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PhotoCloud is a real-time client-server sys-
tem for interactive exploration of large 
datasets comprising high-complexity 3D 

models and up to several thousand photographs 
calibrated over the 3D data. PhotoCloud supports 
any 3D models that can be rendered in a depth-
coherent way (point clouds, triangle soups, and 

indexed triangle meshes) and 
arbitrary photo collections. It 
tolerates 2D-to-2D and 2D-to-
3D misalignments. It provides 
scalable visualization of generic 
integrated 2D and 3D datasets, 
exploiting data duality. A set of 
effective 3D navigation controls, 
tightly integrated with innova-
tive thumbnail bars, enhance 
user navigation of the data.

PhotoCloud’s scope is wide 
because the need to manage in-
tegrated 2D and 3D sampling 

arises in many domains: industrial plant inspec-
tion, city management, decision-support systems 
for crisis management, and so on. A particularly 
important application context is cultural heri-
tage, which often requires efficient, easy brows-
ing of photograph collections, often referenced 

over complex 3D models. PhotoCloud effectively 
supports the exploration of virtual monuments, 
museums, archaeological sites, streets, plazas, and 
entire cities.

Dealing with Hybrid Datasets
Images and 3D models are often complementary. 
Images usually feature details or objects not in 
the related model—for example, people, cars, and 
trees—or depict buildings as they once were. On 
the other hand, models describe objects and de-
tails in a view-independent way. Such joint data-
sets can be generated by multiple sources and are 
becoming increasingly common.

Active vs. Passive Acquisition
With the spread of active 3D digitization technol-
ogy, high-resolution 3D models representing large 
artworks or entire complexes are also becoming 
increasingly available. The 3D acquisition cam-
paign is often paired with an intensive photo-
graphic sampling, which is then explicitly aligned 
to the 3D model.

Another possible source of data is passive acqui-
sition, which extracts the 3D model from collec-
tions of calibrated images. Images are aligned to the 
model by construction. Thanks to recent advances 

PhotoCloud provides 
interactive visualization and 
exploration of large datasets 
comprising thousands of 
calibrated 2D photographs 
and a complex 3D description 
of the scene. The system isn’t 
tailored to any specific data 
acquisition process; it aims at 
generality and flexibility.
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in structure-from-motion and multiview-stereo 
techniques, affordable, medium-quality, colored 
point clouds can be extracted from collections of 
numerous and spatially dense photographs, even if 
shot under uncontrolled conditions.1

Visualization Challenges
Designing a hybrid visualization tool such as Photo-
Cloud involves several challenges.

Exploring a collection of thousands or more 
images poses a challenge by itself. Traditional im-
age browser mechanisms don’t scale well with the 
number of images. Tasks such as identifying im-
ages featuring the desired view or visualizing the 
whole dataset quickly become impractical. Simi-
larly, interactive remote navigation of a complex 
3D model requires effective user interfaces to aid 
the selection of appropriate points of view.

As we’ll show, a joint visualization of 2D and 3D 
data, with a joint interface, offers new opportuni-
ties to address the previous two challenges. That, 
however, also poses challenges of its own. The data 
is heterogeneous, incomplete, and nonuniformly 
sampled and presents discrepancies between the 
2D and 3D parts.

Other problems involve the data’s size. For ex-
ample, the system must avoid excessive lag times 
in a client-server context. It must also be able to 
manage data potentially too large to fit in graphics 
card RAM or even central RAM. Finally, efficient 
rendering techniques are necessary to cope with 
the size of the 3D models.

Another requirement is to avoid assumptions 
regarding the specific 3D acquisition technology 
(for example, range scanning or photogrammetry) 
or image acquisition methodology. To this end, it’s 
important to support many different kinds of 3D 
models and registered image sets.

To face these challenges, PhotoCloud combines, 
adapts, and improves on several state-of-the-art 
techniques.2–5

System Overview
PhotoCloud supports the simultaneous browsing 
of a digital image collection I and the navigation 
and visualization of a digital 3D scene M. Both 
I and M can be large—I in terms of the number 
and resolution of images (up to several gigapix-
els), and M in terms of geometric complexity (tens 
of millions of 3D points or triangles). We assume 
that I and M have been acquired and processed 
in a preliminary phase that includes calibration, 
denoising, cleaning, and so on.

Figure 1 shows the PhotoCloud pipeline. First, 
the data (M + I) undergoes preprocessing. The 

preprocessed data is stored in a server and ac-
cessed through a client. An efficient multilevel, 
GPU-friendly cache system manages both I and 
the nodes of the multiresolution structure for M.

The client’s application window (see Figure 2) 
comprises two areas that can be dynamically resized.

The main 3D area integrates a 3D rendering of 
M, the selected image in I, and framelets—glyph 
representations of other images from I that are per-
tinent at that moment of navigation. The framelets 
roughly indicate the image contents and serve as 
an interface for image browsing.

At the bottom of the window, the thumbnail bar 
shows all the images in I. As we’ll show, users can 
select images in the thumbnail bar to project on 
the 3D model.

PhotoCloud Modules
PhotoCloud comprises the following tightly inte-
grated modules.

Preprocessing 2D and 3D Datasets
The preprocessing includes constructing the thumb-
nails from images, recompressing high-resolution 
images, and zipping the files. We also precompute 
the average image-space depth of each image’s 
content. We store that depth by rendering a depth 
buffer of the 3D model from the image viewpoint 
defined in the camera calibration.

Image descriptors, distances, and orderings. We asso-
ciate an image with various high-level descriptors 
used for defining total orderings over the images 
and for computing distances between consecutive 
images for each ordering.

Our preprocessor extracts and uses these image 
descriptors:

■■ the time of the shot from the exif (exchangeable 
image file);

■■ the shot’s 3D position and 2D orientation, as 
given by the calibration;

■■ the color distribution, as a 16-entry histogram 
of colors; and

■■ the spatial color layout, as a 4 × 4 downsampled 
image (color computations are in the LAB color 
space).

A descriptor D implicitly defines an image-to-
image distance metric dD(Ia, Ib). We can define 
new metrics by linear combinations of these 
basic metrics. Some image descriptors come with 
a natural associated total ordering of images (for 
example, time of shot). However, we can also 
define a total ordering for any image descriptor 
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Figure 1. PhotoCloud overview. The input comprises a 3D model (for example, a polygonal mesh or point 
cloud) and calibrated image set. The preprocessor converts the 3D model to a multiresolution format and 
computes image thumbnails, the average depth, the ordering, and the semantic distance. The system then 
creates an index file containing references to the model and images, associating them with their depth, order, 
and semantic information. A remote server stores the preprocessed data. Using the client, users download 
data through a unified cache system. A dynamic multiresolution renderer visualizes 3D scenes featuring 
large models; PhotoCloud uses a thumbnail bar to visualize large collections of 2D images. The system also 
implements joint 2D-3D visualization and interaction mechanisms in a tightly coupled interface. Blue arrows 
represent the flow of 3D data; green arrows represent 2D data.



	 IEEE Computer Graphics and Applications� 89

by using the associated image-to-image distance 
metric. For example, a global ordering could be the 
approximated Hamiltonian path defined according 
to that metric (by computing the depth-first visit 
of the minimum spanning tree).

Once we’ve ordered images according to a dis-
tance metric DO, we compute and store semantic 
distances among consecutive images with a metric 
DS. The metrics DO and DS can be chosen indepen-
dently from each other.

At the end of this process, we store in the server 
a set of image orderings and, for each ordering, a 
set of distances from one image to the next.

The multiresolution 3D data structure. A brute-force 
approach to rendering massive digital 3D mod-
els isn’t feasible, and the loss of detail produced 
by the simplification needed to reduce their size 
usually isn’t acceptable. PhotoCloud adopts a 
clustered multiresolution data structure2 that’s 
suitable for encoding multiple representations of 
the same shape. This structure also supports in-
teractive rendering by selecting the representation 
visible from the current viewpoint that best fits 
the rendering budget.

During preprocessing, we split the original data 
into blocks at different resolutions. Each block 
consists of roughly the same number of primi-
tives (generally several thousands), but covering 
very differently sized portions of the 3D objects. 
We organize the geometry into a bounding-sphere 
hierarchy that easily allows for occlusion culling 
and collision detection. This data structure also 
allows for out-of-core management, compression, 
and HTTP streaming. Each block is optimized for 
rendering.

Multilevel Cached Memory Management
Image thumbnails, high-resolution images, and 3D 
data blocks compete for RAM, GPU memory, and 
bandwidth. PhotoCloud’s priority-based cache sys-
tem strives to optimally allocate resources.3 There 
are four cache levels: HTTP, disk, RAM, and GPU. 
When new items reach the last level, the rendering 
updates. This way, PhotoCloud can handle datasets 
that are too large for GPU memory.

Implementation. Such a cache system requires 
managing thousands of items, allowing for fre-
quent priority updates and locking of items, and 
synchronizing different threads. When rendering 
each frame, we use atomic integer operations in-
stead of mutexes to lock resources. To minimize 
the overhead due to the priority sorting, we adopt 
a double heap-based queue coupled with lazy up-

dating. Each cache level operates in its own thread, 
allowing for blocking on files and sockets.

Priority assignments. Thumbnail images have very 
high priority because they’re lightweight but cru-
cial for interactions. An image’s priority is pro-
portional to the number of screen pixels it covers 
in the current thumbnail layout. High-resolution 
images have comparatively lower priority, with the 
selected image receiving the highest priority and 
the others receiving progressively lower priority ac-
cording to their distance from the selected image. 
In this way, PhotoCloud attempts to predict the 
image the user will select next. The downsampled 
thumbnail images serve as a temporary substitute 
for high-resolution images not yet loaded. The 
multiresolution 3D subsystem determines the pri-
ority of 3D data blocks, taking in account visibil-
ity, distance, and resolution.

Data compression. Given the dataset’s size, com-
pression is a necessity. Using compression means 
trading speed for memory usage and bandwidth.

We store the 3D data blocks remotely in the 
form of vertex buffer objects. We also considered 
compression and decompression of 3D models, but 
the available techniques didn’t deliver enough de-
flating speed.

Several image compression schemes, includ-
ing combinations, are feasible. We experimented 
with some of them to identify a good compromise 

Figure 2. The PhotoCloud client main window integrates 3D and 2D 
representations of the object or scene under inspection. All images 
are visualized in the bottom thumbnail bar, which allows direct image 
browsing. The selected image is also rendered on the 3D area projected 
or overlapped on the model; framelet glyphs (in light blue) indicate 
available images with related content.
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between minimal signal deterioration, maximal 
compression rates (especially at the HTTP level), 
maximal decompression speed, and as-late-as-
possible decompression. For most scenarios, the 
most appealing compromise is DXT1 compressed 
textures stored in zipped files. We send these files 
at the HTTP level, unzip them at the RAM level, 
and store the DXT1 images at the GPU level.

Rendering 3D Blocks
During rendering, blocks can be assembled in dif-
ferent combinations to produce the full model. 
The rendering algorithm guarantees a minimum 
frame rate by selecting the combination that best 
fits the rendering budget. The blocks’ resolution 
decreases as they get farther from the viewpoint. 
This minimizes the primitive count while keeping 
the screen space primitive density roughly con-

stant over the entire screen. Each block is cached 
in the GPU, so rendering has a low CPU load.

The final rendering primitives used depend on 
the data. We splat point clouds (see Figure 3) 
and send triangle meshes and triangle soups to 
the GPU as vertex buffer objects to be rasterized. 
PhotoCloud also supports attributes such as color, 
which it can also use to bake global lighting (for 
example, ambient occlusion), and normals defined 
per vertex on the models. We add standard fea-
tures such as depth cueing by fog or dynamic re-
lighting as needed.

Joint 2D and 3D Visualization
We now show how we visually merge information 
from the 3D model and color from the 2D pictures.

Rendering images on the 3D model. Traditional ap-
proaches, such as texture mapping or vertex color 
baking, can’t provide a viable solution for the data-
sets we target, because of these problems:

■■ 2D-to-2D incoherence. Photos are taken under 
different conditions. These differences can be 
drastic (for example, daytime and nighttime 
photos) but are part of the richness of the data. 
(So, you shouldn’t cancel them by blending im-
ages into a final texture.)

■■ 2D-to-3D incoherence. Photos represent infor-
mation that’s not in the 3D model (such as 
transient data, people, cars, and scaffolding) or 
that’s represented at a lower resolution.

■■ Misalignments. The 2D-to-2D and 2D-to-3D 
alignments won’t always be accurate.

■■ 3D incompleteness. Even the objects in the 3D 
data often aren’t fully represented.

■■ 2D uneven distribution. The amount of photo-
graphic data is massive (gigapixels), and classic 
texturing approaches are infeasible. Also, photos 
often depict the scene from a few clustered view-
points, overlapping some model features many 
times while leaving others completely uncovered.

Following Paolo Brivio and his colleagues,4 we 
never mix images, to avoid color artifacts (resolving 
2D-to-2D incoherence). We project only the selected 
image on the 3D model, as if it were cast from a slide 
projector (bypassing 2D uneven distribution). We 
also add a sky-dome mesh around the scene, which 
fills the screen regardless of the 3D data’s complete-
ness (addressing 3D incompleteness).

When the user views a scene from a position pv 
coinciding with the position ps from which the pic-
ture was shot, the image looks overlaid on the 3D 
model. When the view direction also coincides, the 

(a)

(b)

Figure 3. Screenshots showing datasets of (a) an aerial view of a 
castle and (b) a city. PhotoCloud represents models as point clouds; 
it efficiently renders them with a multiresolution technique while 
dynamically rendering images on them.
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final effect is equivalent to splashing the selected 
2D image on the main area of the screen, just like 
in a standard image browser (see Figure 4a). This 
produces no artifacts regardless of any 3D-to-2D 
misalignment (addressing 2D-to-3D incoherence 
and misalignments), even with view rotations and 
focal-length changes. (See Figure 4b and the video 
“view_rotation.” All the videos mentioned in this 
article are at www.youtube.com/playlist?list=PLHJ
B2bhmgB7cmYD0ST9CEDMRv1JIX4xPH.) The illu-
sion breaks only when the view position changes 
and, even then, only if there are 2D-to-3D dis-
crepancies. So, we selectively fade out parts of the 
image color, in a view-dependent way.

For each pixel, the transparency level is a = 
Ci(pi) ⋅ (1 – Cm(pm)) ⋅ pv – ps2, where Cm(pm) is 
the confidence of the geometry model position pm 
and Ci(pi) is the confidence of the image 2D posi-
tion pi being projected over pm. The sky-dome model 
has the lowest confidence. So, as the viewpoint 
moves, the items that are depicted in the image 
and projected over the sky disappear more rapidly, 
followed, as the shot distance increases, by the 3D 
model’s colors (see Figures 4c and 4d).

Framelets. The most common glyphs representing 
calibrated images in a 3D space—that is, cones and 
frustums—suffer several problems when, as in our 

(a)

(c)

(d)

(b)

Figure 4. How texture projection changes with the view position and orientation. (a) When the current view 
matches the camera view, texture projection produces the effect of rendering a textured quad in front of 
the model. (b) The projection stays consistent for arbitrary view direction changes. (c) However, translating 
away from the camera view would gradually reveal mismatches between the image and 3D model. To avoid 
artifacts, the image gradually fades out for small view translations and more rapidly fades out in unreliable 
parts of the models, like in the background. (d) As the view-position discrepancy increases, the system 
progressively disables texture projection completely.



92	 March/April 2013

Feature Article

case, the scene is explored by a viewer embedded 
in it.

For example, clutter is often an issue when many 
glyphs overlap. Also, most glyph lines meet with 
nonsquare angles. Once glyphs are projected on a 
2D screen with the necessary perspective projec-
tion, users can have difficulty perceiving their 3D 
shape owing to projection ambiguity. For instance, 
it’s difficult to tell apart glyphs seen frontally from 
those seen from the opposite direction. Glyphs 
close to the current viewpoint are particularly dif-
ficult to interpret.

A related problem is the unpredictability of which 
part of the scene is observed by the shot repre-
sented by a given glyph. Some approaches texture-
map the image on the frustum’s base,1 but the 
overlap with the 3D scene is inconsistent when 
the current view position differs from the image 
position.

Another problem is zoom-out. Often, glyphs tied 
to images featuring the part of the scene directly 
in front of the viewer are behind the user, out of 
his or her view.

The specular problem also applies, which we call 
an unintended u-turn. Images featuring objects be-
hind the user and usually out of his or her current 
interest are represented by large, central glyphs.

To partly overcome these problems, we use frame-
lets to achieve better scalability with the number of 
images. A framelet is the semitransparent outline of 
an oriented rectangle with the image’s aspect ratio 
(see Figures 2 and 5). The rectangle is the section 

of the view frustum pyramid of the correspond-
ing shot, cut at distance distC from the camera. Its 
opacity depends on the observer’s viewpoint.

Each framelet’s transparency dynamically var-
ies, depending on how similar its direction is to 
the current view direction. The more orthogonal 
it is, the less relevant the corresponding image is 
and the less opaque the framelet is. A framelet is 
completely transparent when seen from the back, 
avoiding unintended u-turns and helping to de-
clutter the scene. Because this glyph is a simple 
rectangle embedded in 3D space, comprising just 
four orthogonal lines, it’s less prone to clutter and 
projection ambiguity.

Given a 3D scene and a set of shots in it, the 
value of distC of a shot is a percentile k of the aver-
age depth of the objects in the shot. This way, the 
framelet rectangle’s size is linked to the shot’s in-
trinsic parameters, in a way that helps users predict 
the image’s content.

Framelets present a few drawbacks. The ap-
propriate value for k depends on the application 
scenario. Scenes depicting one artwork usually 
require larger values than scenes depicting city 
streets or squares. We used values ranging from 
0.1 for the Dubrovnik City, Cavalieri Square, and 
Signoria Square datasets (which we describe later) 
to 1 for the Michelangelo’s David dataset (depicted 
in Figures 2 and 5).

We also considered using framelets shaped as 
quadrilaterals consisting of the intersection of the 
view pyramid with the plane that most closely 
approximates the viewed scene. This would have 
helped deal with content unpredictability but would 
have excessively exacerbated back-projection ambi-
guity owing to the introduced nonsquare angles. In 
addition, zoom-out is still an open issue.

The Thumbnail Bar
A 3D interface alone doesn’t suffice to browse 
large image collections. Traditionally, basic 2D-
image browsers just display image thumbnails over 
a scrollable panel. For a browsing mechanism to 
scale with the number of images, it must take a hi-
erarchical, focus-and-context approach.6 Also, the 
PhotoCloud client can devote only a small part of 
the screen to image browsing, further emphasizing 
the need for dynamic image hierarchies.

PhotoCloud’s focus-and-context thumbnail bar5 
(see Figure 6) exploits precomputed image-to-
image semantic distances and total orderings to 
cluster thumbnails and arrange them into proper 
2D layouts. The ordering makes the browsing more 
intuitive. Given a thumbnail, all thumbnails on 
its left come before it; all the others come after it.

Figure 5. Framelets (the blue rectangles) indicate images facing the 
front of the current view and forming angles of up to 90 degrees with 
the current view’s direction. Framelets are more opaque for similar view 
directions and tend to disappear for perpendicular ones. The framelet 
under the pointer has a slightly thicker line.
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The selected image (the focus) is the largest 
thumbnail, in the middle of the bar. Thumbnails 
farther from the focus are smaller and clustered 
into deeper piles.

PhotoCloud uses additional information about 
the semantic distance between each pair of con-
secutive images to meaningfully cluster thumb-
nails. Semantically closer images tend to cluster, 
whereas distant ones go in different piles. How-
ever, a pile’s visual size decreases as it gets farther 
from the focus.

Thumbnail selection guides navigation. When 
the user selects a thumbnail with the pointer, that 
image becomes the new focus. PhotoCloud recon-
figures the layout (affecting the thumbnails’ size, 
position, and clustering) without breaking tempo-
ral coherence. Users can also scroll the focus and 
preview piled thumbnails. They can dynamically 
change the image ordering and clustering, choos-
ing from a pool of precomputed alternatives.

Joint 2D–3D Interaction
A central point of our system is that it offers 2D 
and 3D navigation metaphors that are coherently 
synchronized to aid browsing.

Navigating the 3D scene. Users can customize the 
navigation controls according to the nature of the 
dataset. In any case, users can employ the mouse 
pointer and keyboard to control the view position, 
orientation, and focal length.

For datasets featuring virtual environments with 
an open ground, we adopt a freely moving avatar 
metaphor. The mouse controls the view direc-
tion (the up direction is constrained), and the 
user can employ the keyboard to move the point of 
view on the horizontal plane. Another key controls 
the field of view, and the mouse wheel controls 
altitude.

For datasets featuring a single object of interest 
such as a statue, we adopt a trackball interface. 

The view position, controlled by mouse gestures, 
is constrained to lie on the surface of an ellip-
soid around the inspected object, with the default 
view direction along the surface normal. Users can 
temporarily override the view direction with right-
button mouse drags.

When the view position nears one viewpoint 
of an image, we enable projective texturing for 
that image. Also, as we mentioned earlier, moving 
around the 3D scene changes the visible framelets’ 
opacity to help users find related images. When 
the user picks a framelet, the view flies to the as-
sociated view, also enabling texture projection (see 
the video “david_framelet”).

3D-to-2D syncing. When the user selects a framelet 
(see the video “david_framelet”) or when a view-
point change enables a different texture for projec-
tion on the geometry (see the videos “david_proj” 
and “cavalieri_proj”), the thumbnail bar’s focus 
changes. When the pointer moves over a framelet, 
the corresponding thumbnail preview is enabled in 
the thumbnail bar.

2D-to-3D syncing. Moving the pointer over a thumb-
nail highlights the corresponding framelet in the 
3D scene, if that framelet is visible. Selecting a 
thumbnail triggers a view change in the 3D viewer 
through a soft transition (see the video “signoria_
bar”). However, thumbnail scrolling and dragging 
aren’t connected to the 3D view, even if they de-
termine focus changes. That’s because in this case 
the user is looking for a specific image by glancing 
at the thumbnails’ visual content.

Implementation and Evaluation
We implemented PhotoCloud as an open source 
project. The current version offers

■■ support for the most common calibration and 
2D and 3D data formats;

Figure 6. The thumbnail bar. This focus-and-context image browser arranges image thumbnails into stacked 
piles. The focus image is the largest thumbnail, in the middle of the bar. The others get clustered into piles 
whose size decreases and whose depth increases as the piles get farther from the focus. Images in the same 
pile are semantically close. The interface includes mechanisms to scroll, select, and preview images.
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■■ efficient, GPU-friendly implementation, achiev-
ing real-time performance on entry-level PCs;

■■ cross-platform source code (available at http://
vcg.isti.cnr.it/photocloud) for Windows, Mac 
OS X, and Unix. The multiresolution 3D model 
encoding is at vcg.isti.cnr.it/nexus.

We tested PhotoCloud on different machines, 
using five datasets:

■■ Dubrovnik City (6,844 photographs at different 
high resolutions and a cloud of 2 million points. 
See Figure 3b),

■■ Bouvignes Castle (97 photographs at a resolu-
tion of 2,000 × 2,000 pixels and a cloud of 350K 
points. See Figure 3a),

■■ Michelangelo’s David (125 photographs at 2,336 × 
3,504 resolution and a mesh of 56 million tri-
angles. See Figures 2 and 5),

■■ Cavalieri Square (458 photographs at 3,872 × 
2,592 resolution and a mesh of 15 million tri-
angles. See Figures 4 and 6), and

■■ Signoria Square (507 photographs at 2,592 ×  
1,728 resolution and a mesh of 65 million tri-
angles).

In all cases, the client constantly achieved more 
than 60 frames per second. It occupied only ap-
proximately 128 Mbytes of RAM and 80 Mbytes 
of GPU memory on a laptop with 1,600 × 900 
resolution, a 2.6-GHz dual-core processor, and an 
Nvidia GeForce GT 130M graphics card.

Whereas data loading is subject to network la-
tency, the caching mechanism and incremental 
data structures optimize performance with respect 
to the underlying network layer’s limitations. They 
require approximately 4 percent of CPU usage to 
handle data across the memory levels. In our tests, 
a standard 100-Mbit Ethernet network connection 
(with a peak nominal bandwidth of roughly 11.8 
Mbytes per second) always provided the necessary 
bandwidth to keep latencies small.

We presented PhotoCloud to several cultural-
heritage experts, some of whom had no strong IT 
competence, and collected their impressions and 
comments. They all reported that the system was 
appealing and easy to use. Image-based navigation 
let the unskilled users avoid the “I’m lost” situation 
that often occurs when they face a 3D navigation 
system. In addition, the system’s 3D navigation ef-
fectively helped the users select images.

User Study
We quantitatively compared PhotoCloud’s image-
browsing interface with that of Photosynth (www.

photosynth.net), a publicly available Web-based 
implementation of Photo Tourism.1 (For more on 
Photo Tourism and other approaches to navigat-
ing joint 2D and 3D datasets, see the sidebar.) We 
chose Photosynth because of its similar objectives. 
User studies on attitudes toward image browsing 
revealed that people tend to concentrate on events 
and thus on location cues.7 In our case, we wanted 
to evaluate the effectiveness of interaction mecha-
nisms in a 3D environment.

The Participants
Eighteen university students and young researchers 
participated. We separated them into three levels 
of self-assessed experience with 3D navigation: low, 
medium, and high. None had previously used either 
system, and none was familiar with the dataset. All 
had normal or corrected-to-normal vision with no 
color blindness.

The Procedure
All the experiments took place under the same 
lighting conditions in a silent room. We allowed 
each participant a preliminary five-minute test 
run on each browser, using a training dataset. 
Each participant received a sheet with illustrated 
instructions about each tool’s functionalities.

Then, each participant performed a sequence of 
tasks on the Cavalieri Square B dataset (a subset of 
the Cavalieri Square dataset). It featured a square 
with a statue in the middle and consisted of 202 
photos and a point cloud recovered from the cali-
brated images.

A written assignment described the four tasks:

1.	 Read what’s written on the front of the church 
(which required finding any of the five pictures 
featuring that writing).

2.	 Find any of the three images that feature the 
left staircase of a specific building.

3.	 Find any of the two pictures that feature that 
building’s entire facade (that is, both the left and 
right borders of the facade in a single image).

4.	 Determine whether there’s an image showing 
the statue’s back, and, if so, show it.

Timings started only after the participants read 
and understood each task. They were to work on 
each task until they completed it, and they re-
ceived no assistance while performing the tasks.

The participants performed the tasks first on 
one system and then on the other. Although the 
two systems used the same dataset, the picture 
orders differed because our system computes the 
picture order as part of preprocessing. Because 
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dataset knowledge clearly influences user perfor-
mance, one randomly chosen half of the partici-
pants used PhotoCloud first; the other half used 
Photosynth first.

Results and Discussion
Table 1 summarizes the results. Scene familiarity 
turned out to be not very important because the 
times didn’t change excessively according to which 
system the participants used first. As we expected, 
the times improved with the participants’ skill 
level, particularly with PhotoCloud. The partici-
pants’ ability with the keyboard-and-mouse inter-
face significantly affected their performance with 
PhotoCloud. However, this partly contrasts with 
our original aim because we intended PhotoCloud 
for a broad class of users, including both computer 
science and cultural-heritage people.

Considering each task separately, the differences 

in the times are due partly to the different 3D-
navigation mechanisms and partly to the visu-
alization techniques. In Photosynth, the images’ 
positions constrain the movement of the virtual 
3D view, whereas PhotoCloud supports free view 
selection through keyboard-plus-mouse and frame-
let interactions. In general, PhotoCloud allows us-
ers a larger variety of actions. For example, they 
can view the 3D model from points and angles 
not pictured in any image. Or, they can virtually 
walk in the 3D environment toward the part of 
the scene they’re interested in before selecting the 
target image.

Our intent is that this approach should reason-
ably reduce the time to complete the tasks. How-
ever, the participants’ performance noticeably 
deteriorated when they solved tasks in which the 
target image had to match a specific view (tasks 1 
and 3). This was mainly because we displayed the 

Few image browsers support the navigation of joint 2D 
and 3D datasets; each pursues different goals.

Google Street View exploits accelerometers and GPS 
geolocation to feed a structure-from-motion system.1 The 
output calibration enables blending among images over-
lapping in a 3D environment. The browser uses the com-
plementary, sparse point cloud to infer planar structures’ 
approximate position, size, and orientation. As the user 
navigates the scene, the browser divides it into photo bub-
bles (panoramas). Each bubble, separately streamed from a 
server, comprises photographs shot from the same position 
that are visible by rotating the view.

More recently, Street Slide introduced a technique to 
smoothly switch from panorama bubbles to a multiper-
spective view and vice versa to give a broader planar view 
of streets.2 Google Street View and Street Slide explicitly 
exploit street features, so they also display information such 
as street names and shop signs. In contrast, PhotoCloud 
(see the main article) targets arbitrary 3D environments. Its 
navigation approach adapts to both bubble-like visits and 
broader views and movement.

PhotoCloud recalls Photo Tourism3 in that it proposes 
explicit integration and rendering of a sparse 3D geome-
try with a photo collection. Photo Tourism renders the 3D 
model in the central part of the interface, with the selected 
photograph overlaid on the model. Further details about 
that photo appear in a side menu, including the thumb-
nails of photographs partly overlapping it. A complemen-
tary thumbnail bar lays out images depicting the current 
subject from different views. Users can browse nearby pho-
tographs, optionally presented as a slide show, and jump to 
remote areas through an overhead map.

PhotoCloud improves upon Photo Tourism by offering 

more flexible management of the thumbnail bar and in-
creased 3D data flexibility. It also handles high-quality 3D 
models and provides visualization and navigation features 
that fully exploit dataset peculiarities.

Other visualization mechanisms tackle different sub-
problems. Noah Snavely and his colleagues improved navi-
gation by photograph selection by providing controls that 
move the user along paths of dense collections of photo-
graphs.4 Their approach scores photographs according to 
how well they depict an object of interest and uses this in-
formation to compute orbit, panorama, or best-fit paths. 
Another approach, ambient point clouds, approximates 
view interpolations among pairs of images.5 It uses depth 
maps to render the geometry from the view of the cur-
rent active photograph within a negligible error, whereas 
a subsampled point cloud represents the rest of the scene. 
PhotoCloud bypasses this problem, avoiding the need for 
interpolated images (see the section “Rendering images on 
the 3D model” in the main article).
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framelets at 0.1 × depthC to prevent cluttering in 
areas with a higher density of shots.

Specifically, while solving task 1 with Photo-
Cloud, the participants tended to move near the 
front of the church instead of selecting an image 
and zooming in to read the writing. This resulted 
in longer times. A similar misunderstanding oc-
curred during task 3. In these cases, constraining 
the view to the available images can noticeably de-
crease the times (by nearly two-thirds, for task 1 
for low-skilled users), thanks to the spatial meta-
phor. However, this happens only if the frustums 
of that image and other images intersect.

In contrast, free 3D movements can reduce the 
search time up to 90 percent. In task 2, each re-
quested picture featured the staircase (occupying 
the largest part of the picture) in the foreground 
and a more distant building in the background. 
During the tests, all but one participant initially 
used the Photosynth 3D browser and overhead 
map to reach that picture but finally relied on the 
2D image browser to find it. With PhotoCloud, 
moving near the desired location and selecting the 
correct framelet accomplished the task.

During the experiments, we registered which 
interface mechanisms each user tried and which 
one was ultimately successful. In 75 percent of the 
cases with PhotoCloud, framelets were successful, 
but their use always followed either 3D free navi-
gation (90 percent) or 2D browsing (10 percent). 
In 20 percent of the experiments, the participants 
used mainly the embedded 2D browser. On the 
other hand, when using Photosynth, the partici-
pants often switched between the 3D view and the 
overhead map, sometimes resorting to the conven-

tional 2D browser, which proved time-consuming. 
With PhotoCloud, the participants mostly used 
the 2D-3D interface; the integration of the various 
tools in the interface helped them switch between 
different, effective navigation strategies.

After the test, we asked the participants for 
qualitative comments and impressions; most ar-
gued that picture localization was more natural 
and easier in PhotoCloud. As they pointed out, 
this is probably due to the ability to freely move in 
the scene in PhotoCloud. Photosynth only lets us-
ers jump from one picture to another, which isn’t 
always the one they expect. The participants also 
reported that PhotoCloud’s visualization tech-
niques helped them better understand how the 
scene was structured, which objects were in it, and 
how to reach them.

As future work, we plan to test alternative so-
lutions to framelet cluttering (for example, 

grouping framelets when they’re seen from a dis-
tance). We could also evaluate the effectiveness of 
constrained versus free 3D movements in data
sets featuring scenes consisting of multiple rooms, 
where movement is constrained through certain 
passages.

In addition, we could improve the policies for 
defining the ordering of the image dataset and add 
mechanisms to select image subsets. Image paths 
could be precomputed8 and exploited to produce 
better transitions between images. Collision de-
tection could help 3D navigation of a scene (for 
example, to avoid passing through walls).�
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