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Flow-based local optimization for
image-to-geometry projection

Matteo Dellepiane, Ricardo Marroquim, Marco Callieri, Paolo Cignoni, and Roberto Scopigno

Abstract—The projection of a photographic dataset on a 3D model is a robust and widely applicable way to acquire appearance
information of an object. The first step of this procedure is the alignment of the images on the 3D model. While any reconstruction
pipeline aims at avoiding misregistration by improving camera calibrations and geometry, in practice a perfect alignment cannot always
be reached. Depending on the way multiple camera images are fused on the object surface, remaining misregistrations show up either
as ghosting or as discontinuities at transitions from one camera view to another.
In this paper we propose a method, based on the computation of Optical Flow between overlapping images, to correct the local
misalignment by determining the necessary displacement. The goal is to correct the symptoms of misregistration, instead of searching
for a globally consistent mapping, which might not exist. The method scales up well with the size of the dataset (both photographic and
geometric) and is quite independent of the characteristics of the 3D model (topology cleanliness, parametrization, density). The method
is robust and can handle real world cases that have different characteristics: low level geometric details and images that lack enough
features for global optimization or manual methods. It can be applied to different mapping strategies, such as texture or per-vertex
attribute encoding.

Index Terms—Computer Graphics, Image color analysis
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1 INTRODUCTION
The acquisition of the appearance properties of real
objects is a broad and complex field of research in the
Computer Graphics and Computer Vision context. The
main goal is to produce extremely accurate and realistic
3D models, encompassing both shape and color. While
the acquisition of geometry has been greatly improved
over the last few years, the acquisition and visualization
of surface appearance properties has not yet reached
such a mature level. Even if methods to treat small
objects, specific materials and simple BRDF models
have been proposed, no general approach can handle
complex geometries with varying reflectance properties,
especially when flexibility, portability on the field, and
robustness is needed.
When confronting these situations, a popular, simple
and robust alternative is adding to the 3D shape
a color information obtained by the mapping and
back-projection of a set of photographs. Relying on
an additional photographic dataset is needed because,
in most cases, the color information acquired by the
acquisition devices is not accurate enough. These
approaches generally start by computing an image-to-
geometry registration, followed by an integration strategy.
The first phase deals with the computation of the
camera’s intrinsic and extrinsic parameters, i.e., the
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Fig. 1. An example of ”ghosting” effect due to small
inaccuracies in image registration.

information needed to compute the inverse projective
transformation of the photos. On the other hand, the
integration phase manages how to combine the many
color samples available for each surface point. Most
methods use some sort of weighting or interpolation of
the samples to produce the final color.
Unfortunately, computing 100% correct image-to-
geometry registration is never possible in the real world,
due to several factors, such as: the specific geometrical
features of the 3D model (the surface might lack
representative geometric features to be matched with
visual features in the image); the 3D model may
not be sufficiently accurate due to poor scanning,
or excessive simplification/smoothing introduced in
the post-processing phase; and/or the image may be
distorted, cropped or there may be shadows/highlights
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which interfere with the image-to-geometry registration.
Consequently, global optimization methods are unable
to accurately align all features simultaneously, leading
to blurry details or the so-called ”ghosting” effect (see
Figure 1) after color projection. This kind of artifact
stands out significantly in the case of small and sharp
color features, especially when the color detail is in
areas with low geometric information (i.e. painted
vases or nearly flat surfaces). Cultural Heritage is a
context where many of these complex cases arise, since
the artworks are usually decorated, and have densely
textured details (grain of the material, deteriorations,
scratches or loss of material/paint, etc). The problem
is made more pressing by the requirements of the end
users: if the 3D medium is going to be the main form
of representation, we need to be able to produce 3D
models with the same quality as digital photos.

This paper proposes a method for correcting small
inaccuracies introduced in the image-to-geometry
registration. Rather than solving the problem in a
global manner by computing a new, congruent global
registration over all images (which is sometimes
impossible), our solution is based on a local warping of
the source images aimed at improving the sharpness of
the mapping, in a similar fashion to methods proposed
for range maps registration [1]. This local intervention
can correct small misalignment artifacts while, at the
same time, preserves the initial registration at a higher
level. An optical flow strategy is used to drive the
warping of the images before projection, in order to
produce an accurate and unambiguous mapping. Even
though optical flow is a well known technique, it has
been mostly applied in the fields of motion tracking and
reconstruction from stereo, where little scene variation
between consecutive images is assumed, i.e., small
displacements of the camera or the objects. In contrast,
in this study it is used in a different scenario, where
the input images are obtained from a set of cameras
with significant position and orientation variation. Our
correction algorithm also handles cases where several
images map onto the same geometrical point (i.e. where
continuous warping among several images is needed).
The main contributions of our method are:

• robustness in terms of correcting misalignments
and preserving sharpness of small-scale details in
colored 3D models, able to manage applications
requiring a large number of images and very dense
3D models;

• easy integration with state-of-the-art methods based
on color projection and integration;

• the application of optical flow approaches to accu-
rately drive the image-to-geometry projection over
a set of images taken from a very sparse location,
which complies with specific input conditions that
are usually not accounted for in the optical flow
literature;

• a method to combine multiple warping fields which
exploits ”importance” relationship between input
images, able to build a globally coherent color in-
formation.

2 RELATED WORK

Our method deals with two important fields of research:
color acquisition and projection, and optical flow. A
brief overview of the most important studies and of the
main issues will be presented. Additional references to
other related fields of research can be found in other
sections of the paper.

Optical flow. The optical flow between two images is
usually computed as a set of displacement vectors be-
tween corresponding pixels. One of its most prominent
applications is motion tracking, where the images define
a sequence in time and the flow field represents the
image velocity. It has also been used in other areas such
as image-to-image registration, template matching, video
compression and image morphing. In fact, whenever a
pixel correspondence between images must be retrieved,
optical flow methods may be applied.

Even though it has been a very active area of research
over the last few decades, there is still no single optimal
solution, since each problem is based on a different
set of assumptions and requirements. Some important
problems tackled by researchers have included the man-
agement of large deformations, rotations, illumination
changes, and large displacements. In each case, some
variables are restricted in order to bound the complexity
of the algorithm to a practical scale. For example, many
algorithms are based on the assumption of a global
smooth field or constant pixel brightness between im-
ages: the data conservation constraint [2] assumes that the
intensity is conserved for small time steps.

There are many approaches to compute the optical
flow, and what type works best depends mostly on
the application. In the context of image-to-geometry
alignment, optical flow strategies were used in some
specific settings, such as capturing real people under
controlled illumination with a video camera [3], [4].
In another work Pulli et al. [5] employed optical
flow to align range images with color information
using a minimization approach to calibrate the camera
parameters for each range map. Differently from many
applications, a global matching solution is not required
in our settings and, even more, smoothing should be
avoided as to not cause blurring in the final model.
Even though the contribution of this work is not a novel
optical flow method by itself, in Section 3.1 we further
discuss some strategies that handle well our test cases.

The Camera Calibration problem. The first step in the
color projection pipeline is image registration, since in
most cases, the camera parameters associated with each
image are not known in advance. Several automatic [6],
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[7], [8], [9] and semi-automatic [10] methods for image-
to-geometry registration have been proposed. They are
mainly based on an analysis of the geometric features
of the model (e.g., silhouette and orthogonality), or
on some input given by the user (2D-to-3D correspon-
dences). Although these solutions can be extremely ac-
curate, the quality of the results is influenced by several
factors:

• The geometric properties of the model: if the
model lacks particular geometric features, both the
automatic and semi-automatic methods might not
have enough data to provide an accurate solution.

• The quality of the 3D model: if the 3D model
has been generated with an insufficiently accurate
method (e.g., low cost scanners, manual modeling,
or photogrammetry), the geometry may be different
from that depicted in the images, so that a pre-
cise estimation of the camera parameters becomes
almost impossible.

• The use of a camera model: all the above cited
methods attempt to fit a perspective camera model.
However, this classic camera model does not always
fit the real case perfectly: this can happen for some
particular cameras, or when images have undergone
some kind of processing, such as cropping.

In these cases, it is often not possible to produce
perfect results, which leads to ghosting effects and
discontinuities.

Color acquisition and visualization. The most correct
way to represent the material properties of an object is to
describe them through a reflection function (i.e. BRDF),
which attempts to model the observed scattering behav-
ior of a class of real surfaces. A detailed presentation of
its theory and applications can be found in Dorsey [11].
Unfortunately, state-of-the-art BRDF calculation ap-
proaches rely on controlled and complex illumination
setups [12], [13], [14]: this limits their application in
the context of complex scanning projects (big artifacts
and on-the-field acquisitions, such as those performed
in museums). Other approaches, based on simplified
assumptions [15], [16] are also difficult to apply in more
general cases.
A less accurate, but more robust, solution is the direct
use of images to transfer the color to 3D surfaces. In these
cases, the apparent color value, as sampled in digital
photos, is mapped on the digital object’s surface by reg-
istering these photos w.r.t. the 3D model (by estimating
the camera parameters), and then applying an inverse
projection. In addition to other important issues (briefly
cited in other sections of the paper), such as the image
registration and how to store color information, there
are numerous difficulties in selecting the correct color
when multiple candidates are in different images. Some
of these are: how to deal with discontinuities caused
by color differences between photos that cover adjacent
areas, and how to reduce illumination-related artifacts,

i.e., shadows, highlights, and peculiar BRDF effects. This
is also true when it’s possible to use the color acquired
directly by 3D scanners [17].
To solve these problems, one group of methods selects,
for each part of the surface, a portion of a representative
image following a specific criterion - in most cases, the
orthogonality between the surface and the view direc-
tion [18], [19], [8]. However, artifacts caused by the lack
of consistency between overlapping images are visible
on the borders between surface areas that receive color
from different images. These can be partially removed
by working on the border between two images [18],
[19], [8]. Also aiming to solve this issue, Chuang et
al. [20] employed color gradients to seamless reconstruct
colored surfaces from scans.
Another group ”blends” the contribution of all the im-
ages by assigning a weight to each one or to each
input pixel (this value expresses the ”quality” of its
contribution), and selecting the final surface color as the
weighted average of the input data, as in Pulli et al.
[21]. The weight is usually a combination of various
quality metrics [17], [22], [23]. In particular, Callieri
et al. [24] presented a flexible weighting system that
can be extended in order to accommodate additional
metrics. These methods provide better visual results, and
their implementation permits very complex datasets to
be used, i.e. hundreds of images and very dense 3D
models. Nevertheless, the blending approach produces
undesirable ghosting effects when the starting set of
calibrated images is not perfectly aligned. In the case of
the first group of methods, this kind of artifact is visible
only along the frontier of regions mapped to different
images.
Another issue, which is common to all the cited meth-
ods, is the projection of lighting artifacts on the model,
since the lighting environment is usually not known in
advance. In order to correct (or not project) the lighting
artifacts, two possible approaches include the estimation
of the lighting environment [25], [26], and the use of
easily controllable lighting setups [27]

Image warping in color mapping. Warping input
images, in order to obtain a better color projection from
a set of photos on a 3D model, is an idea discussed in
some recent papers. However, in the literature, most of
the works are focused towards 3D models built from
multi-view stereo matching and structure-from-motion
approaches. Hence, the data to be managed is composed
of a quite simple geometry and the same photographic
dataset used to generate it. Our aim is to deal with
the more general case with an arbitrary 3D model and
photographic dataset.

In Harmonised Texture Mapping [28], Takai et al.
firstly modify the geometry according to the texture
inconsistency, obtaining a simpler triangulation where it
is easier to define warp fields to reduce image misalign-
ments. Then, using view-dependent texture mapping,
they combine the obtained warp fields for the current
viewpoint according to the view-angle. The results are
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nice, but a globally valid color mapping is not produced.
Aganj et al. [29] use, as a starting point for the image

warping, the same set of points used for the stereo
matching. The matched points are reprojected onto the
surface, each defining a warp direction on the images.
These directions are then combined in each image using
a thin-plate spline to minimize warp discordance. Input
images are warped statically using the resulting field.

Gal et al. [30] also consider geometries obtained by
multi-view stereo matching and work at triangle level,
employing a multi-level optimization strategy to in-
tegrate the different warp directions. Each triangle is
then textured using a single photo, smoothing a very
small area of border between different photos. Since a
smooth warp field is not available, it is not possible to
exploit the redundancy in the overlapping images, which
could have been used to better smooth the transition.
Moreover, working at triangle level requires a small,
topologically clean geometry, which is not the case in
the more general scenario.

The Floating Textures system [31] uses optical flow to
obtain warp data between images, and then combining
the warp fields linearly in the space of the current
viewpoint. In this way it is possible to work in realtime.
Again, the linear, view-dependent combination of warp
fields prevent the creation of a globally valid texture.

Beside the different nature of dataset, our approach
proposes a more elaborate, but still easily imple-
mentable, method to combine the discordant warp fields
produced by the optical flow, based on the local im-
portance of the input images. Using this method, it
is possible to combine the different warp fields such
that the resulting color mapping is globally coherent,
overcoming the limitation of a single viewpoint.

3 THE CORRECTION ALGORITHM
The goal of our system is to fulfill three main require-
ments:

• Generality: the local misalignment problem can be
approached in different ways, but very few guaran-
tee wide applicability. For example, global camera
optimization methods may not work in the case
of low quality datasets (as detailed in previous
section), and local per-triangle warping [18] can only
be used on small meshes with a good surface param-
eterization. We need a method which is independent
of the properties of the 3D mesh, i.e. mesh resolution
or geometry quality/accuracy, and which can work
with camera calibrations provided by different tools.

• Scalability: current practical 3D geometry and color
acquisition projects produce very dense models and
hundreds of images. We believe it is possible to
implement the color data processing in an out-
of-core fashion, in order to deal with very large
amounts of raw data.

• Automation: human intervention, such as fine tun-
ing of camera calibration or local blending correc-
tion (or even local texture manipulation via image

editing tools), is only possible in very simple cases.
The correction system must not require user inter-
vention.

The basic idea of the algorithm is to locally warp
input images in order to minimize small-scale misalign-
ment of high frequency color features, thus obtaining
a sharper color mapping. The proposed solution has
two components: (1) a method to determine the image
warps necessary to obtain a coincident 2D-to-3D color
projection and (2) a strategy to combine the resulting
image warps to obtain a coherent warping to be used in
color mapping.

Instead of calculating the warp directions on a limited
set of points, we opted to use a more dense search
method, based on Optical Flow. Since the relative size of
photographic misalignment may be very small, working
at a higher level may not be enough to cope with fine
details. Moreover, we believe that, by selecting the cor-
rect flow calculation it is possible to obtain a warp field
which is globally smooth enough to produce continuous
result but also locally sharp enough to precisely correct
higher frequency color features.

Each overlapping pair of photos, however, result in
a warping field which is generally not coherent with
the other fields; in order to generate a color mapping,
it is necessary to combine multiple warp fields. Our
aim is to produce a globally coherent color mapping.
Hence, we need a way to combine the warps all over the
geometry, without relying on view-dependent texture.
Instead of trivially combining the warp fields using
linear interpolation or using numerical methods to min-
imize the combination error, we choose to locally weight
the different fields using quality metrics. By evaluating
the local quality of the photos, it is possible to determine
which image is more representative for a certain area of
the mesh, and to locally warp the other contributions
in order to be coherent with the dominant one. The
smoothness of the transition between image dominance
derived by the weight scheme ensures a continuous
warp interpolation. Additionally, since the warp com-
bination is continuous, we can still fully exploit data
redundancy between the photos, effectively blending
overlapping areas to minimize inconsistency.

The color mapping is then carried out considering,
in each point, the local importance of the contribut-
ing input images, and interpolating the warp fields
according to their relative quality. The result is a global,
view-independent color mapping which preserves high
frequency features and color continuity.

3.1 Computation of Optical Flow Between Image
Pairs

Our application makes no assumption about camera po-
sitions, and usually deals with very large displacements.
The only requirement to compute the correspondence
is that the two images contain mutually overlapping
regions, which are the regions we are interested in.
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Fig. 2. Left: Input Image1. Center: Input Image2. Right:
The projection of Image2 on the plane of Image1.

In contrast, a common assumption of most optical
flow applications is that the camera position has a small
variation between two images, or that the elements of the
scene undergo small movements between subsequent
frames. To establish an initial condition that can be
handled in a straightforward way, we start by estimating
the camera parameters for each image and the 3D model.
Then, for every image pair (Image1 and Image2 in Figure
2) and using the associated camera parameters, Image2
is projected onto the 3D model, and re-projected back on
the camera plane of Image1 (Figure 2 right) [32]. Given
an input set of n images, a maximum number of n(n-1)
projections need to be generated. In practice this number
is much lower, since each image usually has a consistent
overlap with no more than 4-5 other images.

As aforementioned, since a global perfect alignment
is not always possible, the images are not perfectly
superimposed when projected onto the model. One im-
portant contributing factor is the different samplings of
color and geometry, which, as noted by Pulli et al. [5],
is an inherent issue. Even though these discrepancies
are generally only of a few pixels, which is an ideal
initial condition to compute an accurate optical flow,
there are still many issues, such as aliasing and blurring
or differences in lighting, which might be present in
the original set of images, or introduced during the
projection phase.

Since it is very difficult to handle all cases at the
same time, we have chosen solutions that provide a
satisfactory result for a wide range of input sets with
regards to the ambient conditions and camera settings.
We tested three different approaches: a brute force tem-
plate matching and its hierarchical variation (both im-
plemented with CUDA), and the GPU implementation
of Brox et al. [33] provided by the Floating Textures
system [31].

The first two strategies do not use a minimization
strategy to solve the objective function, but apply tem-
plate matching in the following way:

q(Ii(p),∆x) =

∑
c=0,1,2

∑
t

[
f(p,∆t, c)2 + γg(p,∆t, c)2

]
∑
|t|

,

where

f(p,∆t, c) = Ii(p+ ∆t)c − Ij(p+ ∆x+ ∆t)c,

g(p,∆t, c) = (Ii(p+ ∆t)c − Īic)−
−(Ij(p+ ∆x+ ∆t)c − Ījc),

where Ij is the search space in the target image,
Ii(p)c is one of the color channels of a pixel from
the source image, Īic is the average per color channel
inside the template centered at p, and ∆x and ∆t are,
respectively, the displacements of the search space and
inside each template. The final flow for a pixel is given
by the minimum value of q inside the search region.
For our tests we set γ = 2, and the search space and
matching template respectively to 412 and 152 pixels,
i.e. the maximum pixel displacement is 20 units in a
each direction. For the hierarchical method, we reduce
the search and matching templates to 152 and 52 pixels,
respectively.

Although the source and target images may initially
seem very similar, they present many high frequency
variations, and create a deviation in image sharpness
(Figure 4). This problem tends to be aggravated by
warping methods - as already noted by Steinbruecker et
al. [34] - since fine details are lost in coarser levels and,
consequently, cannot be matched at the corresponding
scale. Fortunately, the projection limits the flow to only
a few pixels and allows us to use only a few levels of the
hierarchy; in our tests we limited the maximum level to
three.

Analyzing the visual results using the three methods,
all datasets were handled in similar ways, although
each method treats some particular regions better than
others. Even though the Floating Texture method may
achieve more precise results, it depends in some degree
on fine-tuning the parameters for each specific input.
The template matching strategies, on the other hand,
were able to handle all tested datasets with the same
configuration. Figure 3 illustrates the difference between
the three methods with a detail of the vase model.

It is important to point out that even though we are
not giving shadows and highlights any special treatment,
when the diffuse component predominates, which is in-
deed true for our tested sets, these issues can be properly
treated. An example is the shadow in the sample images
of the Painted Cave dataset (Figure 10 top). In fact, the
same phenomenon was already observed by Theobalt et
al. [3], however, we believe that no single optical flow
method will handle appropriately all possible inputs,
thus strong illumination effects, such as specular high-
lights, might mislead the flow.

Disregarding which approach is used, the optical flow
operation produces a map for each projection of a source
image onto another image’s camera space. In order to
continue with the image correction algorithm, it is nec-
essary to ”retro-project” the flow, i.e., bring it back to the
camera space of the source image. This is carried out by
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Fig. 3. Left: Brute force method. Center: Hierarchical template matching. Right: Floating Texture’s optical flow
implementation [31]. Note how even though the third method better preserves the borders (top of the vase), the
patterns in the center of the figure are sharper with the first two methods.

Fig. 4. Sequence of images from the flow calculation of the Louvre Vase. Top row: details of original image (target),
projected image (source), and target image warped to source’s plane using the flow. Bottom row: detail of the
correspondent optical flow, entire optical flow using the first method, projected image, and color code for flow directions.
Note that along the border of the vase the flow becomes highly irregular specially due to the low sampling quality of
projected images in that region; however, this part is usually not used for blending since it obtains low scores.
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Fig. 5. Sequence of detail images from the flow calculation of the Painted Catacomb. From left to right: original image
(target), projected image (source), target image warped with flow, and the flow field. Note that the flow is also able to
remove noise (inside the black square in evidence) from the original image. The flow pattern indicates that there is
not only a translation between the images, but also a radial distortion possibly caused by the camera lenses or image
projections.

Fig. 6. The notation used to denote correspondence
between (warped) points and images.

first applying the flow to the projected image, and then
projecting back the displaced pixel to its original camera
space. The difference between the new and the original
pixel positions defines the correction displacement to be
applied to the image.

3.2 Using the optical flow
Once the optical flows for all the mutually overlapping
image pairs have been calculated, they are used to
coherently project the color information.
Let us start with some notation. We have a set of n
images I1, ...In registered over a 3D model and lets
assume that we know how to compute the ”real” color
of each point po of the mesh as a weighted blend [24] of
the colors of all the images involved :

C(po) =

∑
j I(φj(po))Bj(φj(po))∑

Bj(φj(po))
,

where φi(po) is the inverse camera projection that, given
a 3D point po in object space, provides its 2D projection
onto the image Ii. Analogously, φ−1

i (pi) is the direct
camera projection, which projects a 2D point p1 on a
3D model. In addition, Bj(φj(po)) is a function that
associates each point with a blending weight. To find out
the relation between corresponding points on different
images we use the ψi,j(pi) function:

ψi,j(pi) = φj(φ
−1
i (pi)),

that computes where the point pi from image Ii falls on
image Ij . With Ii(p) we denote the pixel at location p
over the i-th image. If there were no color variations,
errors, and ignoring occlusions we would have:

Ii(pi) = Ij(ψi,j(pi)).

Let us now introduce the flow function, that we com-
puted for each significant pair of images (e.g. for each
image pair that has a significant overlap in object space).
The result of the flow computation between each pair of
images i, j is a warping function Wi,j such that:

Ii(pi) ≈ Ij(Wi,j(pi)).

In other words, the warping Wi,j finds the correspond-
ing position of a pixel of image i on image j. Note
that the warping functions are generally not invertible,
i.e. usually Wi,j 6= W−1

j,i due to occlusions and discon-
tinuities. We define the displacement generated by the
warping function as ∆i,j(pi), so that:

∆i,j(pi) = Wi,j(pi)− ψi,j(pi)

Wi,j(pi) = ψi,j(pi) + ∆i,j(pi)

Figure 6 shows an example of our notation. In practice
the warping finds the necessary ∆ in order to correct the
errors due to the non perfect correspondence between
the digitally scanned model and its real shape (captured
by photos).

To coherently apply the warping function on the
whole surface in a consistent way we have to choose
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Fig. 7. We partition the surface of the mesh according to
an image scoring value defining the regions V 1

i , where
each image Ii is the best one. The region is further
subdivided in subpartitions V 2

i,j , where the images Ii, Ij
are respectively the first two best options.

some base reference system (all the warping functions
denote relative movements). We assume that for each
point p0 of the digital scanned surface of the object, we
know which images are projecting something on that
point and that we have a scalar scoring value Qi(po)
that tells us the best images projecting on it; we used
the scoring value calculated by the system proposed by
Callieri et al. [24]. This score is basically the product of
several, normalized per-pixel quality values. Some of the
basic quality are quite straightforward, such as the view
angle, distance from the sensor, distance in image-space
from photo borders and depth discontinuities (inner
silhouettes). Other metrics can be combined, such as
image sharpness and custom-made masks. The use of
a product to combine the weights ensures that zeros are
conserved. Please refer to the paper for further details.
This scoring mechanism induces a partition V 1 =
{V 1

1 , ...V
1
n } of the mesh into regions, such that V 1

i is the
portion of the mesh where the image Ii has the highest
score. For each region, we use the best image Ii as a
reference and, when blending, warp the other images to
the space of Ii:

Ci(po) =

∑
j Ij(Wi,j(φi(po)) ·Bj(Wi,j(φi(po))∑

Bj(Wi,j(φi(po)).

In other words, for each image Ij , instead of directly
using the pixel Ij(φj(po)), we use its warped image
Ij((Wi,j(φi(po)). For the sake of readability, we define
the shorthand notation:

φij(po) = Wi,j(φi(po)),

which denotes the fact that, when we need a pixel of Ij
for blending in the space of Ii, we need to go through the
warping function Wi,j . The blending function can now

Fig. 8. Top: a portion of one of the images used for pro-
jection. Middle: the colored model obtained using optical
flow correction, without taking into account the boundary
between images (visible artifacts in the red boxes). Bot-
tom: the colored model obtained using a continuous pre-
warping function.

be written as:

Ci(po) =

∑
j Ij(φ

i
j(po)) ·Bj(φ

i
j(po))∑

Bj(φij(po))
.

Unfortunately, as shown in Figure 8-middle, this ap-
proach creates seam artifacts on the boundary between
different regions. In fact, for each region, all warpings
are based on a different base image, i.e., on the boundary
between regions V 1

i and V 1
j , on one side pixels of image

Ii are left unmoved and pixels of image Ij are warped
by ∆i,j , while on the other side pixels of Ij are fixed and
those of Ii are warped by ∆j,i. It is possible to correct this
issue under the assumption that the warping function is
continuous and bijective:

∆i,j(φi(po)) = −∆j,i(φj(po)),

and computing for each region, a continuous pre-
warping θijk (p) of all the involved images, so that it
counter balances boundary differences (see Figure 8-
bottom).

The image scoring mechanism is used to make
a further sub-partitioning of the surface. Let V 2 =
{V 2

1,1, ..., V
2
i,j , ..., V

2
n,n} be the partition of the mesh into

regions such that V 2
i,j is the portion of the mesh where
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Ii and Ij are the exactly two best images that project onto
that region. For each region V 2

i,j , we consider δ(p0) as a
weighted distance from the boundary shared with the
region V 2

j,i. Figure 7 illustrates this kind of partitioning.
Now we can define the warping of a pixel from Ik, to
the region defined by the two best images Ii and Ij , by:

θijk (po, α) = φk(po) + ∆i,k(pi)− (1− α) · ∆i,j(pi)

2
,

where α is a value that is equal to 0 on the boundary
between the two regions and less than 1 elsewhere.
This alpha is calculated as the pixel distance, in the
dominant image space, divided by the maximum size
of the overlapping area (this value may be calculated
at the beginning, while computing weights and optical
flow, or imposed as a fixed threshold to limit the extent
of warp blending).

For the points far from the border (where α is one)
this equation simplifies to the previous case, while on
the boundary between two regions V 2

i,j and V 2
j,i (where

α is zero), it computes a warping equivalent to that of
the adjacent region.
The θ function does not affect the accuracy of the match-
ing done by the flow based warping, because in the
blending equation it modifies all the image accesses in
a consistent way. It can be considered as a pre-warping
that deforms the image space in the same way for each
point of each region.
Nonetheless, warping is generally not bijective and the
δ are not antisymmetric. In most cases, this is due to
occlusions that lead to discontinuities in the mapping
process. It thus becomes impossible to achieve a contin-
uous warping, and so we compromise with the average
of the ∆ involved:

θijk (po, α) = φk(po)+∆i,k(pi)−(1−α)·∆i,j(pi)−∆j,i(pj)

4
.

The above approach could cause some other minor
discontinuities in the boundary between regions V 2

i,j and
V 2
i,k. However, these discontinuities are hardly noticeable

and can be removed by applying the previous blending
approach to a partitioning V 3

i,j,k according to the first
three most important images i, j, k. On such a partition,
it is possible to blend the warping vectors ∆ based
on barycentric interpolating coordinates centered on the
”region corners”, where three regions share a pair of
indexes. While such an approach is more theoretically
correct, we found the previous technique simpler, suffi-
cient, and more practical from an implementation point
of view.

4 RESULTS

We applied our method on a number of test sets of
different qualities and sizes. In this section, five exam-
ples are shown and analyzed, all were computed using
the second optical flow calculation method (hierarchical
template matching), which proved to be the best tradeoff
between speed and accuracy.

The camera parameters for the images to be aligned were
obtained in several different ways, but the projection
of color information was performed by extending the
blending approach proposed by Callieri et al. [24]. This
system proved to be extremely flexible and scalable, and
since our proposed technique is not dependent on any
global optimization, it can be easily integrated and used
even on complex cases, where dense 3D models and
hundreds of images are used.
The first test was performed on the 3D model of an
ancient vase, made up of a 5 million triangle model and
12 images. In this case, the geometry was acquired using
a triangulation scanner, hence, it was extremely accurate.
The images were acquired under a not ideal lighting
setup and were of medium quality.
The images were aligned on the model using a semi
automatic approach [10]. Figure 9(first row) shows that
the use of the correction optical flow preserves the detail
in the decorations of the vase: visible ghosting artifacts
are completely removed, and the resolution of the color
information is almost the same as the original images
(see also Figure 8).
The second test case was another vase from the Lou-
vre collection (inv. A 316). While the quality of the 9
images was extremely good, the 3D model had several
inaccuracies, especially around the handle and the lip,
which are crucial in order to obtain an accurate image
alignment. The alignment quality obtained using the sil-
houette based approach [8] was thus not good enough to
preserve the quality of the starting images. Our method
managed to remove the annoying ghosting effect on the
colored model (Figure 9(second row)) .
The third test (Figure 9(third row)) involved a 3D model
of a prehistoric skull, obtained using 3D scanning, on
which 12 images were mapped. In this case both the
model and the images exhibit high accuracy, but the
alignment is not accurate enough to avoid blurring. The
use of our method brings it to a visible improvement.
The fourth test regarded a portion of a painted cave, ac-
quired at high resolution. The images were not acquired
under optimal lighting conditions, but the main issue
was in the quasi-planar shape of the geometry, which
prevented an accurate estimation of parameters of the
camera. The misalignments shown in Figure 10(first row)
were solved by our method.
In the fifth test set, the geometry was generated using
a commercial system which starts from images [35]. In
addition, the camera parameters associated with the 6
images were extracted from the internal data of the
system. This meant that it was impossible to correct any
inaccuracy. In fact, the color projection produced blurry
details, which were corrected by our system (see Figure
10(second row)).
In conclusion, the test sets presented above showed
that the correction system can improve the quality of
the colored model in a variety of cases. The method
is compatible with both per-vertex and texture color
encoding, so that it can be applied on both high and
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Fig. 9. Three examples of color projection. For each row, a sample of the images, a rendering of the colored model
without and with the flow correction are presented

low-level detail 3D models. Table 1 shows a summary
of the features of the data sets used. The optical flow
was calculated only on the projected images on which
the overlapping pixels were more than 10% of whole
image: hence, the fourth column is an indirect measure
of the overlap between the projected images.
Finally, the values in the last three columns show the
computational time needed to calculate the optical flow
for the presented approaches: Brute Force Templates
(BF), Hierarchical Templates (HT) and Floating Textures
(FT). Time values are influenced not only by the image

resolution, but also by the peculiar nature of the data set
(the amount of overlap between images).
While solving the problem of small misalignments and
subsequent blurring, the proposed method inherits some
of the limitations of the image projection approaches.
First of all, if the misalignment between images is very
big (tens of pixels) it could be impossible to calculate the
flow. It could be thought of trying different flow bands to
adapt to this, but in the case of repeating high frequency
features this could bring to further inaccuracies. The
presence of lighting artifacts (i.e. specular highlights,
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Fig. 10. Two examples of color projection. For each row, a sample of the images, a rendering of the colored model
without and with the flow correction are presented

shadows) can mislead the flow calculation. Finally, if the
quality of images is extremely low, or there are severe
differences in lighting conditions, flow calculation can
be extremely difficult. Nevertheless, these drawbacks are
shared with almost all of the state-of-the-art approaches
in the field.

5 CONCLUSIONS AND FUTURE WORK
We have presented a system to correct misalignment
artifacts in an image-to-geometry projection procedure,
which otherwise would lead to ghosting artifacts in the
final 3D colored model. Unlike previous methods, we
made no assumption about the existence of a perfect
global alignment between the geometry and the images.
Hence, we performed a local optimization by warping
the overlap between images to create a consistent map-
ping.

We made use of optical flow techniques that can
handle many issues encountered in real cases. It is
performed over pairs of pre-aligned images by using
the underlying geometry to project each image onto
the plane of the others. The resulting flow is then
retro-projected and used together with a partition of
the space into best fitting images, to perform the local
warps and the final blending.

We have shown, using different examples, that the
system can handle input data sets that do not possess
ideal characteristics for alignment, either because of
issues in the acquisition process, or due to inherited
issues in the nature of the models. Another advantage
of our method is that it scales well with the size of the
input data, and is able to deal with large models in term
of the geometry, the number of images in the set, and
image resolution. Although we showed the method in
the context of color projection, it can also be exploited
in a number of other applications (medical, restoration,
3D reconstruction from images) which use registered
images as an input.

We are currently integrating a measure of flow quality
with the blending function to better drive the final color
estimation. Furthermore, we are investigating how to
treat more drastic cases in terms of deviation in illumi-
nation between images, and projection of shadows.
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