
1

A Parallel Architecture for Interactive Rendering of
Scattering and Refraction Effects

Daniele Bernabei †, Ajit Hakke Patil ‡ Francesco Banterle † Marco Di Benedetto †
Fabio Ganovelli † Sumanta Pattanail ‡ Roberto Scopigno †

Abstract—We present a new algorithm for the interactive
rendering of complex lighting effects inside heterogeneous ma-
terials. Our approach combines accurate tracing of light rays
in heterogeneous refractive medium to compute high frequency
phenomena, with a lattice-Boltzmann method to account for low-
frequency multiple scattering effects. The presented technique
is designed for parallel execution of these two algorithms on
modern graphics hardware. In our solution, light marches from
the sources into the medium, taking into account refraction,
scattering and absorption. During the marching of the light rays
inside the volumetric representation of the scene, irradiance is
accumulated and it is diffused with the lattice-Boltzmann method
to produce multiple scattering effects.

Index Terms—

I. INTRODUCTION

Photorealistic renderings of virtual scenes arer needed in
many application domains such as movie production, video
games and virtual reality. In its most complete formulation,
the problem requires to accurately simulate the behavior of
light, knowing the optical characteristics of all the materials
in the virtual scene.
The transmission of light through space is influenced by
many factors. When light encounters the surface of an object,
it may deviate from its path according to the change of
refractive index, it may scatter as a result of a collision of
photons with particles of the material, and finallly, it may
be absorbed or emitted by the material. Even though the
laws governing light-matter interaction are well known, their
application in a simulated environment is a computationally
demanding task, which always requires either simplifications
of the laws themselves or assumptions on the nature of the
materials, or both. Analyzing the vast literature we can find a
large number of techniques for real-time simulation of light,
each one modeling a subset of light effects. We propose a
technique that exploits the high level of parallelism of modern
GPUs to provide real-time rendering of scenes accounting for
reflection, refraction, absorbtion and scattering phenomena.
We employ a voxelization of scene space, storing reractive
and scattering coefficients in each voxel. At each frame, the
algorithm traces rays from the light sources through the scene
deviating their path according to the refractive index and
depositing irradiance in the traversed voxels. While rays are
still traversing the volume, a diffusion process starts spreading
the irradiance deposited by the rays to neighboring voxels,
simulating multiple scattering. When both the ray traversal

† Visual Computing Lab, CNR, Pisa (Italy)
‡ Graphics Lab, UCF, Orlando (USA)

and the diffusion process have terminated their computations,
view rays are shot, traversing the scene and reading back the
irradiance.
Summarizing, this paper brings a twofold contribution to the
state of the art:
• a real-time light transport computation engine that takes

into account refraction, scattering and absorption in het-
erogeneous media;

• a novel parallel lighting computation framework specif-
ically designed to harness the modern GPU architecture
and to scale well for large scenes.

The rest of this paper proceeds as follows: we review the
state of the art related to real-time volumetric light transport
computation in Section II, explain our approach in detail in
Section III and provide the results in Section IV.

II. RELATED WORK

The interaction of light with general media is modeled by
the volume rendering equation:

(ω ·∇)L(x,ω)+σt(x)L(x,ω) = ε(x,ω)+

σs(x)
∫

4π

p(x,ω,ω′)L(x,ω′)dω
′ (1)

where L(x,ω) is the radiance at point x and direction ω,
ε is the emitted radiance, p is the phase function, σs and
σt are respectively the scattering and extinction coefficients.
The volume rendering equation captures all lighting effects
generated by the uncountable number of local interactions
between light and volume particles. Note that σt = σs +σa
where σa is the absorption coefficient. A lot of effort has been
devoted to efficiently solve this equation (see Cerezo et al.’s
survey [1] for an overview). Despite the number of efforts, to
our knowledge no solution strategy exists to solve this equation
for fully dynamic scenes and heterogeneous materials (varying
absorption, scattering, and index of refraction coefficients) at
real-time rates.

We can classify the existing algorithms in three categories:
• Ray-based: The approaches that cast rays through the

scene from the light sources and/or from the camera
position and simulate their interaction with the matter.
These approaches include classical ray tracing, path trac-
ing, photon mapping etc.

• Space Partition-based: The approaches that partition the
scene in finite elements and compute the energy exchange

2

between them depending on light sources. These ap-
proaches include radiosity, Lattice Boltzmann Lighting
(LBL) etc.

• Rasterization-based: The approaches that rely on the
rasterization-based hardware pipeline such as shadow
mapping, screen space ambient occlusion, translucent
shadow mapping, etc.

This classification is operated on the basis of what the pro-
cessing unit (let it be CPU or GPU) is dedicated to: tracing
rays, solving systems or rasterizing.

Ray-based Methods: these methods leverage a ray-tracing
core and typically use Monte Carlo techniques to evaluate
Equation 1, allowing fully heterogeneous materials (varying
absorption, scattering, and index of refraction coefficients).
These methods have now become popular thanks to modern
GPUs, which can trace large numbers of rays simultaneously
and allow interactive/real-time performances. For example,
Ihrke et al. [2] introduced a particle-based method derived
from the Eikonal equation that achieves interactive frame rates.
Sun et al. [3] instead presented a real-time renderer which
constantly bends light rays at each voxel intersection in a
fashion similar to volumetric photon mapping. More recently,
this method has been extended in order to handle a closed
form analytical formulation of light ray trajectory on constant
gradient refractive media [4]. Finally, Walter et al. [5] showed
a real-time formulation that determines the focal points on the
boundary of an object.

Space Partition-based Methods: these methods subdivide
the space of the scene into sub-regions (e.g. voxels, tetrahedra,
clusters, etc...) where the computations are performed per sub-
region. This choice typically allows the computation of mul-
tiple scattering for homogeneous and/or heterogeneous mate-
rials efficiently. Moreover, these methods are straightforward
to parallelize, thus they can be easily ported to run on GPUs.
However, general solutions to the volume rendering equation
are computationally intensive for accurate multiple scattering
inside dense heterogeneous solids. To reduce complexity,
Discrete Ordinates Methods (DOM) are used, where radiation
transfer between small voxels is limited to a predefined set of
discrete directions. Nevertheless, these methods suffer from
the ray-effect, a banding artifact due to the discretization of
directions. Recently, Fattal [6] introduced the Light Propaga-
tion Maps which highly reduces this problem.
A different approach was proposed by Stam [7], where
multiple scattering was approximated as a diffusion process.
Following this idea, Geist and Steele [8] adopted a Lattice-
Boltzmann solver to compute the diffusion equation. In their
approach, the photon density is moved from adjacent nodes
along 18 predefined directions. The system iteratively updates
the values in the nodes and the links between them. Their
mathematical formulation considers scattering and absorption,
until the system reaches the equilibrium. The main advantage
of lattice methods is that they are based on a sequence of
local modifications. Therefore, they scale well with scene size
and are straightforward to parallelize. In a similar fashion
Kaplanyan et al. [9] introduced Light Propagation Volumes,
a voxel based local propagation scheme which only considers
the 6 adjacent voxels along the principal axes. Their scheme

allows to include occluders explicitly, but interactions between
voxels are computationally expensive.

Rasterization: these methods exploit rasterization in graph-
ics hardware. One of the first methods that could be applied to
dynamic scenes was proposed by Dachsbacher et al. [10] with
the name of Translucent Shadow Maps. In their formulation,
shadow maps are exploited to capture irradiance, normals, and
depth to compute the BSSRDF of homogeneous media. More
recently, texture-space methods have become popular. For
example, Mertens et al. [11] introduced importance sampling
of the BSSRDF (dipole method) for multiple scattering. This is
achieved in texture space using parametrization. More recently,
the use of advanced texture-space filtering is widely employed
for rendering translucent materials such as skin [12].
All these methods present advantages and disadvantages in
terms of computations and quality of the results. Ray-based
methods efficiently produce very accurate results for the
computation single scattering and refractive effects. However,
they are slow in computing the multiple scattering term. On
the contrary, space partition-based methods produce accurate
multiple scattering at very high speed, but they do not perform
well with single scattering. Finally, rasterization methods work
well for certain kinds of materials such as skin (including
the evaluation of the BRDF part). Nevertheless, they have
several limitations that must be typically addressed using
precomputations.

Our method combines the best features of the presented
approaches. The single scattering term and refractions in
heterogeneous materials are handled by a ray-based algorithm
for getting accurate results. The multiple scattering term is
computed using space partition-based methods in order to
speed computations up without sacrificing quality. Finally,
the BRDF evaluation and the first hit are determined using
OpenGL rasterization.

III. OUTLINE OF THE ALGORITHM

Our algorithm builds on a straightforward 4-pass approach:
1) Init: computes the voxelization of the scene and the

gradient of the refractive index, and initializes the light
rays.

2) Marching: traces the light rays from the sources through
the volume, accounting for refractive index, scattering
and absorption coefficients. Finally, it stores in the
voxels the percentage of light that has to be scattered.
The process ends when all rays have left the scene or
there is no more light to carry.

3) Diffusion: computes the multiple scattering contribution
of the light deposited in the Marching pass.

4) View: casts rays from the point of view and gathers the
irradiance.

The parallel architecture of the algorithm is built around the
observation that the diffusion pass may be run concurrently
with the marching pass. More precisely, as soon as a portion of
the volume has been traversed by the light rays, the irradiance
left behind inside the volume elements can be diffused through
all the volume without waiting for the end of ray traversal.
During the diffusion pass, rays may continue to march through

3

Fig. 1. A schematic description of our parallel rendering pipeline

the volume. Figure 1.a shows a temporal diagram of the
algorithm.

A. Init pass

The input to our algorithm is a scene described as a set
of watertight meshes, and the role of this pass is to fill the
Material Volume and to initialize the light rays.
Filling the Material Volume The material volume is
a volumetric description of the scene where each voxel
stores the scattering coefficients σrgb, the refractive index
n, the gradient of refractive index ∇n and the occupancy,
i.e. the percentage of non empty volume covered by
the voxel. Homogeneous materials have a constant σrgb
and n value, which will be assigned to all the internal
voxels. For heterogeneous materials these values can be
defined procedurally or with a mapping from the mesh to
a volumetric texture. The gradient of the refractive index
is computed by finite differences and the occupancy by
supersampling the volume with respect to the size of a voxel.
As in [2], we filter the gradient with a Gaussian kernel to
avoid aliasing effects when refracting rays.

Initializing the light rays For each light source, we render
the scene to build a depth map that will be used in the view
pass for handling shadows. Furthermore, the depth values are
converted in world space and used to set the starting point for
the rays, so avoiding the marching of rays through the empty
volume. We set the starting point slightly before the position
found with the depth value, more precisely by a distance equal

Fig. 2. Setting the starting point of rays.

to the number of voxels used for the Gaussian smoothing, as
shown in Figure 2. This is an optimization that may be disabled
if the light source is inside a participating media.

B. Marching Pass

This pass traces the rays through the volume until each ray
traverses a predefined number of voxels k. At each step the ray
direction is updated using the Eikonal equations (see Figure 3):

xt+δ = xt +
δ

n
vt (2)

vt+δ = vt +δ ∇n (3)

where δ is the integration time step, and xt and vt are
respectively the position and the velocity of the particle along
its path at distance t from the source, and n is the refractive
index. The value ∇n in a point inside the volume is trilinearly

4

Local
Memo

ry

Fig. 3. Update of particle motion and computation of irradiance to deposit.

RayMarching (x ,v ,L0) {
i = 0 ;
do{

h ,k = voxel containing x ;
sigma_rgb ,grad_n ,occ = MaterialVolume [x ,v]
od += exp(− delta * (sigma_rgb+a)) ;
Lt = od * L0 ;
LocalRayHistoryBuffer [i] = [x ,Lt] ;
x=x+v /n *delta ; v=v+ delta * grad_n /n
++i ;

}
whi le ((i < k) | | (occ==0)) ;
UploadToGlobalMemory () ;

}

Fig. 4. The algorithm executed on each thread.

interpolated from the values in the material volume. The
irradiance left behind by the ray at position t is:

Lt = e−
∫ t

0 σs(t′)+σa(t′)dt′L0

since we perform explicit integration, the integral is approxi-
mated as a sum, and σs and σa are considered constant along
the path from t to t +δ.

Implementation: Figure 4 shows a C-like description of
the algorithm for a ray. Each ray is assigned to a dedicated
OpenCL thread and executed in a Processing Element (PE).
We start this pass by instancing a 2-dimensional computa-
tion grid with R threads, with R the number of rays. At
the beginning, the rays are assigned to the same Streaming
Multiprocessor (SM) in packets, so that, at least at the first
marching steps, access to global memory tends to be coherent.
Unlike in [2], we use a fixed length step, δ, because all
threads in the same SM share the same instruction pointer.
Furthermore, to obtain maximum processing throughput, all
the instances of instructions which conditionally modify the
control flow (e.g. conditional jumps) must generate the same
execution path in every PEs of the SM have to complete their
execution at the same time.

The material volume resides in global memory and it is
read-only, while the LocalRayHistoryBuffer is a write-only
vector of k positions and resides in the local memory of the
SM. When the i-th voxel is traversed, the program writes
to this vector at position i (the position of the voxel) the
amount of irradiance to be deposited. The last instruction of
the program, UploadToGlobalMemory, copies the LocalRay-
HistoryBuffer to global memory. When all threads terminate,
we will have a buffer in global memory, the Ray History
Buffer, which is filled with the index of all voxels traversed
by all rays and the amount of irradiance left in each one (see
Figure 1.b).

Transfer: This operation completes the marching pass
by copying the content of the Ray History Buffer onto the
Diffusion Volume. The diffusion volume is another grid in

one-to-one correspondence with the material volume. A voxel
of the diffusion volume stores an RGB irradiance value. We
perform the transfer operation in OpenGL by binding the
diffusion volume texture as a render target and issuing the
rendering of a batch of R× k points. In a vertex shader, we
fetch the voxel coordinates and the irradiance from the Ray
History Buffer and use them as output position and color,
respectively. Since multiple rays may contribute to the same
voxel, we enable blending to accumulate each contribution.
The transfer is the only stage where we use OpenGL. Note that
this operation cannot be done directly in OpenCL due to the
lack of atomic floating point operation needed for irradiance
accumulation. When the OpenGL accumulation step ends, we
bind again the Ray History Buffer as output and restart the
threads assigned to the marching pass and the threads assigned
to Diffusion pass.

C. Diffusion pass

In this pass, we propagate the irradiance stored in the
diffusion volume. As we did in the Marching step, we want to
exploit the parallelism of the GPU by breaking up the problem
into subproblems and assigning each one to a dedicated SM.
Therefore, we partition the diffusion volume in blocks of b3

voxels (highlighted in blue in figure 1.b) and compute the
diffusion of light within each block. We proceed iteratively:
for each iteration we run the diffusion process in parallel for
each block and store the leaving photon density in an ad hoc
interfaces buffer of size 6×b×b that will serve as input the
neighbor blocks at the next iteration.

Diffusion inside a block: The transport of light inside a
block is computed by means of the LBL approach [8]. LBL
has proven to be a viable method to simulate the light diffusion
process in a medium. The transport of light is discretized
in space and time, by modeling the volume with a lattice
where each node (i.e. each voxel) stores the photon density
along a predefined set of directions and updates these densities
at discrete time steps. In the original paper, each node is
connected to its 6 neighbor nodes along the principal axis,
and the 12 nodes along the diagonals on the 3 planes X = 0,
Y = 0 and Z = 0. To comply with current memory limits of
the SM, we use blocks of 43 voxels and only the 6 principal
directions. Following the notation of the original paper, the
photon density, fi(r, t), arriving at lattice site (i.e. the voxel) r
at time t along direction ci is computed as:

fi(r+λci, t +δ) = Θi f (r, t) (4)

where:

Θ0 j =

{
0 j = 0
σa j > 0

Θi j =


1/6 j = 0
σs/6 j > 0
1−σt +σs/6 j = i

(5)

The memory consumption of the LBL data structure for
b = 4 (i.e. the vector of photon density f) is 6144 bytes (6

5

Fig. 5. Avoiding conflicts in writing/reading to/from the Interface Buffer.

directions, 43 voxels, 4 channels, and 4 bytes for storing the
density). The interface buffer requires 1536 byte for a block
(b2 elements, 6 faces, 4 channels, 4 bytes for the density). In
total, 6144+1536 = 7680 bytes.
At the end of the Diffusion pass, the irradiance in the voxels
is accumulated in a copy of the Diffusion Volume, that we
call Irradiance Volume, which will be the one ultimately used
in the View pass. Note that the Interfaces Buffer is accessed
both for reading and writing by concurrent threads. Therefore,
we must guarantee that there are no access conflicts. Figure 5
shows two adjacent blocks and the Interface Buffer among
the two. Note that, within a block, we can use the same
locations in the interfaces buffer both for reading and for
writing, because each location is read and written only by
the thread controlling the single voxel corresponding to it.
Moreover, the irradiance written to the interface (h+,k) has to
be read in the subsequent step by the block h+1,k (and vice-
versa). Therefore, we simply alternate h+,k and (h+1)−,k as
interfaces buffer for the two blocks to avoid conflicts. This is
shown in Figure 5.

Termination condition: Before performing the view pass
and displaying the frame, we must guarantee that the system
has reached an equilibrium state. This means that performing
additional steps will not change the current state of irradiance
on each voxel. The number of steps typically varies with the
characteristic of the volume, so it cannot be fixed beforehand.
We test for convergence by monitoring the amount of irradi-
ance in a sparse set of points and stopping when the relative
change is under a predefined threshold.

D. View pass

The View pass is the last step of our rendering algorithm.
We instantiate a 2-dimensional computation grid of the size
of the framebuffer such that the calculation of the color at
each pixel will be assigned to an OpenCL thread. In this
pass, the rays are shot from the observer’s viewpoint toward
the irradiance volume and marched through it, taking into
account refraction. At each step of the marching, a view ray
accumulates the irradiance read from the irradiance volume,
calculating the color of the pixel. Finally, the direct lighting
contribution is calculated evaluating the BRDF of the surface
(i.e. Lambertian BRDF), where shadow maps computed in the
Init pass are used for the visibility test.

IV. RESULTS AND DISCUSSION.

We performed several tests with different materials and
lighting conditions on a Intel Core2 Duo 2.66 GHz, 2 GB
RAM, equipped with a NVidia GeForce GTX 465.

A. Comparison with Ground Thruth

Figure 6 shows a comparison between our approach and a
ground truth image of a sphere of homogeneous material lit
by a spot light. All ground truth images have been produced
using classic volumetric photon mapping.

Particle tracing was adapted to match the same refraction
model used in our technique; more precisely, we employed
the Eikonal equation to bend photons when moving inside the
medium. However, when moving from air into the medium,
the photon tracer uses the normals of the mesh to compute
Snell’s equations, thus achieving higher quality renderings.
The resulting difference can be noticed in figure 7 in details
such as the Armadillo’s hands or the Bunny’s ears.

Our approach Ground truth

Fig. 6. Comparison of our approach against a ground truth image with
different values of scattering and albedo.

V. APPROXIMATION OF LBL

The first test aims at evaluating the effect of the subdivision
of the volumes in blocks operated in Section III-C. Applying
LBL inside each block of voxels and transmitting the photon
density through the interfaces buffer is not the same as per-
forming a LBL globally over the entire volume. Therefore, we
ran a simple test with a single light in a homogeneous material
to evaluate the difference. Figure 9 shows a comparison for
two different albedo values, showing how the two algorithms
achieve comparable results.

Figure 10.(a) shows a model of a homogeneous elephant
placed inside an otherwise homogeneous sphere. The dif-
ference in refrafractive indices between the two materials
produces some caustics within the object.

6

Our approach Ground truth

Fig. 7. On the left column, two renderings of the Bunny and Armadillo model
at 12 fps made of heterogeneous materials. On the right column the scenes
are rendered with photon mapping (228M and 63M of photons, respectively).
The same spot light was placed on the right of the Bunny and on the left of
the Armadillo.

Fig. 8. Multiple and single scattering. Left) The Thai model lit by a point
light placed at its right; Center) The same model lit by a spot light placed at
the same position, single scattering only; Right) Same as center, with multiple
scattering re-enabled.

Figure 10.(b) shows a similar situation with two spheres
inside a cube. Renderings in figure 11 are computed from
low scattering coefficient materials and therefore refraction
related effects are more prominent. For example, caustics on
the checkboard and image of the checkboard on the surface
of the green sphere can be seen. Figure 11.(c) shows a bunny
immersed in a cube and Figure 12 show 4 frames of the
animation of a running elephant (see the video accompanying
this submission). For these last two examples, we also used an
environment map, that we are able to easily incorporate into
our framework.

Albedo

LB
L

O
u

r
a
p

p
ro

a
ch

Fig. 9. Comparison of Lattice Boltzmann Lighting with our approach for
two albedo values.

A. Performances

We conducted a number of experiments to analyze the
efficiency of our algorithm when changing its parameters.

An important number is the size of the Ray History Buffer,
because it determines the granularity of the parallelization
between diffusion pass and marching pass of consecutive steps
and the total number of steps to convergence. We studied
the relation between the size of the Ray History Buffer and
the total number of steps to convergence. Small values of k
correspond to a dense interleaving of marching and diffusion
pass and a higher number of steps of the algorithm. Large
values of k means less dense interleaving and small number
of steps. In the extreme case of unlimited Ray History Buffer,
we would have a single marching phase followed by a single
diffusion phase. Table I shows the rendering time for different
sizes of the Ray History Buffer from 2 to 64 for the bubbly
cube dataset. Small sizes of the Ray History Buffer lead
to longer rendering times, mainly due to the overhead of
the OpenGL transfer. For our hardware setting, Ray History
Buffer with size k = 16 turned out to be an optimal value.
This suggests that the proposed architecture is effective w.r.t.
executing the two passes in a sequence, otherwise greater
values of k should correspond to shorter times.
Figure 13 shows the dependence between the albedo of the
material and the number of steps required to reach convergence
for a 1283 volume and produce a 10242 image. As expected,
the algorithm takes more steps and hence is slower with
materials with high values of albedo, but it never falls under
8 fps even for albedo approaching 1.

A test more directed to prove the effectiveness of the
framework has been conducted by running a sequential
execution of a single marching and diffusion phase against
our algorithm, which shows that our algorithm is on the
average 30% faster. Note that this gain is only due to the

7

024 8 16 32 64
68

70

72

74

76

78

80

82

84

86

88

k

T
im

e
 i

n
 m

s

TABLE I
RENDERING TIME (IN MS) FOR DIFFERENT SIZES OF Ray History Buffer k

FOR THE CASE OF A 1283 VOLUME ENTIRELY FILLED.

Fig. 13. Performances of our algorithm for different albedo values.

parallel execution of the diffuse phase of the i-th step with
the marching phase of the (i + 1)-th step. We expect a
further improvement in the out-of-core implementation of our
framework, where our approach will also benefit from the
cache coherent access to memory. Note that in the present
implementation the entire dataset resided in video memory.

While the Marching phase and the View pass of our
algorithm is mostly performed like in [3], we are also able to
compute multiple scattering at little additional cost, addition-
ally preserving the possibility of changing light and material.
The algorithm by Wang et al. [13] also implements multiple
scattering of heterogeneous materials and does not suffer from
the limitations due to voxelization in handling sharp features.
However, it requires a complete tetrahedralization of the model
which takes several minutes of computation (10 minutes for
the gargoyle model) and does not take into account refraction.
Light Propagation Maps [6] provide a more accurate solution
for light transport in participating media, but still require
minutes to produce a single image. The mesh based approach
by Walter et al. [5] produces more precise refraction effects
than ours but it only handles single scattering and only for one
boundary between two constant refractive-index materials.

Conclusions and Future Work

In this paper, we have presented a novel approach to real-
time rendering of heterogeneous media, based on the idea of
decoupling and parallelizing the computation of refraction and
scattering phenomena. This is achieved by localizing the com-
putation for lattice-Boltzmann lighting and thus overcoming
the memory limitations of GPUs. To our knowledge, this is
the first real-time approach for volume rendering that includes
refraction and multiple scattering for heterogeneous meterials.
This work sets the basis for an out-of-core version of the
algorithm for large scenes, which will be addressed in a future
work.

REFERENCES

[1] E. Cerezo, F. Perez-Cazorla, X. Pueyo, F. Seron, and F. Sillion, “A Sur-
vey on Participating Media Rendering Techniques,” the Visual Computer,
2005.

[2] I. Ihrke, G. Ziegler, A. Tevs, and C. Theobalt, “Eikonal rendering:
efficient light transport in refractive objects,” ACM Trans. Graph.,
vol. 26, no. 3, 2007.

[3] X. Sun, K. Zhou, E. Stollnitz, J. Shi, and B. Guo, “Interactive relighting
of dynamic refractive objects,” in ACM SIGGRAPH 2008 papers. ACM,
2008, p. 35.

[4] C. Cao, Z. Ren, B. Guo, and K. Zhou, “Interactive Rendering of Non-
Constant , Refractive Media Using the Ray Equations of Gradient-Index
Optics,” Media, 2010.

[5] B. Walter, S. Zhao, N. Holzschuch, and K. Bala, “Single scattering in
refractive media with triangle mesh boundaries,” 2009.

[6] R. Fattal, “Participating media illumination using light propagation
maps,” ACM Transactions on Graphics, vol. 28, no. 1, pp. 1–11, Jan.
2009.

[7] J. Stam, “Multiple scattering as a diffusion process,” in Eurographics
Rendering Workshop 1995. Citeseer, 1995, pp. 41–50.

[8] R. Geist, K. Rasche, J. Westall, and R. Schalkoff, “Lattice-Boltzmann
Lighting,” in Eurographics Symposium on Rendering, A. Keller and
H. W. Jensen, Eds. Norrkoping, Sweden: Eurographics Association,
2004, pp. 355–362.

[9] A. Kaplanyan and C. Dachsbacher, “Cascaded light propagation volumes
for real-time indirect illumination,” Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games - I3D ’10, p. 99,
2010.

[10] C. Dachsbacher and M. Stamminger, “Translucent shadow maps,” in
EGRW’03: Proceedings of the 14th Eurographics workshop on Render-
ing. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association,
2003, pp. 197–201.

[11] T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient
Rendering of Local Subsurface Scattering,” Computer Graphics Forum,
vol. 24, p. 41, 2005.

[12] J. Jimenez, D. Whelan, V. Sundstedt, and D. Gutierrez, “Real-time
realistic skin translucency,” IEEE Computer Graphics and Applications,
vol. 30, no. 4, pp. 32–41, 2010.

[13] Y. Wang, J. Wang, N. Holzschuch, K. Subr, J. Yong, and B. Guo, “Real-
time Rendering of Heterogeneous Translucent Objects with Arbitrary
Shapes,” in Computer Graphics Forum, vol. 29, no. 2. John Wiley &
Sons, 2010, pp. 497–506.

8

23 fps 13 fps 28 fps

Fig. 10. Renderings showing refraction and multiple scattering.

Fig. 11. (a) Renderings showing refraction and multiple scattering in heterogeneous media. (b)-(c) Including an environment map.

Fig. 12. A few frames from a real time animation (see accompanying video).

