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Abstract

In this work we present a new algorithm for accelerating the colour bilateral filter based on a subsampling strategy
working in the spatial domain. The base idea is to use a suitable subset of samples of the entire kernel in order
to obtain a good estimation of the exact filter values. The main advantages of the proposed approach are that it
has an excellent trade-off between visual quality and speed-up, a very low memory overhead is required and it
is straightforward to implement on the GPU allowing real-time filtering. We show different applications of the
proposed filter, in particular efficient cross-bilateral filtering, real-time edge-aware image editing and fast video
denoising. We compare our method against the state of the art in terms of image quality, time performance and

memory usage.

Keywords: bilateral filter, cross-bilateral filter, real-time filtering, video denoising, edge-aware painting, GPU
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ACM CCS: 1.4.1 [Image Processing and Computer Vision]: Enhancement Filtering 1.3.3 [Computer Graphics]:
Picture/Image Generation Bitmap and framebuffer operations

1. Introduction

Non-linear filters are widely used in computer graphics,
imaging and vision for many different applications. In par-
ticular, the bilateral filter proposed by Tomasi and Manduchi
[TM98] is one of the most popular non-linear filter, because
it filters areas of an image while keeping strong edges. More-
over, its straightforward formulation and flexibility make it
applicable to different problems such as: removing noise
from images [TM98] and 3D meshes [FDCO03, AGDL09],
images/videos stylization [WOGO06], high dynamic range
(HDR) tone mapping [DDO02], flash photography [PSA*04,
EDO04], edge aware upsampling [KCLUO7, DBPT10] and
many others. According to the Tomasi and Manduchi formu-
lation the bilateral filter is defined as

B(Il,x) = Z 1) fr (I (xi) — IODgs (1% — xID), (1)

x; €Q

where [ is a k-dimensional image, 2 is the set of pixels
x; in an n* window, f, and g, are, respectively, the range
attenuation and spatial attenuation functions. These func-
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tions are weight functions, and they are typically Gaussian
functions. Recently, a generalized and elegant formulation
of Equation (1) was proposed by Adams et al. [AGDL09,
ABDI10];

_ Ly _p.2
v, = E pie 5 |Ipi p_,\lg

pieQ

(€3]

p is a multi-dimensional pixel [e.g. p; = (;, &, bi» i, yi)T,
where (r;, g;, b;)T is an RGB colour and (x;, y;)” are the
spatial coordinates of the pixel], which is pre-multiplied
by standard deviations of the Gaussian function [e.g.
(0, 04, 03, O, 0},)_T]. However, Equation (2) assumes that
weight functions are Gaussian functions. In our approach, we
do not make such an assumption, keeping the original formu-
lation. The complexity of the plain evaluation of Equation (1)
is very high, i.e. O(N*) for each pixel of the image. During
the last years, this has motivated a substantial research effort
in the development of algorithms to accelerate its computa-
tion. Some of the developed techniques can be applied also
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Image Samples

Result

Figure 1: The main idea of the proposed algorithm: instead of evaluating all samples around a window (left), Q, a subset of
them, A, is used (centre), and their contributions with their respective weights are summed up obtaining the final value (right).

to accelerate high-dimensional non-linear filters such as non-
local means [AGDL09, ABD10].

The contribution of this paper is an acceleration technique
for bilateral filtering that is straightforward to implement
on a GPU, computationally efficient, memory inexpensive,
does not require pre-processing and it is capable to pro-
vide high-quality results for colour bilateral filtering. The
main idea of our technique is to use a suitable subsampling
scheme to accelerate the computation of Equation (1). In
other words, the filter kernel is not evaluated on the entire
spatial domain €2 but on a subset of it in order to provide
an estimation of the exact filter value. For each pixel a dif-
ferent sampling pattern is used in order to avoid structured
noise on the filtered image. This approach cannot be used
to accelerate high-dimensional filtering like other recent ap-
proaches [AGDL09, ABD10]. However, it is straightforward
to implement on CPU and GPU, and capable to provide
high-quality results with respect to the full implementation.
Despite the limitation mentioned, the proposed approach can
also be applied to accelerate the cross bilateral filter and it
can be easily generalized for video processing as shown in
the Applications Section. The proposed algorithm has a time
computational complexity of O(mNk), where N is the ra-
dius of the kernel, k is the number of dimensions of the image
and m is the number of pixels of the image. This improves
the brute force evaluation of Equation (1), which has a time
computational complexity of O(mN*). Moreover, our pro-
posed method maintains the no pre-processing feature and
the space computational complexity of the naive brute force
approach, which is O(1) in memory space. These charac-
teristics allow to apply bilateral filters with medium-large
kernel to high-res images (more than 2 Megapixel) at inter-
active time without memory limitations. Another advantage
of our method is that it does not make any assumption about
the shape of f, and g, while other methods assume to deal
with Gaussian functions [PD06, AGDL09, ABD10] as in the
formulation in Equation (2).

2. Related Work

Several methods have been recently developed to accelerate
different types of bilateral filters, such as the greyscale bilat-

eral filter, the colour bilateral filter or the cross bilateral filter.
Some of these methods are able to compute efficiently also
high-dimensional non-linear filters like non-local means. The
state-of-the-art methods are reviewed here.

One of the most straightforward ways to accelerate the
computation of the bilateral filter is to separate the filter
into two 1D filters in the case of images, and three filters
in the case of videos. This allows to turn the computa-
tional complexity into O(Nk) per-pixel instead of O(N¥).
This is a rough approximation of the bilateral filter, but it
has demonstrated to provide good results in video denoising
applications [PvV05]. The main disadvantage of this tech-
nique is that for medium-large kernel radius (over 20 pixels)
the method produces inaccurate results. Moreover, the space
complexity is increased from O(1) to O(m) because a tempo-
rary image has to be stored for evaluating the filter a second
time.

Paris and Durand [PD06] proposed a novel approach to
compute bilateral filtering by reformulating it as a convolu-
tion in a higher dimension, i.e. in a spatio-tonal space (more
details in [PD09]). The first step of this approach, called splat-
ting, consists in converting the data into the high-dimensional
spatio-tonal space. At this point the data are blurred with stan-
dard convolution, which can be computed efficiently. Finally,
the filtered values are transformed back into their original do-
main through interpolation. This last phase of the algorithm
is called slicing. Chen et al. [CPDO7] proposed the Bilateral
Grid, a GPU-friendly data structure for the implementation
of this method on modern graphics hardware taking advan-
tage of parallelism. This approach can handle also higher
order filters but at the cost of a huge amount of memory
consumption. Moreover, the Bilateral Grid is not translation-
invariant, i.e. the filtering result depends on the phase of the
grid [Por08]. The Gaussian kD-tree [AGDLO09] relies on the
same paradigm as the Bilateral Grid but employs a different
data structure to perform the splatting, blurring and slicing
operations. This technique can accelerate filters of very high
dimensions in an efficient way due to its low memory over-
head. The most recent acceleration techniques based on this
paradigm is the one based on the Permutohedral Lattice by
Adams et al. [ABD10]. This data structure has properties
from both, the Bilateral Grid and the Gaussian kD-tree. It is
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less sparse then the Gaussian kD-tree, but at the same time is
less memory consuming than the Bilateral Grid. Furthermore,
this technique can efficiently compute high-dimensional
filters.

A different approach is to accelerate bilateral filtering
reducing redundant operations exploiting the windows’ se-
quential overlaps. This approach is well known for median
filtering. Ben Weiss [Wei06], taking inspiration from the
histogram-based acceleration algorithm for median filter by
Huang [Hua81], developed the fastest algorithm for median
filter [O(log N) runtime per pixel]. The same approach has
been used by Weiss to accelerate the bilateral filter assuming
that the spatial function is an average across a square kernel.
Histograms and their properties were also used by Porikli
[Por08] to develop the fastest algorithm for greyscale bilat-
eral filter (one channel of the image at a time is processed).
This algorithm achieves constant time evaluation, O(1), by
reformulating the bilateral filter in the case of constant spa-
tial filtering f;(x) = c as an exact sum of linear filters. This
sum can be computed in constant time independently on
the kernel size using the integral histogram. In the same
work, Porikli extended this exact formulation for the case
of arbitrary spatial filtering using a Taylor expansion. In this
case the resulting filter is a good approximation of the exact
bilateral filter. An improvement of this work has been re-
cently proposed by Yang et al. [YTA09], where quantization
is moved into a range function instead of image intensities
obtaining a battery of linear filters. The filtered images are
obtained by linear interpolation of the output of such filters.
The method of Yang et al. has been further optimized by Yu
et al. [YFH*10] introducing a trade-off optimization crite-
ria. Gunturk [Gun10] proposed another improvement of the
algorithm of Porikli, which employs a box kernel by using a
weighted sum of multiple box kernels (combined optimally)
in order to approximate an arbitrary domain kernel. More-
over, Igarashi et al. [IIS*10] proposed to use hierarchical
histograms in an algorithm similar to Porikli [PorO8] and
Yang et al. [YTAOQ9] to reduce greatly the memory require-
ments of this kind of filter (from a multiple of the image size
down to a multiple of the image’s row). All these methods
based on histograms work for eight-bit images and are not
suitable to be applied to HDR images.

Yoshizawa et al. [YBY10] proposed an acceleration
method based on a multi-pole transformation called Fast
Gauss Transform (FGT). FGT [GS91] is a technique for
fast and error-controlled computation of a weighted sum of
Gaussians. The main idea is to reformulate the bilateral filter
as a weighted sum of Gaussians in a high-dimension domain,
and evaluating the resulting summation using the FGT. This
algorithm has linear complexity in the image elements.

Fattal et al. [FARO7] provided an acceleration scheme for
the application of the bilateral filter at multiple scales for de-
tail enhancement purposes. This scheme reuses computations
at the j-th scale level for computing the filter at the (j + 1)-th

Table 1: A summary of the different algorithms approximating bi-
lateral filters. GPU means the description of a graphics HW imple-
mentation by the authors. Memory means the memory requirement
(beside the image itself) of the filter where: Image is the same amount
of the input image, Low/Medium/High are with respect to the Image
itself (*note that, for HDR images, histogram based methods can
require a high amount of memory). HDR denotes the ability of the
technique to deal with HDR content.

Technique GPU Memory HDR
Separable bilateral [PvV05] Yes Image Yes
Bilateral grid [PD09, CPDO07] Yes High Yes
Gaussian kD-tree [AGDL09] Yes Medium Yes
Permutohedral lattice [ABD10] Yes High Yes
Fast Gauss transform [YBY'10] No Low Yes
Histograms [Por08, YTA09] Yes Low/High“ No
Proposed method Yes Very Low Yes

Note: “For HDR images, histogram-based methods can require a
high amount of memory. HDR denotes the ability of the technique
to deal with HDR content.

scale level. In a more general context of image filtering they
proposed another multi-resolution approach based on second
generation wavelets named edge-avoiding wavelets [Fat09],
which can be applied to obtain edge-preserving smoothing
at multiple scales at a very high speed.

Our algorithm differs from the aforementioned methods
since it is entirely based on a subsampling strategy and
working directly in the spatial domain. The idea to use
subsampling to accelerate processing is not new, from the
first attempts to evaluate the rendering equation for ray trac-
ing using different sampling strategies [Coo86] (including
Poisson-disk distributed samples) to the work of Thevenaz
et al. [TBUO8] where a subsampling strategy based on Halton
sampling is used to accelerate the evaluation of mutual infor-
mation between two images. Also, the Bilateral Grid employs
downsampling during its construction and the Gaussian kD-
tree uses Monte Carlo sampling during the node construction.
Furthermore, Chen et al. [CPDO7] proposed a Poisson-disk
subsampling optimization for videos which is applied in the
spatial-tonal domain. However, our subsampling strategy is
performed in the spatial domain (the same domain where
the image is defined), without the need to project samples in
other domains (splatting) and without the need to unproject
them (slicing). This allows a straightforward implementation
on CPU and graphics hardware. Despite its straightforward-
ness, it is capable to provide high-quality results for images
and videos. As just stated, the main limit is that it is spe-
cific for a certain class of filters and cannot be extended to
higher order filters such as the Bilateral Grid, the Gaussian
kD-tree, the Permutohedral Lattice and the FGT. However,
we do not make any assumptions on the dynamic range of
the image, spatial and range functions. Table 1 summarizes
the properties of the other approaches with respect to our
proposal.
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3. Algorithm

The main idea of our algorithm is to evaluate the bilateral
filter Equation (1) only for a subset A of an N* kernel window
Q in a k-dimensional image (e.g. k = 2 for an image and
k = 3 for a video sequence, considered as a 3D image), see
Figure 1. The pseudo-code of the proposed fast bilateral
filtering is shown in Algorithm 2, the implementation of the
full bilateral filter is reported in Algorithm 1 for comparison.

Algorithm 1 The brute force bilateral filter algorithm. 7 is a k-
dimensional image, f, and g are attenuation functions, 2 is an N k
window.

Data I, x
Result: B;
B < 0;
K < 0;
ForEach x; € Q
o < fr(l1(x:) — 1x)Dgs(Ix;: — x[);
K < K + w;
B < B+ I(xj)w;
B

B <~ %;

Algorithm 2 The proposed fast bilateral filter algorithm. 7 is a k-
dimensional image, f, and g, are attenuation functions, €2 is a N
window. getSample is a function which gets a sample from Q. All
the N samples are defined as A.

Data I, x

Result: B

B < 0;

K <« 0;

for i < 1To Ngmples

X; < getSample(R2);

o < frlxi) — 1x)Dgs(Ixi — x[);
K <~ K +w;

B < B+ I(xj)w;

B<—%;

While the brute force algorithm evaluates Equation (1)
for all pixels in €2, our technique is quite straightforward:
it evaluates the equation only for a well-distributed subset
A with [A] = Nsamples~ The key part of the algorithm is
the function getSample(.) which returns the (integer) coor-
dinates of the sample to use. This function has to carefully
choose the samples in order to achieve an accurate approx-
imation of the exact value of the bilateral filter. We tested
different sampling strategies for getSample(.) such as: regu-
lar sampling (RPS), Monte Carlo sampling (MCS), stratified
Montet Carlo sampling (SMS), i.e. jittering, and Poisson-
disk sampling (PDS). In our test we use Bridson’s algorithm

[Bri07] to generate Poisson-disk distribution of samples. In
order to avoid structured noise and improve randomness a set
of different patterns is pre-computed. Then, for each pixel, a
random pattern from the pre-computed ones is applied. See
Figure 2 for some examples of the patterns’ sets. In the case
of PDS, 64 tiles are sufficient to obtain good results in terms
of randomness [Lag07]. The storage of the set of patterns pro-
duces a small overhead in memory, for example a 256 x 256
kernel needs only 64 Kb of memory independently of the size
of the original image. Moreover, these sampling patterns are
quite fast to compute, the most computationally expensive
tiles are generated from the PDS which requires only a few
milliseconds using Bridson’s algorithm.

A visual comparison between the different sampling strate-
gies is shown in Figure 3. A straightforward strategy such
as RPS produces structured noise (Figure 3c). Therefore, a
randomization is needed to remove these kind of artefacts.
However, a completely random selection of samples such as
in MCS leads to noise (Figure 3d), the same happens for the
SMS strategy (Figure 3e). Due to these problems, we chose
to get samples that are generated using a Poisson-disk dis-
tribution which trades aliasing for noise (Figure 3b), but this
noise is masked due to the properties of the human visual
system [Coo86].

From a theoretical point of view we could make this sam-
pling process totally unbiased by using an unbiased Max-
imal Poisson Disk sampling procedure like the recent one
of Ebeida et al. [EPM*11]. In order to ensure that the cor-
responding estimator remains unbiased, we could randomly
shift the set using the Cranley—Patterson rotation [KKO02,
SHD11]. Using this shift scheme the storage of a point set
is further reduced; for example a 256 x 256 kernel needs
only 1 Kb of memory. Regarding the error bound of our
technique, this is related to the variance of the image. While
the error is expected to be low in smooth regions, it could
increase depending on the variance of a region (i.e. corners
and edges), because only a few samples are taken (kN) over
the full region (N?).

The proposed algorithms can work for videos as well. The
only difference between the 2D images and videos (or 3D
images) is that Poisson-disk samples are computed, respec-
tively, in 2D and in 3D. This cannot be extended trivially to
k-dimensions like other approaches since it is not guaranteed
that the Poisson-disk sampling strategies could work well
for any dimension. This depends heavily on the nature of
the dimension we subsample, for example subsampling the
support of a non-local means filter, whose components are
formed by PCA components, give unpredictable results in
terms of quality of the approximation.

Due the straightforwardness of our approach, we imple-
mented the proposed algorithm directly with a GLSL shader
on an OpenGL framework [Khr10]. This allows to have effi-
cient implementations even on low-end graphics hardware.
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Pattern 1 Pattern 2 Pattern

Pattern 1

Pattern 2 Pattern

e R P i

(RPS)

Monte-Carlo patterns (MCS)

Poisson-disk patterns (PDS)

Monte-Carlo Stratified (jittering) patterns (SMS)

Figure 2: An example of pre-computed patterns for each of the tested sampling strategies.

3.1. Analysis of the number of samples required

Since the number of samples of the patterns used plays a
fundamental role in the quality of the approximation of the
proposed algorithm, we report here an analysis of the impact
of the variation of this parameter with respect to the quality
obtained using Gaussian functions as attenuation functions
(g, with variance oy, f, with variance o,). In particular, we
tested the accuracy of our approximation by using different
sample densities. For a kernel of N x N pixels, kN samples
fork =1,2,...,7are used and the accuracy evaluated. (The
mPSNR is computed as described in Section 6.) Six different
HDR images of our data set (Section 6) are used in this test
varying either o, or o,. As it can be noticed from the graphs in
Figure 4, using N or 2N samples for a kernel of size N x N
is reasonable in terms of quality. Higher accuracy can be
achieved for Nsamples = 3N samples at a cost of increased
computational time. However, it can be noted that from this
point (Nsamples = 3N) graphs starts to increase slowly in

terms of quality, where the difference between 3N and 4N
samples is only 1 dB.

Observing the bottom graphs (large kernels) in Figure 4
it is interesting to note that for a fixed mPSNR value, for
example 44 dB, the needed samples decrease. This reduction
follows the shape of a rectangular hyperbola with the coor-
dinate axes parallel to their asymptotes. From fitting data of
these graphs into a hyperbola, it can be elicited that small
kernels (o, < 20 pixels) need 2.5N samples, medium kernels
(20 < o, < 40 pixels) need between 0.75N and 2.5N sam-
ples, and large kernels (o, > 40 pixels) need 0.75N samples.

4. Applications

We now apply our algorithm to some applications in com-
puter graphics and image processing in order to show the
effectiveness of our proposal. These applications are image

a) Full b) PDS c) RPS d) MCS e) SMS

Figure 3: An example of different sampling strategies for implementing function getSample applied to the Greek Dome image
with o, = 60 pixels and o, = 0.15: (a) all samples (standard bilateral filter); (b) 60 samples using Poisson-disk sampling;
(c) 60 samples using a regular pattern sampling; (d) 60 samples using pure Monte Carlo sampling; (e) 60 samples using
stratified Monte Carlo sampling (jittering). Note that the use of Poisson-disk sampling produces the closest approximation to the
full bilateral filter. The other sampling strategies create visual artefacts and pattern-like artefacts, particularly when a regular
sampling pattern is used. (Please, refer to the electronic version for the proper readability of the images.)
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Figure 4: mPSNR error obtained varying the number of samples used (Nyympies = kN ) applied to six HDR images of our data
set (Section 6) varying o,. (Top left panel) o; = 10. (Top-right panel) o, = 20. (Bottom left panel) o, = 40. (Bottom-right panel)

o, = 80. We used the PDS strategy.

and video filtering, iterative filtering, cross/joint bilateral fil-
tering, edge-aware image editing and tone mapping.

4.1. Video denoising

A typical application of the bilateral filter is image and
video denoising, because the filter removes Gaussian noise
while keeping strong edges. We show an application of video
denosing in Figure 5. Our approach is very suitable for video
denoising, because it requires a small amount of memory and
it can achieve real-time frame rate for HD (1920 x 1080) res-
olution videos (around 12 ms per frame).

4.2. Abstraction

Our fast bilateral filter is very suitable for iterative filtering,
since it converges very closely to the reference result due to

the fact that samples change in spatial position for each pixel
at each iteration. Iterative bilateral filtering can be used for
abstraction or stylization of photographs or videos [WOGO06],
see Figure 6 for a result.

4.3. Flash/no flash photography

A straightforward extension of our bilateral filter is the
cross/joint bilateral filter [PSA*04, EDO4]. This filter
transfers strong edges from an image to another one. In this
case, Algorithm 2 needs to be slightly modified. An extra in-
putimageis added, /;, which is the source of edges to be trans-
ferred. Moreover, the input of f, becomes | /,(x;) — 1,(X)||
instead of ||/(x;) — I(x)||. One of the applications of this
filter is flash/no flash photography, for an example see
Figure 7.
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Figure 5: An example of video denoising applied to a 640 x
480 video sequence. (Left-hand side) A frame of the video
sequence before the filtering. (Right-hand side) The filtered
frame with the application of our filter. A kernel 40 x 40 x 5
was used, the processing time for each frame is 1.7067 ms
on average.

Figure 6: An example of stylization using our bilateral filter
with a 40 x 40 pixels kernel applied to a 552 x 574 im-
age: (top-left panel) the original image; (top-right panel)
a stylized image, our bilateral filter was applied five times;
(bottom-left panel) the magnitude of the gradients of the top
right image; (bottom-right panel) the magnitude of gradients
using the full bilateral filter. Note that our filter produces a
smooth gradient field as the full bilateral filter due to the
fact that different sampling patterns are employed at each
iteration.

4.4. Edge-aware image editing

The cross bilateral filter can also be used for edge-aware
image editing. In this application, some parameters of the
image need to be modified (i.e. hue, saturation or brightness)
in an area selected by a brush stroke avoiding to modify
neighbour areas which are separated by edges. We imple-
mented an edge-aware system where the stroke of a brush is

Figure 7: An example of flash/no flash photography using
our crossljoint bilateral filter applied to a 3072 x 2048 im-
age: (top-left panel) a photograph of a scene taken with the
environment illumination. Note that noise is present in the
image due to the use of a high ISO and high shutter speed.
(Top-right panel) The same photograph taken using a flash.
Note that the original illumination of the environment is lost.
(Bottom-left panel) Noise removal using the flashino flash
photography technique with a standard cross bilateral filter.
(Bottom-right panel) Noise removal using our algorithm for
cross bilateral filter with an 80 x 80 kernel. This evaluation
took 350 ms.

Figure 8: An example of an edge-aware painting applica-
tion: (left-hand side) the user draws a stroke over an image
where hue, brightness or saturation need to be changed.
An edge-aware map (green box) is generated applying the
cross/joint bilateral filter to the stroke depicted. (Right-hand
side) The hue is then shifted using the edge-aware map.

filtered using our fast cross/joint bilateral filter to preserve
edges. The output of the filter is an edge-aware brush which
can be used to modify parameters of the image, see Figure 8
for an example.

4.5. Tone mapping

Another application shown is tone mapping of HDR images
[DDO02]. In this case, we separated an HDR image into a
base and a detail image using our bilateral filter. Then, the
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Figure 9: An example of Tone Mapping using our bilateral
filter applied to a 0.6 Megapixel image. The kernel is 30 x 30
pixels, and the image took 14 ms to be rendered.

HO0

Figure 10: An example of the density map with a 20 x 20
pixels kernel. (Left-hand side) The original image. (Right-
hand side) The corresponding density map with the number
of samples bar.

base layer is tone mapped using the Reinhard et al.’s global
tone function [RSSF02]. Finally, the tone mapped base and
the detail are recombined obtaining the final tone mapped
image (Figure 9).

5. An Adaptive Extension

Sacrificing a bit the simplicity of the proposed approach, our
algorithm can be easily extended by making the sampling
process adaptive with respect to the image signal. Taking into
account that low-frequency areas require a very small num-
ber of samples (e.g. 3-5), while more samples are needed in
high-frequency areas. In order to make the sampling process
adaptive, we re-arrange the pre-computed tiles in a multi-
resolution way, with denser and denser Poisson-disk distri-
butions, so that it is possible to use a different density of
samples according to the image signal. In this experimen-
tal version of the algorithm, the selection of the number of
samples is guided by a density map based on the gradients’
magnitude of the luminance channel of the image to be fil-
tered (see Figure 10).

In this case, the memory requirements increase from O(1)
to O(m), where m is the number of pixels of the image, be-
cause we need to store the density map. Note that a simple
evaluation of gradients at the pixel level leads to artefacts.
The density map needs to be smoothed to avoid artefacts
such as banding between high- and low-sampling areas. Af-
ter some tests, we can state that the proposed adaptive ver-
sion improves the uniform algorithm; the speed-up is around
20-27%. This is limited due to the time spent for building
the density map. Moreover, the adaptive variant improves
the overall quality of around 1.5 dB. A different approach to
make the proposed algorithm really adaptive and hopefully
more effective with respect to the tested one, is to formu-
late a heuristic to correlate the local gradient energy with
Nsamples for a certain kernel size and employ a real-time
method to generate the Poisson-disk pattern with the esti-
mated number of samples required like the one by Li-Yi Wei
[WeiO8]. This should guarantee both very high speed rate and
quality. We leave thorough evaluation of this improvement
as an interesting matter of future research.

6. Analysis and Results

In this section, we evaluate our bilateral filter to determine
how close it is to the brute force filtering. Moreover, we
compare our algorithm with other state-of-the-art techniques.
In our evaluation and comparison, we assessed the visual
quality, the numerical accuracy and the time performance of
the proposed algorithm. Although we showed in Section 3.1
that less samples are needed for large kernels, in order to
be conservative as much as possible, we fixed the number
of samples in our algorithm to 2N samples, where N is the
radius in pixels of the kernel.

6.1. Visual quality

The techniques that we chose for the comparison are the Sep-
arable Bilateral Filter [PvV05], the Bilateral Grid [PD06], the
Gaussian kD-tree [AGDL09] and the Permutohedral Lattice
[ABD10]. This comparison does not pretend to be exhaus-
tive, many other techniques could be used in the comparison
such as the constant time bilateral filtering [PorO8] and the
FGT [YBY10]. However, these tests are sufficient to pro-
vide a general idea of the visual quality that our method can
achieve. In this comparison, we indicate with [/ the origi-
nal image, with /* the image filtered with the full bilateral
filter and with I/ the image filtered with one of the tested
techniques. The results are summarized in Figure 11 (see
supporting information for more comparisons). The differ-
ence image, which is useful to assess the visual differences,
is computed using the absolute difference of values for each
channel. To increase readability, these differences are mul-
tiplied by 10. As it can be noted, the subsampling bilateral
filter exhibits good visual quality, even for complex images.
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Original Image (I) Full Bilateral Filter (I*)

o

Filtered (/)

Difference (|{y —I*|)

Filtered (/)

Difference (| —I"|)

Figure 11: Visual comparison of several acceleration methods for colour bilateral filtering using o, = 100 pixels and o, = 0.19.
The difference images are amplified by 10 to improve error visibility.

6.2. Accuracy evaluation tation [YBY10], the described metrics are computed as

Our tests evaluate the accuracy of the proposed technique us- Epax = max [I* — 1 1, 3)
ing several metrics: the maximum error (Eps4x), the mean ”

error (E), the mean relative error (E,) and the root mean E= l Z [7*(x;) — 17 (x)] )
square error (RMSE). According to the previously used no- m ‘=
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I'_l

Figure 12: The data set of 19 HDR and LDR images used in our tests.

=l o) = Pl
SR P T e

I m
= — *(x:) — IF(x:))?
RMSE p E I(x) — V' (x))*, (6)

i=1

where m is the number of pixels considered. Since we tested
the accuracy of the filter on many HDR images, we used
the multi-exposure Peak-Signal-to-Noise Ratio (mPSNR)
[MCHAMO6]. The mPSNR is a popular quality metric for
testing HDR compression methods [BADC11]. This metric
takes a series of exposures which are tone mapped using a
simple gamma curve defined as

255

T, c) = [255(2%)5} , 0]

0

where c is the current f-stop, v is a colour value and y = 2.2.
Then, the mPSNR is computed as

MSE(I/, I*) = (AR2 AG2, + AB’ )
(1= mXPZZ + +AB,

c=1 i=1

()

;o 3 x 2552
mPSNR (I7, I*) = 10log, MSEGT. 1 ) )

where p is the number of exposures (sampling uniformly the
dynamic range of the image), and AR; . = T(R/(x;), ¢) —
T(R*(x;), c¢) for the red colour channel, and so on for the
green and blue channels.

In our tests, we filtered 19 images, shown in Figure 12,
with several parameters of o, € [1, 320] pixels and o, €
[0.05, 1.2] for a total of about 1000 filtered images. All LDR
images were normalized in the interval [0, 1]. The accuracy

results are summarized in Table 2. Several considerations
can be drawn from this evaluation. As expected, our method
can have a high maximum error since, in some cases, the
samples do not give a correct estimate of the exact filter
value. However, the accuracy is good taking into account
the mean error. It is interesting to point out that the mPSNR
shows that our approach can compete with the state-of-the-art
methods. This is one of the most important results presented
here.

6.3. Timing comparisons

We evaluated the time performance of our algorithm and
compared with the other solutions presented in Section 6.1
on graphics hardware. The GPU versions of these methods
are available on the website of the respective authors. In these
tests, we varied the kernel size of the filter (Figure 13 left
panel), the size of the image (Figure 13 middle panel) and the
size of the temporal width of the kernel for videos (Figure 13
right panel). The machine, that we used in these tests, is an
Intel Core 17 2.8 Ghz equipped with 4 GB of main memory
and a NVIDIA GeForce GTX 480 with 2.5 GB of memory
under a 64-bit Linux distribution.

From the graphs in Figure 13, it can be seen that our algo-
rithm has linear performance, following its linear complexity
in the radius kernel size. It can be noted that it is slower than
the separable bilateral filter. While the separable bilateral fil-
ter accesses texels coherently minimizing cache misses, our
method fetches GPU texture in a random order which is not
ideal for caches. The separable bilateral filter has very poor
performance in terms of quality as reported in Table 2. It is
important to note that our methods typically have interactive
frame rates (between 7 Hz and 20 Hz) if not real time. In
these tests, we omitted the results of the Gaussian kD-tree.
We excluded them because they were on the order of 10-20s.
The Gaussian kD-tree performs better in dimensions higher
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Table 2: Numerical accuracy of the proposed technique against other acceleration methods based on available CPU versions.

Maximum error Mean error Relative error RMSE mPSNR
Separable bilateral 2.32 0.03 0.84 0.05 26.27
Bilateral grid (3D) 0.98 0.02 0.18 0.15 28.94
Bilateral grid (5D) 0.38 0.01 0.08 0.02 35.85
Gaussian kD-tree 0.68 0.08 0.06 0.06 35.08
Permutohedral lattice 1.59 0.003 0.02 0.01 39.80
Our method 2.64 0.02 0.03 0.12 39.66
Our method adaptive 1.91 0.01 0.02 0.08 39.75
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Figure 13: Timing comparisons of the proposed algorithm with Nyuypies = 2N : (left panel) timing performance for RGB images
(5D); a 1 Megapixel image was used. Kernels of size from 20 x 20 to 320 x 320 pixels were tested using o, = 0.1. (Middle
panel) Timing performance when varying the image size from 0.5 to 10 Megapixel, a kernel with an 80 x 80 pixels spatial kernel
and o, = 0.1 was used in this test. Note that the permutohedral lattice went out of memory for images larger than 4 Megapixel.
(Right panel) Timing performance for temporal bilateral filtering (6D). A 1 Megapixel video was used with a 30 x 30 pixels
spatial kernel size. Temporal kernels of width 3,5, 7 and 9 frames were used.

than three—six [ABD10]. These values are completely out
of comparisons compared to the other methods which work
in 10-100 ms. From these tests, we can point out that the
bilateral grid is the fastest method for medium-large kernels
(more than 150 pixels). Our methods perform better only for
small-medium kernels (less than 150 pixels). However, the
bilateral grid applies an aggressive downsampling for keep-
ing the convolution kernel constant and this can reduce the
quality of the filtered image. The main advantages of our
technique with respect to this technique is about the memory
usage (as shown in the next section) and higher accuracy
of the results as shown in Table 2. The bilateral grid was
not tested for temporal bilateral filtering because the original
paper applies a 3D bilateral grid for each frame [CPD07]
and no 4D implementation is available. The permutohedral
lattice, which is the method with the best mPSNR, has inter-
active performance, but it becomes attractive only for very
large kernels (more than 300 pixels). Similarly to the bilat-
eral grid, this method consumes a large amount of memory
as well. For example, we were not able to perform all timing
tests when increasing the image size (Figure 13 middle panel)
because this method went out of memory with 4 Megapixel
images. Moreover, it went out of memory for filtering HD

videos (1920 x 1080), so the spatial resolution of videos was
set to 1 Megapixel.

6.4. Memory consumption

We evaluated the memory consumption performance of
our algorithm and compared with the others presented in
Section 6.1 using a 1.2 Megapixel HDR image with 4.4 or-
der of magnitudes of dynamic range. The results of these
comparisons are shown in Figure 14. From these compar-
isons, our method consumes less memory than other meth-
ods. Indeed, it needs only extra memory for storing samples
which depends on the kernel size N and the number of tiles
k. One of the key points of our algorithm is that it does not
depend on the image size. In practice this memory overhead
is negligible: if we store a coordinate in an unsigned short,
a 300 x 300 kernel for a 2D image using 64 tiles requires
only 75 Kb of memory. The only drawback is when using
its adaptive form which needs to store the magnitude of gra-
dients of the image. However, a downsampled image to one
quarter of the original can produce results with a negligi-
ble variance, and this suggests that further downsampling
could be achieved. Moreover, it is clear from the graphs in
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Figure 14: Memory requirements comparisons of the proposed algorithm with Nigpes = 2N, using an 1.2 Megapixel HDR
image (4.4 order of magnitude of dynamic range) and varying kernels of size from 20 x 20 to 320 x 320: (left panel) o, = 0.05;

(middle panel) o, = 0.2, (right panel) o, = 0.4.

Figure 14 that other methods are competitive only for very
large kernels (more than 350 pixels wide).

6.5. Limitations

The main limitation of the proposed technique is that it cannot
be naturally extended to accelerate high-dimensional filters.
For example, the Gaussian kD-tree [AGDL09] can be mod-
ified in order to accelerate non-local means by filtering in
16 dimensions. Another problem arises when the bilateral
filter behaves as a Gaussian filter (when o, is very high or
near to the maximum value of the image). In this case, some
noise could be present on the filtered image. This problem
characterizes also other acceleration techniques such as the
permutohedral lattice, the Gaussian kD-tree or the bilateral
grid, where artefacts appear as square-like or triangle-like
patterns, see Figure 11. We also point out that, for images
with very high gradients, the estimation made through sparse
sampling could be insufficient and high-density sampling
could be required to obtain accurate results in terms of visual
quality.

7. Conclusions

In this paper we proposed a low-memory, efficient and prac-
tical approach to accelerate bilateral filtering based on a sub-
sampling strategy. Despite the simplicity of the proposed
algorithm, it is capable to obtain results comparable with the
state-of-the-art in terms of approximation of the standard bi-
lateral filter, especially for medium-large kernel size. A very
low-memory overhead is necessary (to store the Poisson-disk
samples) making the technique applicable to deal with im-
ages with very high resolution. The method can also be imple-
mented on graphics hardware in a very straightforward way
making it available also for devices with low-end graphics
hardware. Moreover, the proposed technique can be applied
to other classes of filters such as the cross/joint bilateral filter,

and video filtering, and the HDR images can be processed
in the same way as LDR images. The experimental results
elicited the excellent trade-off between quality and speed
of the proposed technique. The many presented applications
demonstrate the effectiveness of our approach.

Acknowledgements

We greatly thank Marco Di Benedetto, Andrew Adams and
Jiawen Chen for their help with OpenGL code and compiling
their filters” implementations. We thank Sylvain Paris, Fredo
Durand and Hugues Hoppe for providing their public data
and code. We also thank the anonymous reviewers for their
feedback and suggestions to improve the paper. This work
was funded by the EC IST IP project ‘3D-COFORM’ (IST-
2008-231809).

References

[ABD10] Apams A., Baex J., Davis M.: Fast high-
dimensional filtering using the permutohedral lattice.
Computer Graphics Forum 29, 2 (2010), 753-762.

[AGDLO09] Apawms A., GELFaAND N., DoLson J., LEvoy M.:
Gaussian KD-trees for fast high-dimensional filtering.
ACM Transaction on Graphics 28, 3 (2009), 1-12.

[BADC11] BanterLE F., ArtUusi A., DeBartisTA K.,
CHALMERS A.: Advanced High Dynamic Range Imaging:
Theory and Practice (1st Edition). AK Peters Ltd. Natick,
MA (CRC Press), February 2011.

[BriO7] Bripson R.: Fast Poisson disk sampling in arbitrary
dimensions. In SIGGRAPH *07: ACM SIGGRAPH 2007
Sketches (New York, NY, USA, 2007), ACM, p. 22.

[Coo86] Cook R. L.: Stochastic sampling in computer
graphics. ACM Transaction on Graphics 5 (January 1986),
51-72.

© 2012 The Authors

Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. Banterle et al./ Low-Memory, Straightforward, and Fast Bilateral Filter 31

[CPDO7] Cuen J., Paris S., DuranD E.: Real-time edge-
aware image processing with the bilateral grid. ACM
Transaction on Graphics 26, 3 (2007), 103-112.

[DBPT10] DotsonJ., BAEk J., PLAGEMANN C., THRUN S.: Up-
sampling range data in dynamic environments. In CVPR
2010: IEEE International Conference on Computer Vision
and Pattern Recognition (June 2010), IEEE Computer So-
ciety, pp. 1141-1148.

[DD02] Duranp F., Dorsey J.: Fast bilateral filtering for the
display of high-dynamic-range images. ACM Transaction
on Graphics 21, 3 (2002), 257-266.

[ED04] Eisemann E., Duranp F.: Flash photography en-
hancement via intrinsic relighting. ACM Transaction on
Graphics 23, 3 (2004), 673-678.

[EPM*11] EBempAa M. S., PATNEY A., MITcHELL S. A.,
DavipsoN A., Knupp P. M., Owens J. D.: Efficient max-
imal Poisson-disk sampling. ACM Transaction on Com-
puter Graphics 30, 4 (2011), 49:1-49:12.

[FARO7] FartaL R., AGRAwALA M., RusINKIEWICZ S.: Multi-
scale shape and detail enhancement from multi-light im-
age collections. ACM Transaction on Graphics 26 (July
2007), 51:1-51:9.

[Fat09] FartaL R.: Edge-avoiding wavelets and their appli-
cations. In ACM SIGGRAPH 2009 Papers (New York, NY,
USA, 2009), SIGGRAPH ’09, ACM, pp. 22:1-22:10.

[FDCOO03] FreisumaN S., Drori 1., CoHen-Or D.: Bilateral
mesh denoising. ACM Transaction on Computer Graphics
22 (July 2003), 950-953.

[GS91] GREENGARD L., STRAIN J.: The fast Gauss transform.
SIAM Journal on Scientific and Statistical Computing 12,
1 (1991), 79-94.

[Gunl0] Gunturk B.: Fast bilateral filter with arbi-
trary range and domain kernels. In /EEE International
Conference on Image Processing, 2010 (Hong Kong,
China, September 2010), IEEE Computer Society, pp.
3289-3292.

[Hua81] Huanc T. S.: Two-Dimensional Digital Signal Pro-
cessing II: Transforms and Median Filters. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1981.

[1IS*10] IcarasHi M., IKEBE M., SHIMOYAMA S., YAMANO K.,
Mortonisa J.: O(1) bilateral filtering with low memory us-
age. In IEEE International Conference on Image Process-
ing (Hong Kong, China, September 2010), IEEE Com-
puter Society, pp. 3301-3304.

[KCLUO7] Kopr J., CoueNn M. F., Liscumwski D.,
UvYTTENDAELE M.: Joint bilateral upsampling. ACM Trans-
action on Graphics 26, 3 (2007), 96-102.

[Khr10] KHronos OPENGL WORKING GROuP: The OpenGL
Specification, Version 4.1 (Wiley-Blackwell, Chichester,
UK, 26 July 2010).

[KKO02] Korric T., KeELLER A.: Efficient multidimensional
sampling. Computer Graphics Forum 21, 3 (2002),
557-563.

[Lag07] LAGAE A.: Tile-Based Methods in Computer Graph-
ics. PhD thesis, Departement Computerwetenschappen,
Katholieke Universiteit Leuven, Celestijnenlaan 200A,
3001 Heverlee, Belgium, April 2007.

[MCHAMO6] MUNKBERG J., CLARBERG P., HASSELGREN J.,
AKENINE-MOLLER T.: High dynamic range texture com-
pression for graphics hardware. ACM Transaction on
Computer Graphics 25, 3 (2006), 698-706.

[PDO06] Paris S., DuranD F.: A fast approximation of the bi-
lateral filter using a signal processing approach. In ECCV
2006: European Conference on Computer Vision (Graz,
Austria, 2006), pp. 568-580.

[PD09] Paris S., DuranD E.: A fast approximation of the
bilateral filter using a signal processing approach. Inter-
national Journal of Computer Vision 81 (January 2009),
24-52.

[Por08] PorikL F.: Constant time O(1) bilateral filtering. In
CVPR 2008: IEEE International Conference on Computer
Vision and Pattern Recognition (Anchorage, AK, USA,
June 2008), IEEE Computer Society, pp. 1-8.

[PSA*04] PETSCHNIGG G., SZELISKI R., AGRAWALA M., COHEN
M., Hoppe H., Tovama K.: Digital photography with flash
and no-flash image pairs. ACM Transaction on Graphics
23,3 (2004), 664-672.

[PvVO05] Puam T., van VLIET L.: Separable bilateral filter-
ing for fast video preprocessing. In IEEE International
Conference on Multimedia and Expo (Genoa, Italy, July
2005), pp- 1-4.

[RSSFO2] RemHARD E., STARK M., SHIRLEY P., FERWERDA
J.: Photographic tone reproduction for digital images.
ACM Transaction on Computer Graphics 21, 3 (2002),
267-276.

[SHD11] ScuLoMmER T., HEcky D., DeusseN O.: Farthest-
point optimized point sets with maximized minimum dis-
tance. In HPG ’11: High Performance Graphics Pro-
ceedings (New York, NY, USA, 2011), ACM, pp. 135-
142.

[TBUO8] THEVENAZ P., BIERLAIRE M., UNSER M.: Halton sam-
pling for image registration based on mutual information.
Sampling Theory in Signal and Image Processing 7, 2
(2008), 141-171.

© 2012 The Authors

Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.



32 F. Banterle et al./ Low-Memory, Straightforward and Fast Bilateral Filter

[TM98] Tomast C., Manpuchi R.: Bilateral filtering for
gray and color images. In ICCV ’98: Proceedings of
the Sixth International Conference on Computer Vision
(Washington, DC, USA, 1998), IEEE Computer Society,
pp- 839-847.

[Wei06] WErss B.: Fast median and bilateral filtering. ACM
Transaction on Graphics 25, 3 (2006), 519-526.

[Wei08] WEr L.-Y.: Parallel Poisson disk sampling. In ACM
SIGGRAPH 2008 Papers (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 20:1-20:9.

[WOG06] WINNEMOLLER H., OLseEN S. C., GoocH B.: Real-
time video abstraction. ACM Transaction on Graphics 235,
3 (2006), 1221-1226.

[YBY10] Yoshizawa S., BELYAEV A., Yokota H.: Fast Gauss
bilateral filtering. Computer Graphics Forum 29, 1 (2010),
60-74.

[YFH*10] Yu W., FrancuerT E.,, HoE J. C., CHanG Y.-J.,
CHeN T.: Fast bilateral filtering by adapting block size.
In IEEE International Conference on Image Processing
(Hong Kong, China, September 2010), IEEE Computer
Society, pp. 3281-3284.

[YTAO9] YancQ., Tan K.-H., Anuia N.: Real-time O(1) bi-
lateral filtering. In CVPR 2009: IEEE International Con-

ference on Computer Vision and Pattern Recognition (Mi-
ami, FL, USA, June 2009), IEEE Computer Society, pp.
557-564.

Supporting Information

Additional supporting information may be found in the online
version of this article:

Video S1: This video shows an example of real-time video
de-noising using our bilateral filter acceleration method. The
video shows: the original footage, the filtered one, and a
split-screen comparison between the twos.

Video S2: This video shows an example of edge-aware paint-
ing. In particular, this example demonstates how to change
the hue in an edge-aware way.

Video S3: This videos demonstrates real-time bilateral fil-
tering on a HDR image; the spatial and intensity kernels are
varied.

Please note: Wiley-Blackwell are not responsible for the con-
tent or functionality of any supplementary materials sup-
plied by the authors. Any queries (other than missing mate-
rial) should be directed to the corresponding author for the
article.
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