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Abstract

We present a statistical method for the estimation of the Spatially Varying Bidirectional Reflectance Distribution
Function (SVBRDF) of an object with complex geometry, starting from video sequences acquired with fixed but
general lighting conditions. The aim of this work is to define a method that simplifies the acquisition phase of the
object surface appearance and allows to reconstruct an approximated SVBRDEF. The final output is suitable to be
used with a 3D model of the object to obtain accurate and photo-realistic renderings. The method is composed by
three steps: the approximation of the environment map of the acquisition scene, using the same object as a probe;
the estimation of the diffuse color of the object; the estimation of the specular components of the main materials
of the object, by using a Phong model. All the steps are based on statistical analysis of the color samples projected
by the video sequences on the surface of the object. Although the method presents some limitations, the trade-off
between the easiness of acquisition and the obtained results makes it useful for practical applications.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics -Three-Dimensional Graphics and
Realism [I.3.7]: Color, shading, shadowing, and texture—Image Processing and Computer Vision - Digitization

and Image Capture [1.4.1]: Reflectance—

1. Introduction

The acquisition of the surface appearance, together with the
reconstruction of the 3D geometry, is a fundamental step for
the photo-realistic rendering of real objects. Although sev-
eral methods have been proposed for the acquisition of the
SVBRDF of objects with a complex geometry, they all have
some limitations: the use of specialized instruments (dome,
special setup for camera and light source, etc.); the difficulty
to extend to objects of arbitrary shape and size; the need of
highly controlled acquisition environments, such as a dark
room. These are difficult to reproduce in the case the envi-
ronment in which the object is placed cannot be modified,
and the object cannot be moved (museums, outdoor loca-
tions, etc.).

We introduce a new method for an approximate SVBRDF
reconstruction that simplifies the acquisition setup for two
main aspects: it uses a single and standard camcorder to ac-
quire video streams; it performs the acquisition in a general
lighting environment without the need of special lighting
conditions. Our method takes in input video sequences and
estimates the surface appearance of the object of interest.
The videos is acquired with fixed and unknown lighting con-
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ditions, moving a Low Dynamic Range (LDR) video camera
around the object. Starting from the alignment of the video
streams on a previous acquired 3D geometry of the object,
our target is to extract as much information as possible from
the video frames to recover the illumination conditions and
the SVBRDF. The estimation is based on statistical analysis
of the redundant video color data which is projected on the
geometry.

Our contribution is a new method to estimate the SVBRDF
of the object with the following features:

e an easy acquisition step for fixed but general lighting con-
ditions;

e the approximation of the acquisition environment map
with a weighted accumulation approach using the object
itself as a probe, that takes advantage from a temporal co-
herent multi-view acquisition;

e a statistical method for the estimation of SVBRDF from
the video color data projected on the geometry, taking
advantage of the temporal coherence and the data redun-
dancy of a video sequence and using a straightforward so-
lution without time-consuming iterative and optimization
procedures.
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2. Related Work

A criterion to classify the image-based methods proposed to
acquire the SVBRDF is the density of the input data in term
of angular sampling of the view and light directions.

The multi-view photometric stereo methods recover the
reflectance using images captured from different view and
light directions. The Bidirectional Texture Functions (BTF)
[DNvGK97] are one of first solutions proposed. Their ac-
quisition requires a complex dedicate device working in a
highly controlled measurement environment, that allows a
dense sampling of the light and view directions to estimate
the reflectance of planar samples. This acquisition method
is time consuming and data-intensive and, although sev-
eral solutions have been proposed to reduce the acquisi-
tion time and the size of the final reflectance representa-
tion (see [MMS*04, FH09] for a complete overview), it can-
not be extended in an easy way to objects with a complex
shape. Debevec et al. [DHT*00] propose a specialized de-
vice setup for the relighting of the human face. Following
extended by Wenger et al. [WGT*05] with the possibility
to use time multiplexed illumination to speed-up the acqui-
sition, the method requires a careful calibration and a data
intensive acquisition. Schwartz et al. [SWRK11] use a com-
plex dome setup to acquire the BTF of objects with a com-
plex shape, that imposes strong limitations on the size of the
object.

Several strategies have been proposed to reduce the
amount of the data needed to acquire a SVBDREF. A class
of methods is based on polarized light to separate specular
and diffuse reflectance, by using spherical gradient illumi-
nation [MHP*(7], second order spherical gradient illumina-
tion [GCP*09], or uniform spherical field of circularly po-
larized illumination [GCP*10]. A new process is presented
in [GFT*11] for multi-view face capture. The key aspect is
a new pair of linearly polarized lighting patterns which en-
ables multi-view diffuse-specular separation under a given
spherical illumination condition from just two photographs.
In general, all these methods require a specialized light dome
with an accurate orientation of the polarizing filter of the
camera.

An alternative approach to reduce the data to acquire is
to fit a BRDF model for each surface point using the re-
dundancy of the points that share the same reflectance.
Lensch et al. [LKG*03] propose an acquisition in a mea-
surement lab with highly controllable lighting conditions.
They apply a fitting process that clusters the acquired sam-
ples into groups of basis BRDFs that are used in a linear
interpolation step to model the final BRDF of each texel.
Zickler et al. [ZERBOS] increase the angular accuracy of
a spatially-varying reflectance function exploiting the high
spatial resolution that images provide to fill the holes be-
tween sparsely observed view and lighting directions. It is
assumed that reflectance varies smoothly in space. Holroyd
et al. [HLZ10] present a novel optical setup for measuring

the 3D geometry and the SVBRDF. The basic building block
is formed by a digital camera and a high frequency spatially-
modulated sinusoidal light source aligned to share the fo-
cal point and the optical axis. Using at least two of these
assemblies, a sequence of images of the object from dif-
ferent viewpoints is acquired under time-varying sinusoidal
illumination. The spatially varying reflectance is modeled
as a low-dimensional subspace spanned by a small set of
basis BRDFs to share the data among different points that
cover the same material. Haber et al. [HFB*09] propose an
approach to recover the reflectance of a static scene with
known geometry from collection of images taken under un-
known and variable illumination. First, they use an all fre-
quency relighting framework, based on a wavelet represen-
tation of the visibility and of the current estimation of illu-
mination and scene reflectance, to render the scene using the
triple-wavelet product integral. Therefore they employ an it-
erative optimization to estimate the illumination given the
scene reflectance and vice versa.

Another class of solutions is represented by the multi-
view methods that use images takes from different view-
points with a fixed light direction. Nishino et al. [NZI01]
propose a method to estimate the reflectance parameters
and the illumination distribution from a set of sparse im-
ages. They compute three steps: the recovering of a view-
independent reflectance map; the initial estimation of the
illumination distribution by shooting the residual images
along the perfect mirror direction; the iterative refinement of
the illumination distribution and the surface reflectance pa-
rameters. This method assumes that the specular reflectance
is uniform over all the object. Yu et al. [YWACO6] present a
method to resolve the texture-illumination ambiguity using
the view-dependent component of the surface reflectance.
The output radiance of the object surface is arranged in a
3D tensor that can be decomposed in three unknown compo-
nents: the illumination, expressed as combination of spher-
ical harmonics; the light transport, that is the joint effect
of the basis BRDFs and the surface geometry; the texture
albedo. All the unknown variables are estimated at the same
time by solving a system of bilinear equations obtained from
a factorization of the radiance tensor. The reconstruction
of the illumination environment map through spherical har-
monics decomposition is used in other fields, as the multi-
view stereo shape refinement ( [WWMTI11, WVL*11]). In
our method, for the estimation of the environment map, we
extend the method proposed in [NZIO1] with a weighed ac-
cumulation approach that takes advantage of the temporal
coherent multi-view acquisition of a video sequence.

On the opposite side of the multi-view methods there are
the photometric stereo solutions where the reflectance func-
tion is recovered using different images taken from the same
viewpoint but with different light directions. The Polynomial
Texture Maps [MGWO1] are an example of image-based
compact representation of photometric stereo data. Starting
from the observation that many objects can be decomposed
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into a small number of materials, Goldman et al. [GCHSO05]
present a method for the recovering of shape and SVBRDFE.
They set an iterative system initialized using the Lambertian
photometric stereo data and then they compute the BRDF
parameters of the basis materials, the per-texel normals and
material weights, and the 3D surface using the normals.
A similar approach is used in [AZKO08] with a more gen-
eral model based on a novel bi-variate approximations of
isotropic BRDF.

A number of solutions have been proposed for the photo-
metric stereo acquisition of flat target moving a linear light
source [GTHDO3, WZT*08]. Ren et al. [RWS*11] propose
a portable setup device with an additional element: a BRDF
chart, a small card with a set of known BRDF reference tiles.
The light responses from the chart tiles as well as from the
points on the target are acquired and then matched with dy-
namic time warping techniques to recover the target’s ap-
pearance.The idea of using some reference objects of homo-
geneous reflectance and known geometry to reconstruct the
appearance of a target object without any knowledge about
the view and the light directions was introduced in [HS03].
Treuille et al. [THS04] extend the method to reconstruct the
whole object from multi-view data. The main drawback of
these methods is the need to have reference BRDFs which
are similar to the target’s reflectance. To relax this require-
ment, some methods perform a two-step acquisition on the
object. To obtain the surface reflectance of large outdoor
scenes, Debevec et al. [Deb04] measure a set of representa-
tive BRDFs from small regions of the scene using controlled
lighting, as well as images of the entire scene under natural
lighting. This approach fails with surfaces with an high spec-
ular reflectance. Dong et al. [DWT™10] present an another
two-pass method. The first phase acquires some representa-
tive BRDF samples sparsely distributed over the surface with
a dense angular sampling using a fast single-point BRDF
measurement device. The second phase acquires a sparse an-
gular sampling of the appearance of each target point with a
set of images to constrain the final reconstruction of their
reflectance as a linear combination of the nearest represen-
tative BRDFs.

3. System Overview

The input of our algorithm is a triangulated mesh of a real-
world object with an associated parameterization and some
LDR videos, which are acquired moving the camera around
the object. We assume that the camera has manual settings,
with fixed exposure and fixed white balance. The output
is assumed to be in SRGB color space. The algorithm can
work with complex illumination environments composed
by different kind of light sources (e.g point/area light, po-
sitional/directional light), that have a fixed position and a
nearly constant intensity during the acquisition. To model
the surface appearance, we use a simple spatially varying
Phong model, where for each texel (x,y) of the mesh param-
eterization we have the sum of a Lambertian diffuse compo-
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nent Dy, with a specular lobe Sk, y:

Py (71) = Dy (1) + Sy (1) = pa(T-) + ps (-7 (1)
where ¥ is the view direction, [ is the light direction, 7 is
the surface normal, 7 is the mirror reflected vector of the
view direction with respect to 7, the p is the color of diffuse
component, Py is the intensity of the specular highlight and o
is the shininess of the highlight. The output of the algorithm
is the diffuse texture map, the clustering of the texels in a
set of basis materials and the specular parameters ps and o
for each basis material. The algorithm is composed by the
following steps:

Registration of the videos over the mesh (Section 4)
Estimation of the environment map (Section 5)
Estimation of the diffuse color per texel (Section 6)
Estimation of the specular parameters per material (Sec-
tion 7)

Ll S

The assumptions of the algorithm are:

e the lights have almost the same color, not necessarily
white (this is generally corrected by the white balance
procedure available on the camera);

e the lights have almost the same intensity in terms of or-
der of magnitude, with the consequence that the estimated
diffuse color includes the light intensity;

e the possibility to cluster the object’s materials with an
user-assisted method starting from an automatic segmen-
tation of the diffuse color. We use a generic growing re-
gions method, but any other approach can be applied to
solve more challenging cases.

Even if the first two assumptions are very strong, these con-
ditions are quite common in the real world acquisition en-
vironments, like building rooms, museums or outdoor loca-
tions.

3.1. Visibility Approximation

In all the steps of the algorithm we need a fast way to
compute the visibility along a given direction for each ob-
ject surface point to take into account the effects of self-
occlusion and self-shadowing. For this reason we precom-
pute a spherical harmonics approximation of the visibil-
ity function V : ® € Q — {0,1}. In the specific, we ap-
proximate the function for each vertex i with V;(®) =
Yo oxh kD y i (G) using the first 6 bands of

spherical harmonics Y (1) (m) (36 coefficients kl@(m)). The
visibility value Vyy(®) of each texel (x,y) is obtained by
barycentric interpolation among the values of the triangle
vertices.

4. Video-to-3D Geometry Registration

The registration of the videos over the mesh is obtained us-
ing the algorithm presented in [PCD*10]. The output of the
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registration algorithm is the perspective camera projection
matrix of each video frame. These matrices allow to recover
the set of color samples Cyy = {1,5@ € RGB} projected by
each frame j over the texel (x ). For each color sample, we

compute a quality value q Y 5 (see figure in the additional ma-
terials) that is the product of three measures (normalized in
the range [0, 1]): the distance in image space from the near-
est depth discontinuity, to penalize the wrong color sample
due to small misalignment; the depth of the texel in cam-
era space, to assign a higher quality to the pixels that are
sampled by closer views; the dot product between the view
direction and the surface normal. Please refer to [CCCS08]
for a formalization of the per-pixel quality function.

5. Environment Map Reconstruction

For the estimation of the environment map, we use an accu-
mulation approach based on a statistic separation of the color
samples that could have a specular behavior. Since we do not
have ideal working conditions (residual geometric and reg-
istration errors, a camera with a no-linear response and with
noise), that would allow to assign as diffuse color the sam-
ple with the minimum luminance, we compute a luminance
threshold to separate, for each texel, the specular and the dif-
fuse samples. The first ones are used in the estimation of the
environment, the last ones in the computation of the diffuse
color.

In a multi-view dataset, the computation of the median of
color samples is a good choice for the separation between
specular and diffuse components. Our choice is to compute
for each texel (x,y) a luminance threshold fy, that is an
upper bound of the median (see Appendix A in the addi-
tional materials) and is equal to the sum of mean and abso-
lute deviation of the luminance Lum(l ( )) of the color sam-
ples Cx,y projected on the texel. To be more robust in the
computation of this threshold, we discard all the color sam-
ples with a quality lower than 0.1. All the color samples
that have a luminance above the threshold fxy are used in
the estimation of the environment map. For each element in
Ay = {I<j> €Cry| Lum(l(j)) > ty,y }, we compute the spec-
ular mirror direction 7 of the view vector with respect to the
texel surface normal and then we accumulate an amount ay,y
in the environment map along this direction. The value ay.y
is equal to the difference of the sample luminance from the
threshold #r multiplied by the sample quality q(j ) and the
visibility along the direction 7.

axy = (Lum(IV)) = 1) Ve (7) ¢V )

The computation of the value ay,y and the availability of a
multi-view acquisition give us more robustness with respect
to possible geometric and registration errors. Then, the map
is normalized with the distribution of all color samples along
the specular mirror direction in the environment. This distri-
bution is computed as the total number of the color samples
in Cy,y that project in each specific pixel of the environment

map. This normalization gives us more robustness with re-
spect to the camera movement, in term of temporal and spa-
cial density of the acquisition. In this construction, we as-
sume that a specularity is located where the object behaves
like a mirror and, even if the mirror specular direction does
not entirely match with the real specular direction, it is usu-
ally very close. Finally, the environment map is normalized
in the range [0, 1]. The result is a probability map depicting
the position of the lights in the environment. In this step the
object itself is used as a probe without the need to put any
other usual light probe objects (e.g. spheres and parabolic
mirror) in the scene. Although the object does not have opti-
mal features in term of angle coverage and uniform sampling
of the space, the results obtained show that this approach is
sufficient to describe the lighting environment with enough
detail and precision (Figure 4).

6. Diffuse Color Estimation

The estimated environment map allows us to compute a new
weight for each color sample, the specular weight, which
represents the probability that the sample has a specular be-
havior. This weight is useful for the estimation of the diffuse
color. It is computed by directional sampling of the environ-
ment map in a cone of directions along the specular mirror
direction 7, followed by a normalization that depends on the
luminance value of the samples. We use a cone of direction
to take into account two problems: materials with a partially
off-specular behavior; the geometric and registration errors.
Given a set of 16 directions B={® € Q| ®-F < y} dis-
tributed around 7 with a stratified disk sampling strategy, the
()

specular weight sy’y for each color sample is:

. 1 N’
s = = (01) 3

with:

Z g(®-7F) Vi y(®) EnvMap(®)
b)) = O SRR @
g Z g(®-7) Vay (@)
®EB

txy — Minxy )

Lum([,gj»)) — miny,y

where the function EnvMap(®) returns the value of the envi-
ronment map along the direction ®, g is a Gaussian function
with standard deviation 6 = ¥ = cos5° to weight the con-
tribution of each direction with respect to the distance from
the direction 7, miny.y is the minimum luminance value pro-
jected on the texel and Lum(lﬁ@) is the luminance of the
current sample. The term b,(/y) is the weighed average of the
values gathered from the environment map along the direc-
tions in B, and it represents the probability that there is a
light source around the specular mirror direction. The term
% and the exponent w? are two texel-aware correction fac-
tors, which depend on the distribution of all color samples
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around the threshold #x,y and the position of current sam-
ple in this distribution. These terms provide more robustness
with respect to the real reflectance behavior of the sample,
detecting the false positive cases (samples with a diffuse be-
havior that are geometrically aligned with an area of the en-
vironment map associated to a strong light source).

For the computation of the diffuse color, we adapt the same
approach used in the estimation of the environment map. For
each texel we compute a threshold dy,y = uxy + Gx,y, where
U,y and Gy are the weighted mean and the weighted abso-

lute deviation with the specular weights vij)z The final dif-
fuse color Dy y is equal to the weighted average of the color
samples with a luminance lower than the threshold dJ.y:

Dyy="0A ©6)

where Ayy = {1V e Cry | Lum(1Y)) < txy} and q!) is the
quality of the samples. The weighted average of the sample
in S,y is justified by the need to balance out the not ideal ac-
quisition conditions (geometric and registration error, cam-
era with noise and not linear response).

7. Specularity Estimation

The final step of the system is the estimation of the specu-
lar behavior of the object. Starting from the observation that
the majority of the real objects have a specular component
which is less spatially varying then the diffuse color, we as-
sume that the object can be segmented in a set of basis mate-
rials, each one with a different specular reflectance. For this
purpose, we complete the following steps:

1. Detection of the main light sources in the environment
map;

2. Estimation of the specularity parameters per texel;

3. Clustering of the basis materials of the object based on
the diffuse color;

4. Estimation of the specularity parameters per cluster.

The main idea under this step is that we can use the slope
of a temporal coherent luminance peak to estimate the two
specular parameters ps and o (see Section 3) for each basis
material.

The first task is the estimation of the position and shape of
the main light sources in the scene by clustering. We start by
approximating the environment map with a set of 4096 direc-
tional lights L, using a median cut algorithm [Deb05]. Then,
we discard all the lights that cover an area of the environment
greater than a tile of a sphere subdivided in 4096 uniform
area regions (47/4096). Finally, we cluster all the lights that
create a connected component with their areas in the map.
Each cluster represents a light sources in the scene. For each
cluster, we compute the centroid and the local distribution
around the centroid to have a rough estimation of two impor-
tant features of the illuminant: the position I and the shape.

(© 2012 The Author(s)
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The centroid is computed using the image moment of the
area on the map covered by the cluster. For the local distribu-
tion, we compute the covariance matrix X; of the directional
lights in the cluster with respect to the centroid, using the
projection on the tangent plane of the centroid. The covari-
ance matrix is used to approximate the distance of a direction
from a light source using the Mahalanobis distance. We as-
sume that all the lights have the same intensity (Figure 3).
This assumption is problematic only when the environment
has a very large dynamic range that does not allow to ob-
serve all the main features of the object appearance.

A oCmax

SPECULAR
PEAK

LUM

| DIFFUSE _ [ _ _ _ _ _ Cmin_ _
Jw \

N° FRAME >

Figure 1: Temporal trend of the texel’s luminance. The fig-
ure highlights the luminance of the diffuse color, the tem-
poral coherent luminance peak (green line), and the color
samples Cyin and cmax used in the estimation of the specular
parameters per texel.

The second step is the estimation of the specular parame-
ters ps and o for each texel. We model the specularity using
only the luminance channel data, assuming that the lights
are white. In the specific, for each texel we detect the tem-
poral coherent luminance peaks, that is a consecutive se-
quence of color samples in the video that have a luminance
greater than the luminance of the diffuse color Dy y. Then,
for each peak we select the two samples ¢, and cax With
the minimum and the maximum luminance difference from
the diffuse color (Figure 2). In this process, we discard all the
samples with a luminance value higher than 98 (out of 100)
to be more robust with respect to the saturation of camera
CCD sensor. Following, we assign to each luminance peak
the main light source [ € L that should produce it, which is
the light source with the lower Mahalanobis distance from
the reflected view direction 7y of the maximum luminance
sample cmax. The use of the Mahalanobis distance allows to
take into account of the illuminant shape. With this data, we
can compute the parameters ps; and o solving the following
system of equations (see Appendix B in the additional mate-
rial):

po(T-Brax). = Lum(cpar) ~Lum(Dyy)) o
ps(r'ﬁmiz1) = Lum(cmin) — Lum(Dx.y))

where Pmax and p;, are the directions that minimize the dot
product with the light direction and have the same Maha-
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lanobis distance of the mirror reflected view directions Fmax
and 7,;, (Figure 3):

-

ﬁmax = arg min(l . \7)
, VA ®)
DPmin = argmin(l-V)

VEB

with:

A={0 € Q| dyana(®,Z)) = dyanat (Fmax, Z1) }
B= {(‘) €Q | dMahal((‘)vzl) = dMahal (7171in~,21)}

In this process, we discard all the peaks where the Maha-
lanobis distance djyz pq Of the sample ¢, is less than the
Mahalanobis distance of the sample cuqx. If a texel has more
than one peak, we choose the one with the minimum Maha-
lanobis distance from its main light.

®

. -
Prax
" -
. e 'min
B2
© Tmin

Figure 2: Characterization of a light source with the di-
rection | and the local distribution defined from the covari-
ance matrix ¥y (green ellipse). The characterization allows
to project the mirror reflected view vectors Fax and Fpin on
the direction of minimum variance (Pmax and Ppin) defined
by the covariance matrix ¥;

Due to the fixed lighting conditions and the limited view di-
rections covered with the video sequences, it is possible that
some texels do not have enough data to estimate the spec-
ular parameters. To overcome this problem and to obtain a
more consistent and robust estimation of the specularity, we
employ a user-assisted method to create clusters of points
with the same specular behavior. This clustering is based on
the diffuse color of the texels. The main idea is to create a
new cluster for each area of the object with a perceived uni-
form diffuse color that has a singular specular behavior. The
clustering starts with an automatic step that creates an initial
material segmentation. It distributes a set of seed points in
the areas with the most uniform diffuse color and then ap-
plies a growing region for each of this seeds. A new point is
added to the cluster if the distance of its color from the mean
color of the cluster is below a threshold selected by the user.
The distance between two colors is computed as euclidean
distance in the CIE LAB color space. Starting from this ini-
tial segmentation, a simple interactive application allows to
select a cluster by picking a point on the object and to ap-
ply two different operations: to merge a set of clusters; to

split a cluster along a stroke drawn by the user over the ob-
ject. These operations allow to solve to different challenging
cases: over-segmentation of an area with uniform material;
separation of adjacent areas with the same diffuse color and
different specular behavior.

The final step is the estimation of the specular parameters
for each cluster, using the data computed for the texels. The
most challenging parameter to estimate in this step is ps due
to several reasons: the clamped luminance signal returned
by the LDR video camera; the highly spatially-varying na-
ture of the diffuse color of the texel in the cluster; a bad
clustering of the texel especially on the boundary among the
clusters. To overcome this problem, we employ a statistical
analysis of the ps values of the texels for each cluster inde-
pendently. We compute the probability density function of
the ps values in the cluster using a kernel density estima-
tion method [Ros56]. The result is a multi-modal probabil-
ity density function where we look for the influence area of
the higher mode, defined by its statistical bell. Finally, we
compute the average of the specular parameters ps and o for
all the texels in the cluster that have a py value inside this
statistical bell.

8. Results

For our experiments we used four different objects of differ-
ent materials and different reflectance behaviors:

e the DWAREF, a terracotta statue (30cm tall) that presents
different types of specularity, in size and intensity: sharper
and with an high-medium intensity on the dresses; wider
on the face; almost completely absent on the beard;

o the GNOME, a ceramic statue (15cm tall) that has very
sharp and high specularity on the hat and a near diffuse
behavior on the body;

e the HEAD, a bronze copy of the head of the Arringatore
Etruscan statue (30cm tall);

e the SLEEPING BUDDHA, an acrylic resin Buddha
(10cm tall) with different types of coatings: a gold paint
on the body; a reddish specular paint on the dress; a dif-
fuse black paint on the hair.

The video sequences for the HEAD and the SLEEPING
BUDDHA present a more uniform sampling of the view
direction, while the sequences for the DWARF and the
GNOME are more sparse. The 3D models were generated
by 3D scanning using a Konica Minolta VI-910 laser scanner
and then simplified to obtain a medium resolution model for
the computation of the texture parameterization [PTC10]. In
this process, we saved the normal map of the high resolu-
tion mesh to preserve the details lost during the simplifica-
tion. The videos were acquired with a full HD video camera
at the highest quality to reduce the compression artifact. To
make the estimation of the appearance more robust, we set
the camera in manual mode with a fixed white balance, de-
fined with the automatic procedure available on the camera
using a reference white object, and fixed exposure. We used

(© 2012 The Author(s)
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two different lighting environments for the acquisition, char-
acterized from different type of lights: the first scenario (top-
left Figure 4) is characterized by three near-circular halo-
gen floodlights; the second scenario (bottom-left Figure 4)
is characterized by six fluorescent tubes. The DWARF and
the GNOME were acquired in the first scenario, while the
HEAD and the SLEEPING BUDDHA were acquired in the
second scenario.

8.1. Environment Map

Figure 4 shows a comparison between the real environment
maps taken during the acquisition with a metal reflective
sphere (left column) and the reconstruction obtained from
the DWARF’s and the HEAD’s data (see the additional ma-
terial for the environment map reconstructed from the other
test cases). In general, the method does not reconstruct the
entire environment map, but only the main light sources that
produce a specularity on the object. More in details, in the
first scenario we faithfully recovered the three main light
sources, both in shape and position. In the second scenario,
the method recovered only the two lights that were over the
head, neglecting the other lights that are too far to produce
highlights that can be recorded in the video during the ac-
quisition.

Figure 3: Comparison of environment maps: (Top-Left)
real first scenario; (Top-Right) first scenario reconstructed
from the DWARF’s videos; (Bottom-Left) real second sce-
nario; (Bottom-Right) second scenario reconstructed from
the HEAD's videos.

8.2. Appearance

Figures 5 and 6 show a visual comparison between the ren-
dering of the object with our SVBRDF reconstruction and

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Figure 4: Comparison between an image of the object ac-
quired in a different lighting environments(Left) and the
rendering with our SVBRDF approximation(Right): (Top)
HEAD; (Bottom) DWARF.

Figure 5: Rendering of the SLEEPING BUDDHA with two
HDR environment maps: (Left) Uffizi Gallery, (Right) Din-
ing room of the Ennis-Brown House.

a frame of the video used in the estimation process. From
left to right we have the clustering of the basis materials, the
diffuse component, the specular component (normalized in
the range [0, 1] to improve its visualization), the final render-
ing and the original video frame without background. For
the rendering we used the environment maps estimated in
Section 5, approximated with a set of 256 directional lights
obtained through a median cut algorithm [Deb05]. The out-
put of our algorithm is able to reproduce the main features
of the object appearance maintaining the relative difference
among the several materials of the object. We want to remark
that our reconstruction is not an absolute SVBRDF measure-
ment, but a simple and fast approximation to allow a photo-
realistic rendering of the object. For this purpose, we assume
that the video sequences have been acquired in a lighting en-
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vironment that permits to have a good global illumination on
the object and to observe the main features of its appearance.
This was obtained with limited input data, that can be ac-
quired in a short time in an uncontrolled environment. These
conditions are usually not taken into account in the context
of most of the material properties acquisition methods pro-
posed in literature.

In Figure ?? we show a comparison between a photo of the
object and the rendering with our SVBRDF reconstruction.
The photos were acquired in a lighting condition (a single
halogen floodlight) different with respect to the acquisition
one, shot with the same video camera. In Figure 4 we show
the rendering of the SLEPPING BUDDHA in two different
HDR environment maps using a Monte Carlo ray tracer.
Due to the input data and the Phong model, the method
presents some limitations: the reconstruction of a shaded dif-
fuse color, due to the limit of the data acquired with fixed
lighting conditions; a blur effect on the very small and sharp
specularity, for example on the GNOME’s hat, due to small
misalignment in the registration step; the different appear-
ance or the loss of some highlights, for example over the
DWARF’s hat, due to the lack of the surface meso-structure,
to imprecise normals, and to Fresnel effect at grazing an-
gle that the Phong model is not able to reproduce; the fi-
nal appearance is not independent from the lighting inten-
sity of the acquisition environment. Anyway, even if there
are some visible differences to ground truth, the results does
not present major artifacts and complex multi-material ob-
jects can be taken into account. The final results are effective
and realistic making the method useful for practical applica-
tions that need a simple way to acquire and reproduce the ap-
pearance of a real object in real-time and in a photo-realistic
manner.

8.3. Performances

Table 1 shows some data about the test cases and the pro-
cessing time. For each case the total number of frames, the
size of the 3D model, the time of video-to-3D geometry reg-
istration obtained with the algorithm in [PCD*10], the time
to reconstruct the environment map, the time to estimate the
diffuse color and the specular parameters, and the number of
basis specular materials are shown. We perform our test on
a PC with an Intel Core i7 950 with 12GB of RAM and a
NVIDIA GTX580 1536MB. The analysis of the table shows
that most of the processing time stands in the registration
step, while the rest of the steps is usually completed within
minutes.

9. Conclusions and Future Work

We presented a statistical method for the acquisition of
the SVBRDF of complex object starting from video se-
quences taken under uncontrolled lighting conditions. Given
the video frames and a 3D model of the object, the method is
able to estimate the environment map of the scene, using the

object itself as a probe and capturing enough lighting details
for our SVBRDF estimation, a good approximation of the
diffuse color, without view depended reflection effects. and
the specularity values of the basis materials.

Given the limited input data, and the very easy acquisition
process, the results show that, even in the case of complex
and multi-material objects, the reflectance properties are es-
timated with an accuracy that permits to produce very real-
istic renderings. Although the method presents some limita-
tions (due to the type of input data and the specularity model
applied to describe the materials), the trade-off between the
easiness of acquisition and the obtained results makes it ex-
tremely useful for practical applications. This is especially
true when an on-the-field acquisition has be performed, and
the interaction with the object and the surrounding environ-
ment is limited.

Regarding the future works, we would explore three possi-
ble directions: the possibility to use a more complex BRDF
model to reproduce in a more accurate way the reflectance
properties of the materials; the adaptation of our algorithm to
use HDR videos acquired with a professional HDR camera,
in order to obtain more data about the specular reflection; the
study of the robustness of the algorithm with respect to the
temporal sampling and the image resolution, testing it with
photo sequences acquired with a lower frame-rate but higher
resolution, moving a photo camera with continuous shooting
around the object.
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