
86	 March/April 2013	 Published by the IEEE Computer Society� 0272-1716/13/$31.00 © 2013 IEEE

Feature Article

PhotoCloud:
Interactive Remote Exploration of Joint

2D and 3D Datasets

Paolo Brivio ■ Università degli Studi dell’Insubria

Luca Benedetti ■ ISTI-CNR Visual Computing Lab

Marco Tarini ■ Università degli Studi dell’Insubria

Federico Ponchio, Paolo Cignoni, and Roberto Scopigno ■ ISTI-CNR Visual Computing Lab

PhotoCloud is a real-time client-server sys-
tem for interactive exploration of large
datasets comprising high-complexity 3D

models and up to several thousand photographs
calibrated over the 3D data. PhotoCloud supports
any 3D models that can be rendered in a depth-
coherent way (point clouds, triangle soups, and

indexed triangle meshes) and
arbitrary photo collections. It
tolerates 2D-to-2D and 2D-to-
3D misalignments. It provides
scalable visualization of generic
integrated 2D and 3D datasets,
exploiting data duality. A set of
effective 3D navigation controls,
tightly integrated with innova-
tive thumbnail bars, enhance
user navigation of the data.

PhotoCloud’s scope is wide
because the need to manage in-
tegrated 2D and 3D sampling

arises in many domains: industrial plant inspec-
tion, city management, decision-support systems
for crisis management, and so on. A particularly
important application context is cultural heri-
tage, which often requires efficient, easy brows-
ing of photograph collections, often referenced

over complex 3D models. PhotoCloud effectively
supports the exploration of virtual monuments,
museums, archaeological sites, streets, plazas, and
entire cities.

Dealing with Hybrid Datasets
Images and 3D models are often complementary.
Images usually feature details or objects not in
the related model—for example, people, cars, and
trees—or depict buildings as they once were. On
the other hand, models describe objects and de-
tails in a view-independent way. Such joint data-
sets can be generated by multiple sources and are
becoming increasingly common.

Active vs. Passive Acquisition
With the spread of active 3D digitization technol-
ogy, high-resolution 3D models representing large
artworks or entire complexes are also becoming
increasingly available. The 3D acquisition cam-
paign is often paired with an intensive photo-
graphic sampling, which is then explicitly aligned
to the 3D model.

Another possible source of data is passive acqui-
sition, which extracts the 3D model from collec-
tions of calibrated images. Images are aligned to the
model by construction. Thanks to recent advances

PhotoCloud provides
interactive visualization and
exploration of large datasets
comprising thousands of
calibrated 2D photographs
and a complex 3D description
of the scene. The system isn’t
tailored to any specific data
acquisition process; it aims at
generality and flexibility.

PREPRINT

	 IEEE Computer Graphics and Applications� 87

in structure-from-motion and multiview-stereo
techniques, affordable, medium-quality, colored
point clouds can be extracted from collections of
numerous and spatially dense photographs, even if
shot under uncontrolled conditions.1

Visualization Challenges
Designing a hybrid visualization tool such as Photo-
Cloud involves several challenges.

Exploring a collection of thousands or more
images poses a challenge by itself. Traditional im-
age browser mechanisms don’t scale well with the
number of images. Tasks such as identifying im-
ages featuring the desired view or visualizing the
whole dataset quickly become impractical. Simi-
larly, interactive remote navigation of a complex
3D model requires effective user interfaces to aid
the selection of appropriate points of view.

As we’ll show, a joint visualization of 2D and 3D
data, with a joint interface, offers new opportuni-
ties to address the previous two challenges. That,
however, also poses challenges of its own. The data
is heterogeneous, incomplete, and nonuniformly
sampled and presents discrepancies between the
2D and 3D parts.

Other problems involve the data’s size. For ex-
ample, the system must avoid excessive lag times
in a client-server context. It must also be able to
manage data potentially too large to fit in graphics
card RAM or even central RAM. Finally, efficient
rendering techniques are necessary to cope with
the size of the 3D models.

Another requirement is to avoid assumptions
regarding the specific 3D acquisition technology
(for example, range scanning or photogrammetry)
or image acquisition methodology. To this end, it’s
important to support many different kinds of 3D
models and registered image sets.

To face these challenges, PhotoCloud combines,
adapts, and improves on several state-of-the-art
techniques.2–5

System Overview
PhotoCloud supports the simultaneous browsing
of a digital image collection I and the navigation
and visualization of a digital 3D scene M. Both
I and M can be large—I in terms of the number
and resolution of images (up to several gigapix-
els), and M in terms of geometric complexity (tens
of millions of 3D points or triangles). We assume
that I and M have been acquired and processed
in a preliminary phase that includes calibration,
denoising, cleaning, and so on.

Figure 1 shows the PhotoCloud pipeline. First,
the data (M + I) undergoes preprocessing. The

preprocessed data is stored in a server and ac-
cessed through a client. An efficient multilevel,
GPU-friendly cache system manages both I and
the nodes of the multiresolution structure for M.

The client’s application window (see Figure 2)
comprises two areas that can be dynamically resized.

The main 3D area integrates a 3D rendering of
M, the selected image in I, and framelets—glyph
representations of other images from I that are per-
tinent at that moment of navigation. The framelets
roughly indicate the image contents and serve as
an interface for image browsing.

At the bottom of the window, the thumbnail bar
shows all the images in I. As we’ll show, users can
select images in the thumbnail bar to project on
the 3D model.

PhotoCloud Modules
PhotoCloud comprises the following tightly inte-
grated modules.

Preprocessing 2D and 3D Datasets
The preprocessing includes constructing the thumb-
nails from images, recompressing high-resolution
images, and zipping the files. We also precompute
the average image-space depth of each image’s
content. We store that depth by rendering a depth
buffer of the 3D model from the image viewpoint
defined in the camera calibration.

Image descriptors, distances, and orderings. We asso-
ciate an image with various high-level descriptors
used for defining total orderings over the images
and for computing distances between consecutive
images for each ordering.

Our preprocessor extracts and uses these image
descriptors:

■■ the time of the shot from the exif (exchangeable
image file);

■■ the shot’s 3D position and 2D orientation, as
given by the calibration;

■■ the color distribution, as a 16-entry histogram
of colors; and

■■ the spatial color layout, as a 4 × 4 downsampled
image (color computations are in the LAB color
space).

A descriptor D implicitly defines an image-to-
image distance metric dD(Ia, Ib). We can define
new metrics by linear combinations of these
basic metrics. Some image descriptors come with
a natural associated total ordering of images (for
example, time of shot). However, we can also
define a total ordering for any image descriptor

88	 March/April 2013

Feature Article

Multilevel cache

Joint 2D-3D visualization and interaction

Image_N

In
p

ut
 d

at
as

et

Compute
orders and semantics

Extract
descriptors

Original
3D model

Image_N

Calibration_N
...

Image_2

Calibration_2

Image_1

Calibration_1

Pr
ep

ro
ce

ss
or

C
lie

nt
Re

m
ot

e
da

ta
se

t

3D multi-
resolution

blocks

Thumbnail_N

Calibration_N

...

...

Image_2

Thumbnail_2

Calibration_2

Build
multiresolution

version
Extract depths

Indexing
• Image list
• Depths
• Orderings
• Semantics

W
eb

Thumbnail bar

3D block renderer

Thumbnail_1

Image_1

Calibration_1

Figure 1. PhotoCloud overview. The input comprises a 3D model (for example, a polygonal mesh or point
cloud) and calibrated image set. The preprocessor converts the 3D model to a multiresolution format and
computes image thumbnails, the average depth, the ordering, and the semantic distance. The system then
creates an index file containing references to the model and images, associating them with their depth, order,
and semantic information. A remote server stores the preprocessed data. Using the client, users download
data through a unified cache system. A dynamic multiresolution renderer visualizes 3D scenes featuring
large models; PhotoCloud uses a thumbnail bar to visualize large collections of 2D images. The system also
implements joint 2D-3D visualization and interaction mechanisms in a tightly coupled interface. Blue arrows
represent the flow of 3D data; green arrows represent 2D data.

	 IEEE Computer Graphics and Applications� 89

by using the associated image-to-image distance
metric. For example, a global ordering could be the
approximated Hamiltonian path defined according
to that metric (by computing the depth-first visit
of the minimum spanning tree).

Once we’ve ordered images according to a dis-
tance metric DO, we compute and store semantic
distances among consecutive images with a metric
DS. The metrics DO and DS can be chosen indepen-
dently from each other.

At the end of this process, we store in the server
a set of image orderings and, for each ordering, a
set of distances from one image to the next.

The multiresolution 3D data structure. A brute-force
approach to rendering massive digital 3D mod-
els isn’t feasible, and the loss of detail produced
by the simplification needed to reduce their size
usually isn’t acceptable. PhotoCloud adopts a
clustered multiresolution data structure2 that’s
suitable for encoding multiple representations of
the same shape. This structure also supports in-
teractive rendering by selecting the representation
visible from the current viewpoint that best fits
the rendering budget.

During preprocessing, we split the original data
into blocks at different resolutions. Each block
consists of roughly the same number of primi-
tives (generally several thousands), but covering
very differently sized portions of the 3D objects.
We organize the geometry into a bounding-sphere
hierarchy that easily allows for occlusion culling
and collision detection. This data structure also
allows for out-of-core management, compression,
and HTTP streaming. Each block is optimized for
rendering.

Multilevel Cached Memory Management
Image thumbnails, high-resolution images, and 3D
data blocks compete for RAM, GPU memory, and
bandwidth. PhotoCloud’s priority-based cache sys-
tem strives to optimally allocate resources.3 There
are four cache levels: HTTP, disk, RAM, and GPU.
When new items reach the last level, the rendering
updates. This way, PhotoCloud can handle datasets
that are too large for GPU memory.

Implementation. Such a cache system requires
managing thousands of items, allowing for fre-
quent priority updates and locking of items, and
synchronizing different threads. When rendering
each frame, we use atomic integer operations in-
stead of mutexes to lock resources. To minimize
the overhead due to the priority sorting, we adopt
a double heap-based queue coupled with lazy up-

dating. Each cache level operates in its own thread,
allowing for blocking on files and sockets.

Priority assignments. Thumbnail images have very
high priority because they’re lightweight but cru-
cial for interactions. An image’s priority is pro-
portional to the number of screen pixels it covers
in the current thumbnail layout. High-resolution
images have comparatively lower priority, with the
selected image receiving the highest priority and
the others receiving progressively lower priority ac-
cording to their distance from the selected image.
In this way, PhotoCloud attempts to predict the
image the user will select next. The downsampled
thumbnail images serve as a temporary substitute
for high-resolution images not yet loaded. The
multiresolution 3D subsystem determines the pri-
ority of 3D data blocks, taking in account visibil-
ity, distance, and resolution.

Data compression. Given the dataset’s size, com-
pression is a necessity. Using compression means
trading speed for memory usage and bandwidth.

We store the 3D data blocks remotely in the
form of vertex buffer objects. We also considered
compression and decompression of 3D models, but
the available techniques didn’t deliver enough de-
flating speed.

Several image compression schemes, includ-
ing combinations, are feasible. We experimented
with some of them to identify a good compromise

Figure 2. The PhotoCloud client main window integrates 3D and 2D
representations of the object or scene under inspection. All images
are visualized in the bottom thumbnail bar, which allows direct image
browsing. The selected image is also rendered on the 3D area projected
or overlapped on the model; framelet glyphs (in light blue) indicate
available images with related content.

90	 March/April 2013

Feature Article

between minimal signal deterioration, maximal
compression rates (especially at the HTTP level),
maximal decompression speed, and as-late-as-
possible decompression. For most scenarios, the
most appealing compromise is DXT1 compressed
textures stored in zipped files. We send these files
at the HTTP level, unzip them at the RAM level,
and store the DXT1 images at the GPU level.

Rendering 3D Blocks
During rendering, blocks can be assembled in dif-
ferent combinations to produce the full model.
The rendering algorithm guarantees a minimum
frame rate by selecting the combination that best
fits the rendering budget. The blocks’ resolution
decreases as they get farther from the viewpoint.
This minimizes the primitive count while keeping
the screen space primitive density roughly con-

stant over the entire screen. Each block is cached
in the GPU, so rendering has a low CPU load.

The final rendering primitives used depend on
the data. We splat point clouds (see Figure 3)
and send triangle meshes and triangle soups to
the GPU as vertex buffer objects to be rasterized.
PhotoCloud also supports attributes such as color,
which it can also use to bake global lighting (for
example, ambient occlusion), and normals defined
per vertex on the models. We add standard fea-
tures such as depth cueing by fog or dynamic re-
lighting as needed.

Joint 2D and 3D Visualization
We now show how we visually merge information
from the 3D model and color from the 2D pictures.

Rendering images on the 3D model. Traditional ap-
proaches, such as texture mapping or vertex color
baking, can’t provide a viable solution for the data-
sets we target, because of these problems:

■■ 2D-to-2D incoherence. Photos are taken under
different conditions. These differences can be
drastic (for example, daytime and nighttime
photos) but are part of the richness of the data.
(So, you shouldn’t cancel them by blending im-
ages into a final texture.)

■■ 2D-to-3D incoherence. Photos represent infor-
mation that’s not in the 3D model (such as
transient data, people, cars, and scaffolding) or
that’s represented at a lower resolution.

■■ Misalignments. The 2D-to-2D and 2D-to-3D
alignments won’t always be accurate.

■■ 3D incompleteness. Even the objects in the 3D
data often aren’t fully represented.

■■ 2D uneven distribution. The amount of photo-
graphic data is massive (gigapixels), and classic
texturing approaches are infeasible. Also, photos
often depict the scene from a few clustered view-
points, overlapping some model features many
times while leaving others completely uncovered.

Following Paolo Brivio and his colleagues,4 we
never mix images, to avoid color artifacts (resolving
2D-to-2D incoherence). We project only the selected
image on the 3D model, as if it were cast from a slide
projector (bypassing 2D uneven distribution). We
also add a sky-dome mesh around the scene, which
fills the screen regardless of the 3D data’s complete-
ness (addressing 3D incompleteness).

When the user views a scene from a position pv
coinciding with the position ps from which the pic-
ture was shot, the image looks overlaid on the 3D
model. When the view direction also coincides, the

(a)

(b)

Figure 3. Screenshots showing datasets of (a) an aerial view of a
castle and (b) a city. PhotoCloud represents models as point clouds;
it efficiently renders them with a multiresolution technique while
dynamically rendering images on them.

	 IEEE Computer Graphics and Applications� 91

final effect is equivalent to splashing the selected
2D image on the main area of the screen, just like
in a standard image browser (see Figure 4a). This
produces no artifacts regardless of any 3D-to-2D
misalignment (addressing 2D-to-3D incoherence
and misalignments), even with view rotations and
focal-length changes. (See Figure 4b and the video
“view_rotation.” All the videos mentioned in this
article are at www.youtube.com/playlist?list=PLHJ
B2bhmgB7cmYD0ST9CEDMRv1JIX4xPH.) The illu-
sion breaks only when the view position changes
and, even then, only if there are 2D-to-3D dis-
crepancies. So, we selectively fade out parts of the
image color, in a view-dependent way.

For each pixel, the transparency level is a =
Ci(pi) ⋅ (1 – Cm(pm)) ⋅ pv – ps2, where Cm(pm) is
the confidence of the geometry model position pm
and Ci(pi) is the confidence of the image 2D posi-
tion pi being projected over pm. The sky-dome model
has the lowest confidence. So, as the viewpoint
moves, the items that are depicted in the image
and projected over the sky disappear more rapidly,
followed, as the shot distance increases, by the 3D
model’s colors (see Figures 4c and 4d).

Framelets. The most common glyphs representing
calibrated images in a 3D space—that is, cones and
frustums—suffer several problems when, as in our

(a)

(c)

(d)

(b)

Figure 4. How texture projection changes with the view position and orientation. (a) When the current view
matches the camera view, texture projection produces the effect of rendering a textured quad in front of
the model. (b) The projection stays consistent for arbitrary view direction changes. (c) However, translating
away from the camera view would gradually reveal mismatches between the image and 3D model. To avoid
artifacts, the image gradually fades out for small view translations and more rapidly fades out in unreliable
parts of the models, like in the background. (d) As the view-position discrepancy increases, the system
progressively disables texture projection completely.

92	 March/April 2013

Feature Article

case, the scene is explored by a viewer embedded
in it.

For example, clutter is often an issue when many
glyphs overlap. Also, most glyph lines meet with
nonsquare angles. Once glyphs are projected on a
2D screen with the necessary perspective projec-
tion, users can have difficulty perceiving their 3D
shape owing to projection ambiguity. For instance,
it’s difficult to tell apart glyphs seen frontally from
those seen from the opposite direction. Glyphs
close to the current viewpoint are particularly dif-
ficult to interpret.

A related problem is the unpredictability of which
part of the scene is observed by the shot repre-
sented by a given glyph. Some approaches texture-
map the image on the frustum’s base,1 but the
overlap with the 3D scene is inconsistent when
the current view position differs from the image
position.

Another problem is zoom-out. Often, glyphs tied
to images featuring the part of the scene directly
in front of the viewer are behind the user, out of
his or her view.

The specular problem also applies, which we call
an unintended u-turn. Images featuring objects be-
hind the user and usually out of his or her current
interest are represented by large, central glyphs.

To partly overcome these problems, we use frame-
lets to achieve better scalability with the number of
images. A framelet is the semitransparent outline of
an oriented rectangle with the image’s aspect ratio
(see Figures 2 and 5). The rectangle is the section

of the view frustum pyramid of the correspond-
ing shot, cut at distance distC from the camera. Its
opacity depends on the observer’s viewpoint.

Each framelet’s transparency dynamically var-
ies, depending on how similar its direction is to
the current view direction. The more orthogonal
it is, the less relevant the corresponding image is
and the less opaque the framelet is. A framelet is
completely transparent when seen from the back,
avoiding unintended u-turns and helping to de-
clutter the scene. Because this glyph is a simple
rectangle embedded in 3D space, comprising just
four orthogonal lines, it’s less prone to clutter and
projection ambiguity.

Given a 3D scene and a set of shots in it, the
value of distC of a shot is a percentile k of the aver-
age depth of the objects in the shot. This way, the
framelet rectangle’s size is linked to the shot’s in-
trinsic parameters, in a way that helps users predict
the image’s content.

Framelets present a few drawbacks. The ap-
propriate value for k depends on the application
scenario. Scenes depicting one artwork usually
require larger values than scenes depicting city
streets or squares. We used values ranging from
0.1 for the Dubrovnik City, Cavalieri Square, and
Signoria Square datasets (which we describe later)
to 1 for the Michelangelo’s David dataset (depicted
in Figures 2 and 5).

We also considered using framelets shaped as
quadrilaterals consisting of the intersection of the
view pyramid with the plane that most closely
approximates the viewed scene. This would have
helped deal with content unpredictability but would
have excessively exacerbated back-projection ambi-
guity owing to the introduced nonsquare angles. In
addition, zoom-out is still an open issue.

The Thumbnail Bar
A 3D interface alone doesn’t suffice to browse
large image collections. Traditionally, basic 2D-
image browsers just display image thumbnails over
a scrollable panel. For a browsing mechanism to
scale with the number of images, it must take a hi-
erarchical, focus-and-context approach.6 Also, the
PhotoCloud client can devote only a small part of
the screen to image browsing, further emphasizing
the need for dynamic image hierarchies.

PhotoCloud’s focus-and-context thumbnail bar5
(see Figure 6) exploits precomputed image-to-
image semantic distances and total orderings to
cluster thumbnails and arrange them into proper
2D layouts. The ordering makes the browsing more
intuitive. Given a thumbnail, all thumbnails on
its left come before it; all the others come after it.

Figure 5. Framelets (the blue rectangles) indicate images facing the
front of the current view and forming angles of up to 90 degrees with
the current view’s direction. Framelets are more opaque for similar view
directions and tend to disappear for perpendicular ones. The framelet
under the pointer has a slightly thicker line.

	 IEEE Computer Graphics and Applications� 93

The selected image (the focus) is the largest
thumbnail, in the middle of the bar. Thumbnails
farther from the focus are smaller and clustered
into deeper piles.

PhotoCloud uses additional information about
the semantic distance between each pair of con-
secutive images to meaningfully cluster thumb-
nails. Semantically closer images tend to cluster,
whereas distant ones go in different piles. How-
ever, a pile’s visual size decreases as it gets farther
from the focus.

Thumbnail selection guides navigation. When
the user selects a thumbnail with the pointer, that
image becomes the new focus. PhotoCloud recon-
figures the layout (affecting the thumbnails’ size,
position, and clustering) without breaking tempo-
ral coherence. Users can also scroll the focus and
preview piled thumbnails. They can dynamically
change the image ordering and clustering, choos-
ing from a pool of precomputed alternatives.

Joint 2D–3D Interaction
A central point of our system is that it offers 2D
and 3D navigation metaphors that are coherently
synchronized to aid browsing.

Navigating the 3D scene. Users can customize the
navigation controls according to the nature of the
dataset. In any case, users can employ the mouse
pointer and keyboard to control the view position,
orientation, and focal length.

For datasets featuring virtual environments with
an open ground, we adopt a freely moving avatar
metaphor. The mouse controls the view direc-
tion (the up direction is constrained), and the
user can employ the keyboard to move the point of
view on the horizontal plane. Another key controls
the field of view, and the mouse wheel controls
altitude.

For datasets featuring a single object of interest
such as a statue, we adopt a trackball interface.

The view position, controlled by mouse gestures,
is constrained to lie on the surface of an ellip-
soid around the inspected object, with the default
view direction along the surface normal. Users can
temporarily override the view direction with right-
button mouse drags.

When the view position nears one viewpoint
of an image, we enable projective texturing for
that image. Also, as we mentioned earlier, moving
around the 3D scene changes the visible framelets’
opacity to help users find related images. When
the user picks a framelet, the view flies to the as-
sociated view, also enabling texture projection (see
the video “david_framelet”).

3D-to-2D syncing. When the user selects a framelet
(see the video “david_framelet”) or when a view-
point change enables a different texture for projec-
tion on the geometry (see the videos “david_proj”
and “cavalieri_proj”), the thumbnail bar’s focus
changes. When the pointer moves over a framelet,
the corresponding thumbnail preview is enabled in
the thumbnail bar.

2D-to-3D syncing. Moving the pointer over a thumb-
nail highlights the corresponding framelet in the
3D scene, if that framelet is visible. Selecting a
thumbnail triggers a view change in the 3D viewer
through a soft transition (see the video “signoria_
bar”). However, thumbnail scrolling and dragging
aren’t connected to the 3D view, even if they de-
termine focus changes. That’s because in this case
the user is looking for a specific image by glancing
at the thumbnails’ visual content.

Implementation and Evaluation
We implemented PhotoCloud as an open source
project. The current version offers

■■ support for the most common calibration and
2D and 3D data formats;

Figure 6. The thumbnail bar. This focus-and-context image browser arranges image thumbnails into stacked
piles. The focus image is the largest thumbnail, in the middle of the bar. The others get clustered into piles
whose size decreases and whose depth increases as the piles get farther from the focus. Images in the same
pile are semantically close. The interface includes mechanisms to scroll, select, and preview images.

94	 March/April 2013

Feature Article

■■ efficient, GPU-friendly implementation, achiev-
ing real-time performance on entry-level PCs;

■■ cross-platform source code (available at http://
vcg.isti.cnr.it/photocloud) for Windows, Mac
OS X, and Unix. The multiresolution 3D model
encoding is at vcg.isti.cnr.it/nexus.

We tested PhotoCloud on different machines,
using five datasets:

■■ Dubrovnik City (6,844 photographs at different
high resolutions and a cloud of 2 million points.
See Figure 3b),

■■ Bouvignes Castle (97 photographs at a resolu-
tion of 2,000 × 2,000 pixels and a cloud of 350K
points. See Figure 3a),

■■ Michelangelo’s David (125 photographs at 2,336 ×
3,504 resolution and a mesh of 56 million tri-
angles. See Figures 2 and 5),

■■ Cavalieri Square (458 photographs at 3,872 ×
2,592 resolution and a mesh of 15 million tri-
angles. See Figures 4 and 6), and

■■ Signoria Square (507 photographs at 2,592 ×
1,728 resolution and a mesh of 65 million tri-
angles).

In all cases, the client constantly achieved more
than 60 frames per second. It occupied only ap-
proximately 128 Mbytes of RAM and 80 Mbytes
of GPU memory on a laptop with 1,600 × 900
resolution, a 2.6-GHz dual-core processor, and an
Nvidia GeForce GT 130M graphics card.

Whereas data loading is subject to network la-
tency, the caching mechanism and incremental
data structures optimize performance with respect
to the underlying network layer’s limitations. They
require approximately 4 percent of CPU usage to
handle data across the memory levels. In our tests,
a standard 100-Mbit Ethernet network connection
(with a peak nominal bandwidth of roughly 11.8
Mbytes per second) always provided the necessary
bandwidth to keep latencies small.

We presented PhotoCloud to several cultural-
heritage experts, some of whom had no strong IT
competence, and collected their impressions and
comments. They all reported that the system was
appealing and easy to use. Image-based navigation
let the unskilled users avoid the “I’m lost” situation
that often occurs when they face a 3D navigation
system. In addition, the system’s 3D navigation ef-
fectively helped the users select images.

User Study
We quantitatively compared PhotoCloud’s image-
browsing interface with that of Photosynth (www.

photosynth.net), a publicly available Web-based
implementation of Photo Tourism.1 (For more on
Photo Tourism and other approaches to navigat-
ing joint 2D and 3D datasets, see the sidebar.) We
chose Photosynth because of its similar objectives.
User studies on attitudes toward image browsing
revealed that people tend to concentrate on events
and thus on location cues.7 In our case, we wanted
to evaluate the effectiveness of interaction mecha-
nisms in a 3D environment.

The Participants
Eighteen university students and young researchers
participated. We separated them into three levels
of self-assessed experience with 3D navigation: low,
medium, and high. None had previously used either
system, and none was familiar with the dataset. All
had normal or corrected-to-normal vision with no
color blindness.

The Procedure
All the experiments took place under the same
lighting conditions in a silent room. We allowed
each participant a preliminary five-minute test
run on each browser, using a training dataset.
Each participant received a sheet with illustrated
instructions about each tool’s functionalities.

Then, each participant performed a sequence of
tasks on the Cavalieri Square B dataset (a subset of
the Cavalieri Square dataset). It featured a square
with a statue in the middle and consisted of 202
photos and a point cloud recovered from the cali-
brated images.

A written assignment described the four tasks:

1.	 Read what’s written on the front of the church
(which required finding any of the five pictures
featuring that writing).

2.	 Find any of the three images that feature the
left staircase of a specific building.

3.	 Find any of the two pictures that feature that
building’s entire facade (that is, both the left and
right borders of the facade in a single image).

4.	 Determine whether there’s an image showing
the statue’s back, and, if so, show it.

Timings started only after the participants read
and understood each task. They were to work on
each task until they completed it, and they re-
ceived no assistance while performing the tasks.

The participants performed the tasks first on
one system and then on the other. Although the
two systems used the same dataset, the picture
orders differed because our system computes the
picture order as part of preprocessing. Because

	 IEEE Computer Graphics and Applications� 95

dataset knowledge clearly influences user perfor-
mance, one randomly chosen half of the partici-
pants used PhotoCloud first; the other half used
Photosynth first.

Results and Discussion
Table 1 summarizes the results. Scene familiarity
turned out to be not very important because the
times didn’t change excessively according to which
system the participants used first. As we expected,
the times improved with the participants’ skill
level, particularly with PhotoCloud. The partici-
pants’ ability with the keyboard-and-mouse inter-
face significantly affected their performance with
PhotoCloud. However, this partly contrasts with
our original aim because we intended PhotoCloud
for a broad class of users, including both computer
science and cultural-heritage people.

Considering each task separately, the differences

in the times are due partly to the different 3D-
navigation mechanisms and partly to the visu-
alization techniques. In Photosynth, the images’
positions constrain the movement of the virtual
3D view, whereas PhotoCloud supports free view
selection through keyboard-plus-mouse and frame-
let interactions. In general, PhotoCloud allows us-
ers a larger variety of actions. For example, they
can view the 3D model from points and angles
not pictured in any image. Or, they can virtually
walk in the 3D environment toward the part of
the scene they’re interested in before selecting the
target image.

Our intent is that this approach should reason-
ably reduce the time to complete the tasks. How-
ever, the participants’ performance noticeably
deteriorated when they solved tasks in which the
target image had to match a specific view (tasks 1
and 3). This was mainly because we displayed the

Few image browsers support the navigation of joint 2D
and 3D datasets; each pursues different goals.

Google Street View exploits accelerometers and GPS
geolocation to feed a structure-from-motion system.1 The
output calibration enables blending among images over-
lapping in a 3D environment. The browser uses the com-
plementary, sparse point cloud to infer planar structures’
approximate position, size, and orientation. As the user
navigates the scene, the browser divides it into photo bub-
bles (panoramas). Each bubble, separately streamed from a
server, comprises photographs shot from the same position
that are visible by rotating the view.

More recently, Street Slide introduced a technique to
smoothly switch from panorama bubbles to a multiper-
spective view and vice versa to give a broader planar view
of streets.2 Google Street View and Street Slide explicitly
exploit street features, so they also display information such
as street names and shop signs. In contrast, PhotoCloud
(see the main article) targets arbitrary 3D environments. Its
navigation approach adapts to both bubble-like visits and
broader views and movement.

PhotoCloud recalls Photo Tourism3 in that it proposes
explicit integration and rendering of a sparse 3D geome-
try with a photo collection. Photo Tourism renders the 3D
model in the central part of the interface, with the selected
photograph overlaid on the model. Further details about
that photo appear in a side menu, including the thumb-
nails of photographs partly overlapping it. A complemen-
tary thumbnail bar lays out images depicting the current
subject from different views. Users can browse nearby pho-
tographs, optionally presented as a slide show, and jump to
remote areas through an overhead map.

PhotoCloud improves upon Photo Tourism by offering

more flexible management of the thumbnail bar and in-
creased 3D data flexibility. It also handles high-quality 3D
models and provides visualization and navigation features
that fully exploit dataset peculiarities.

Other visualization mechanisms tackle different sub-
problems. Noah Snavely and his colleagues improved navi-
gation by photograph selection by providing controls that
move the user along paths of dense collections of photo-
graphs.4 Their approach scores photographs according to
how well they depict an object of interest and uses this in-
formation to compute orbit, panorama, or best-fit paths.
Another approach, ambient point clouds, approximates
view interpolations among pairs of images.5 It uses depth
maps to render the geometry from the view of the cur-
rent active photograph within a negligible error, whereas
a subsampled point cloud represents the rest of the scene.
PhotoCloud bypasses this problem, avoiding the need for
interpolated images (see the section “Rendering images on
the 3D model” in the main article).

References
	 1.	 L. Vincent, “Taking Online Maps Down to Street Level,”

Computer, vol. 40, no. 12, 2007, pp. 118–120.

	 2.	 J. Kopf et al., “Street Slide: Browsing Street Level Imagery,”

ACM Trans. Graphics, vol. 29, no. 4, 2010, article 96.

	 3.	 N. Snavely, S.M. Seitz, and R. Szeliski, “Photo Tourism: Ex

ploring Photo Collections in 3D,” ACM Trans. Graphics, vol.

25, no. 3, 2006, pp. 835–846.

	 4.	 N. Snavely et al., “Finding Paths through the World’s Photos,”

ACM Trans. Graphics, vol. 27, no. 3, 2008, article 15.

	 5.	 M. Goesele et al., “Ambient Point Clouds for View Inter

polation,” ACM Trans. Graphics, vol. 29, no. 4, 2010, article 95.

Related Work in Navigating Joint 2D and 3D Datasets

96	 March/April 2013

Feature Article

framelets at 0.1 × depthC to prevent cluttering in
areas with a higher density of shots.

Specifically, while solving task 1 with Photo-
Cloud, the participants tended to move near the
front of the church instead of selecting an image
and zooming in to read the writing. This resulted
in longer times. A similar misunderstanding oc-
curred during task 3. In these cases, constraining
the view to the available images can noticeably de-
crease the times (by nearly two-thirds, for task 1
for low-skilled users), thanks to the spatial meta-
phor. However, this happens only if the frustums
of that image and other images intersect.

In contrast, free 3D movements can reduce the
search time up to 90 percent. In task 2, each re-
quested picture featured the staircase (occupying
the largest part of the picture) in the foreground
and a more distant building in the background.
During the tests, all but one participant initially
used the Photosynth 3D browser and overhead
map to reach that picture but finally relied on the
2D image browser to find it. With PhotoCloud,
moving near the desired location and selecting the
correct framelet accomplished the task.

During the experiments, we registered which
interface mechanisms each user tried and which
one was ultimately successful. In 75 percent of the
cases with PhotoCloud, framelets were successful,
but their use always followed either 3D free navi-
gation (90 percent) or 2D browsing (10 percent).
In 20 percent of the experiments, the participants
used mainly the embedded 2D browser. On the
other hand, when using Photosynth, the partici-
pants often switched between the 3D view and the
overhead map, sometimes resorting to the conven-

tional 2D browser, which proved time-consuming.
With PhotoCloud, the participants mostly used
the 2D-3D interface; the integration of the various
tools in the interface helped them switch between
different, effective navigation strategies.

After the test, we asked the participants for
qualitative comments and impressions; most ar-
gued that picture localization was more natural
and easier in PhotoCloud. As they pointed out,
this is probably due to the ability to freely move in
the scene in PhotoCloud. Photosynth only lets us-
ers jump from one picture to another, which isn’t
always the one they expect. The participants also
reported that PhotoCloud’s visualization tech-
niques helped them better understand how the
scene was structured, which objects were in it, and
how to reach them.

As future work, we plan to test alternative so-
lutions to framelet cluttering (for example,

grouping framelets when they’re seen from a dis-
tance). We could also evaluate the effectiveness of
constrained versus free 3D movements in data
sets featuring scenes consisting of multiple rooms,
where movement is constrained through certain
passages.

In addition, we could improve the policies for
defining the ordering of the image dataset and add
mechanisms to select image subsets. Image paths
could be precomputed8 and exploited to produce
better transitions between images. Collision de-
tection could help 3D navigation of a scene (for
example, to avoid passing through walls).�

Acknowledgments
The research leading to these results has received funding
from the Tuscany Region (POR CREO FESR 2007-2013,
Visito Tuscany project) and European Commission (FP7
IST IP, 3DCOFORM project, grant 231809). We
thank Noah Snavely for the Dubrovnik City dataset,
Visual Dimension for the Bouvignes Castle dataset,
and Stanford University and Museo dell’Accademia di
Firenze for the Michelangelo’s David dataset.

References
	 1.	 N. Snavely, S.M. Seitz, and R. Szeliski, “Photo

Tourism: Exploring Photo Collections in 3D,” ACM
Trans. Graphics, vol. 25, no. 3, 2006, pp. 835–846.

	 2.	 F. Ponchio, “Multiresolution Structures for
Interactive Visualization of Very Large 3D Datasets,”
PhD thesis, Clausthal Univ. of Technology, Dec.
2008.

Table 1. The average time the participants took to complete each task
(see the section “The Procedure”). The second column indicates how
familiar the participants were with 3D interfaces. The best results are in
bold.

Task

Participant
skill

Time (sec.)

B/A (%)Photosynth (A) PhotoCloud (B)

1 Low 34.4 96.0 279

Medium 29.0 50.5 150

High 21.6 31.1 130

2 Low 247.4 29.2 12

Medium 240.5 23.8 10

High 149.0 13.0 9

3 Low 59.2 128.0 216

Medium 47.7 45.7 96

High 29.0 23.6 81

4 Low 58.0 71.4 123

Medium 45.7 24.8 54

High 29.0 15.6 54

	 3.	 “Generic Cache System,” ISTI-CNR Visual Computing
Lab, 2012; http://vcg.isti.cnr.it/gcache.

	 4.	 P. Brivio et al., “Joint Interactive Visualization of
3D Models and Pictures in Walkable Scenes,” Proc.
Eurographics Posters, Eurographics Assoc., 2012, pp.
35–37.

	 5.	 P. Brivio et al., PileBars: Scalable Dynamic Thumbnail
Bars, tech. report 2011-TR-006, ISTI-CNR, 2011.

	 6.	 A. Cockburn, A. Karlson, and B.B. Bederson, “A Review
of Overview+Detail, Zooming, and Focus+Context
Interfaces,” ACM Computing Surveys, vol. 41, no. 1,
2009, article 2.

	 7.	 M. Naaman et al., “Context Data in Geo-referenced
Digital Photo Collections,” Proc. 12th Ann. ACM
Int’l Conf. Multimedia (Multimedia 04), ACM, 2004,
pp. 196–203.

	 8.	 N. Snavely et al., “Finding Paths through the World’s
Photos,” ACM Trans. Graphics, vol. 27, no. 3, 2008,
article 15.

Paolo Brivio collaborates with the ISTI-CNR Visual Com-
puting Lab on the 3DCOFORM and Visito Tuscany projects.
His research interests are computer graphics and computer
vision. Brivio received a PhD in informatics from Univer-
sità degli Studi dell’Insubria. Contact him at paolo.brivio@
uninsubria.it.

Luca Benedetti is a PhD student at Univer-
sity of Pisa, working on color processing for
dense stereo matching algorithms, large-scale
automatic image calibration, and smart naviga-
tion of heterogeneous image collections. He col-
laborates with the ISTI-CNR Visual Computing
Lab on the Visito Tuscany and Indigo projects.
Benedetti received a master’s in computer science
from Università di Pisa. Contact him at luca.
benedetti@isti.cnr.it.

Marco Tarini is an assistant professor at Uni-
versità degli Studi dell’Insubria and an associate
researcher with the ISTI-CNR Visual Comput-
ing Lab. His research interest is computer graph-
ics and its applications, particularly geometric
modeling, real-time rendering, and large-dataset
visualization. Tarini received a PhD in computer
science from the University of Pisa. He’s a Marie
Curie fellow and received the 2006 Eurographics
Young Researcher Award. Contact him at marco.
tarini@isti.cnr.it.

Federico Ponchio is a research scientist at the
ISTI-CNR Visual Computing Lab. His research
interests include multiresolution representa-
tions, interactive visualization, geometric pro-
cessing, and Web applications. Ponchio received

a PhD in computer graphics from the University of Claustal.
Contact him at federico.ponchio@isti.cnr.it.

Paolo Cignoni is a senior research scientist at the ISTI-
CNR Visual Computing Lab. His research interest is com-
puter graphics, particularly visualization and processing of
huge 3D datasets, 3D scanning for cultural heritage, and
scientific visualization. Cignoni received a PhD in computer
science from the University of Pisa. He received the 2004
Eurographics Young Researcher Award. Contact him at
paolo.cignoni @isti.cnr.it.

Roberto Scopigno is a research director at ISTI-CNR and
leads the ISTI-CNR Visual Computing Lab. His research
deals with 3D scanning, surface reconstruction, multireso-
lution data modeling and rendering, scientific visualization,
and cultural heritage. Scopigno graduated in computer science
at the University of Pisa. He received the 2008 Eurographics
Outstanding Technical Contribution Award and has served as
the chair of the Eurographics Association, coeditor in chief of
Computer Graphics Forum, and a member of the editorial
board of the Journal on Computing and Cultural Heritage.
Contact him at roberto.scopigno @isti.cnr.it.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

PURPOSE: The IEEE Computer Society is the world’s largest association of computing professionals and is the

leading provider of technical information in the field. Visit our website at www.computer.org.

OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 13–14 June 2013,
Seattle, WA, USA

EXECUTIVE COMMITTEE
President: David Alan Grier
President-Elect: Dejan S. Milojicic; Past President: John
W. Walz; VP, Standards Activities: Charlene (“Chuck”)
J. Walrad; Secretary: David S. Ebert; Treasurer: Paul K.
Joannou; VP, Educational Activities: Jean-Luc Gaudiot;
VP, Member & Geographic Activities: Elizabeth L. Burd
(2nd VP); VP, Publications: Tom M. Conte (1st VP); VP,
Professional Activities: Donald F. Shafer; VP, Technical
& Conference Activities: Paul R. Croll; 2013 IEEE
Director & Delegate Division VIII: Roger U. Fujii; 2013
IEEE Director & Delegate Division V: James W. Moore;
2013 IEEE Director-Elect & Delegate Division V: Susan
K. (Kathy) Land

BOARD OF GOVERNORS
Term Expiring 2013: Pierre Bourque, Dennis J. Frailey,
Atsuhiro Goto, André Ivanov, Dejan S. Milojicic, Paolo
Montuschi, Jane Chu Prey, Charlene (“Chuck”) J. Walrad
Term Expiring 2014: Jose Ignacio Castillo Velazquez,
David. S. Ebert, Hakan Erdogmus, Gargi Keeni, Fabrizio
Lombardi, Hironori Kasahara, Arnold N. Pears
Term Expiring 2015: Ann DeMarle, Cecilia Metra,
Nita Patel, Diomidis Spinellis, Phillip Laplante, Jean-Luc
Gaudiot, Stefano Zanero

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate
Executive Director & Director, Governance: Anne
Marie Kelly; Director, Finance & Accounting: John
Miller; Director, Information Technology & Services:
Ray Kahn; Director, Membership Development:

Violet S. Doan; Director, Products & Services: Evan
Butterfield; Director, Sales & Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington,
D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos,
CA 90720 • Phone: +1 714 821 8380 • Email: help@
computer.org
Membership & Publication Orders
Phone: +1 800 272 6657 • Fax: +1 714 821 4641 •
Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-
Aoyama, Minato-ku, Tokyo 107-0062, Japan • Phone:
+81 3 3408 3118 • Fax: +81 3 3408 3553 • Email:
tokyo.ofc@computer.org

IEEE BOARD OF DIRECTORS
President: Peter W. Staecker; President-Elect:
Roberto de Marca; Past President: Gordon W.
Day; Secretary: Marko Delimar; Treasurer: John T.
Barr; Director & President, IEEE-USA: Marc T. Apter;
Director & President, Standards Association: Karen
Bartleson; Director & VP, Educational Activities:
Michael R. Lightner; Director & VP, Membership and
Geographic Activities: Ralph M. Ford; Director & VP,
Publication Services and Products: Gianluca Setti;
Director & VP, Technical Activities: Robert E. Hebner;
Director & Delegate Division V: James W. Moore;
Director & Delegate Division VIII: Roger U. Fujii

revised 22 Jan. 2013

