Gray preprocessing and three recon-
structed DMs.

— the disparity map for WTA in subfigure (c),
— the disparity map for SA in subfigure (d),
— the disparity map for GC in subfigure (e).

In Fig. 17 the histograms of the error measures are reported:

— Fig. 17(a) compares the errors when WTA is used,
— Fig. 17(b) compares the errors when SA is used,
— Fig. 17(c) compares the errors when GC is used.

The same scale is used for each histogram.

This dataset contains elements, such as the background, which are really difficult for the
algorithms used. Our grayscale conversion is clearly the best one for this complex dataset,
followed by Smith Apparent. When GC is used, Multi-Image Decolorize produces better
results than color processing.

Another evident fact is the poor performance of Grundland Decolorize. This is because
in the Match Frame a big portion of the red bottle that was visible on the left of the Ref-
erence Frame is no longer visible, heavily changing the global chrominance of the image.



26

Fig. 13: The “laundry” dataset with Lightness Nayatani VAC preprocessing and three recon-
structed DMs.

Fig. 14: The “laundry” dataset with Smith Apparent preprocessing and three reconstructed
DMs.

o7 e

(a) Reference Frame (b) Match Frame (c) DM from WTA  (d) DM from SA (e) DM from GC

Fig. 15: The “laundry” dataset with Grundland Decolorize preprocessing and three recon-
structed DMs.

Fig. 16: The “laundry” dataset with the original version of Multi-Image Decolorize prepro-
cessing and three reconstructed DMs.
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Fig. 17: rms-error of three StereoMatcher algorithms, in nonocc regions of the “laundry’
dataset. The legend is in Table 1.
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Table 2: bad-pixels of three StereoMatcher algorithms, in nonocc regions of four datasets,

that compare the same versions of Fig. 17.

Original Lightness Original
color Gooch Nayatani Smith Grundland ~ Multi-Image
version CIEY  Color2Gray VAC Apparent  Decolorize Decolorize
dataset  algorithm [ = 1 [ (| [ [
aloe GC 31.65%  21.99% 22.24% 22.51% 28.54% 26.84% 27.60%
aloe SA 31.62%  27.17% 27.62% 28.16% 32.60% 31.37% 32.19%
aloe WTA 10.06%  12.04% 12.21% 12.07% 9.90% 12.05% 11.64%
cloth GC 36.32%  27.03% 32.62% 28.35% 29.80% 33.95% 32.46%
cloth SA 36.11%  35.85% 38.77% 37.01% 36.05% 39.04% 37.80%
cloth WTA 10.82%  16.02% 16.95% 16.68% 12.09% 16.60% 1531%
dolls GC 3571%  33.14% 35.29% 34.04% 36.72% 38.72% 38.60%
dolls SA 37.16%  40.45% 42.42% 41.13% 41.80% 45.68% 45.68%
dolls WTA 20.02%  23.09% 23.96% 23.66% 20.80% 25.38% 25.17%
laundry GC 61.65%  56.64% 59.98% 58.50% 60.03% 87.74% 48.13%
laundry SA 67.53%  71.39% 70.54% 72.07% 72.64% 88.87% 66.48%
laundry WTA 4322%  50.67% 54.19% 51.15% 47.06% 80.86% 45.65%

12
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(a) The “aloe” dataset

10

o N koo

(b) The “cloth” dataset

(c) The “laundry” dataset

Fig. 18: rms-error of WTA, in nonocc regions of three datasets, which compares the non-
unsharped versions of CIE Y, Lightness Nayatani VAC and Multi-Image Decolorize with
the USM and C-USM versions. The legend is in Table 1.
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Table 3: bad-pixels of WTA, in nonocc regions of four datasets, which compares the same
versions in Fig. 18

Sharp First Second

Chromatic ~ Lightness  Lightness Original variant of variant of

Sharp Sharp Nayatani Nayatani Smith Multi-Image ~ Multi-Image  Multi-Image
CIEY CIEY CIEY VAC VAC Apparent Decolorize Decolorize Decolorize
dataset [ [ [ | [ (] (| [ [ | (|

aloe 12.04% 9.86% 10.64% 12.07% 9.87% 9.90% 11.64% 9.66% 9.75%
cloth 16.02%  11.66% 12.08% 16.68% 12.21% 12.09% 15.31% 11.47% 11.61%
dolls 22.88%  20.30% 20.38% 23.03% 20.43% 20.51% 23.14% 20.42% 20.61%
laundry  50.67%  46.54% 46.72% 51.15% 47.37% 47.06% 45.65% 42.62% 42.86%

By analyzing the images separately, Grundland Decolorize finds a different chromatic pre-
dominant axis of projection between the frames and thus assigns different grayscale values
to the wood in the background. This causes the matching process in that region to fail, as
highlighted in Figures 15(c), 15(d) and 15(e).

Table 2 also includes the bad-pixels error measures for nonoccluded areas of the other
four datasets with the WTA, SA and GC reconstruction. The table clearly shows that in general
the best grayscale conversions are CIE Y, Smith Apparent and Multi-Image Decolorize, and
often the Original color version has a bigger error than one or more grayscale versions. CIE
Y often gives the best results when aggregative algorithms such as GC and SA are used.
These measures confirm the poor performance of Grundland Decolorize.

5.4 Classic USM versus C-USM

Here we show how the choice of using either a classic USM or a C-USM after a grayscale
conversion affects the matching results. To do this we compare the results obtained for the
following grayscale conversions:

- CIEY:
— in its original version,
— with classic USM postprocessing,
— with C-USM postprocessing;
— Lightness Nayatani VAC:
— in its original version,
— with classic USM postprocessing,
— with C-USM postprocessing (that corresponds to the Smith Apparent method);
— Multi-Image Decolorize:
— in its original version,
— with classic USM postprocessing,
— with C-USM postprocessing;

on three different datasets, “aloe”, “cloth” and “laundry”. The USM and the C-USM imple-
mentations are the same for each grayscale conversion. The reconstruction is performed by
WTA and again we show the rms-error of non-occluded areas. In Figure 18 the histograms
of the error measures are reported; Figure 18(a) compares the errors for the “aloe” dataset,
Figure 18(b) for the“cloth” dataset, and Figure 18(c) for the “laundry” dataset. Please note
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that to improve readability between the conversions in this case the scale is not the same in
every histogram.
From these results two aspects can be underlined:

— Irrespectively of the dataset, both the USM and the C-USM versions perform better than
the respective original algorithm.
— USM and C-USM have very similar performances.

To further confirm these observations we also include, in Table 3, the bad-pixels error
measures for nonoccluded areas of four datasets with a WTA reconstruction. To summarize,
in general it is useful to apply unsharp masking filtering to improve stereo matching perfor-
mances thanks to its enhancement of the fine details.

5.5 Summary of the results

Here, we discuss some general observations regarding the grayscale conversions tested and
their relative performances.

— Although CIE Y is not as good as the optimizing conversions, it does have a very good
ratio between complexity and performance. This is probably due to the robustness of its
non-optimizing weighting of color values.

— Gooch Color2Gray gives bad results in our context, moreover it is computationally ex-
pensive;

— Lightness Nayatani VAC gives average results;

— Smith Apparent gives good matching results, thanks to its C-USM filtering; its perfor-
mances are often equal or better than Multi-Image Decolorize;

— Grundland Decolorize gives bad results and it is always worse than Multi-Image Decol-
orize, this is because it cannot cope with the image chrominance changes between the
left and the right images;

— Multi-Image Decolorize is often one of the best non unsharp-masked grayscale conver-
sions, followed by CIE Y.

— For CIE Y, Lightness Nayatani VAC and the original version of Multi-Image Decol-
orize, both the USM and the C-USM filterings give consistent results, in most cases
they improve the performances;

— There are not enough differences between USM and the C-USM filtering in terms of
matching results to justify the adoption of the more complex C-USM in this field of
application.

Other general considerations:

— StereoMatcher’s standard approach to color information generally works well with re-
spect to the tested grayscale conversions however, in some cases, it performs similarly
or even worse than a “good” grayscale conversion;

— given the constant improvements when USM filtering is used, we recommend its use in
order to improve matching results;

— an assumption of the correct gamma compression is significatively important for all
the optimizing conversions and it is critical for Grundland Decolorize. This is because
the combination of this effect with Decolorize’s lack of consistency can lead to unpre-
dictable results;

— we can argue that the benefits of our grayscale conversion will be much more evident
when higher chromatic differences between the images in the set are present.
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5.6 Matching and perception

There are some interesting similarities between our results and an external study of the
perceptual performances of many grayscale conversions that we used in this work.

From our knowledge, the study presented in Cadik et al. [8] is the first perceptual eval-
uation of modern color to grayscale conversions. In this paper they presented the results of
two subjective experiments in which a total of 24 color images were converted to grayscale
using seven grayscale conversion algorithms and evaluated by 119 human subjects using a
paired comparison paradigm. The grayscale conversions perceptually compared were: CIE
Y, Bala Spatial, Gooch Color2Gray, Rasche Monochromats, Grundland Decolorize, Neu-
mann Adaptive and Smith Apparent. About 20000 human responses were used to evaluate
the accuracy and preference of the color to gray conversions. The final conclusions of this
work have some similarites with our study. In both studies:

— Grundland Decolorize and consequently our Multi-Image Decolorize adaptation is one
of the best conversions.

— Smith Apparent is one of the best conversions.

— CIE Y performs well notwithstanding its simplicity.

Obviously, the role of perception in machine vision algorithms is out of the scope of this
work but it is an interesting point that stereo matching results are somewhat correlated to
human perceptual preferences.

6 Conclusions

In this paper we examined the state of the art in color to gray conversions and discussed
and evaluated how different grayscale conversions can affect the results of stereo matching
algorithms. Starting with a qualitative analysis of the requirements needed to obtain a good
performance in this field of application, we also adapted an existing conversion into the
Multi-Image Decolorize, a method that seems to be more closely fitted to the matching task.
Although the proposed algorithm did not always outperform some of the tested conversions,
it also demonstrated good results in terms of the color processing of the StereoMatcher. This
algorithm can thus be seen as a first attempt to design an ad hoc grayscale conversion for
feature matching purposes.

From the analysis of the results we can also draw the following interesting considera-
tions:

— The role of unsharp masking filtering is quite important and we found that by applying
an USM filter to grayscale images, the matching performances increase.

— A comparison between the classic USM and the C-USM demonstrates that standard
USM is powerful enough for matching purposes.

— In many cases, CIE-Y with classic USM can be a best compromise between efficiency,
ease of implementation and quality of results.

6.1 Future Work

One of the most interesting future research possibilities to come out of this study concerns
the development of a grayscale conversion for image matching that does not rely on the
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characteristics of the existing methods but computes the optimal conversion for matching,
even at the cost of heavily-reduced quality from a perceptual viewpoint.

From an implementation/performance point of view such a conversion can be developed
in a suitable way for GPU implementation in order to exploit the massive parallelization of
the modern graphic hardware. An out-of-core mechanism could also be provided, in par-
ticular for application in a multi-view matching context where many images need to be
processed simultaneously.

Finally, a video conversion filter that works in real time and converts a video stream
mantaining the temporal consistence between the converted video frames would be interest-
ing in certain video processing applications.
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