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Abstract The photorealistic acquisition of 3D objects
often requires color information from digital photogra-
phy to be mapped on the acquired geometry, in order to

obtain a textured 3D model. This paper presents a novel
fully automatic 2D/3D global registration pipeline con-
sisting of several stages that simultaneously register the

input image set on the corresponding 3D object. The
first stage exploits Structure From Motion (SFM) on
the image set in order to generate a sparse point cloud.

During the second stage, this point cloud is aligned to
the 3D object using an extension of the 4 Point Con-
gruent Set (4PCS) algorithm for the alignment of range

maps. The extension accounts for models with different
scales and unknown regions of overlap. In the last pro-
cessing stage a global refinement algorithm based on

mutual information optimizes the color projection of
the aligned photos on the 3D object, in order to ob-
tain high quality textures. The proposed registration

pipeline is general, capable of dealing with small and
big objects of any shape, and robust. We present re-
sults from six real cases, evaluating the quality of the

final colors mapped onto the 3D object. A comparison
with a ground truth dataset is also presented.
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1 Introduction

The digitalization of real objects into virtual models
often entails acquiring not only the shape of the ob-

ject but also its color. This is mostly done by taking
pictures with a digital camera and solving the 2D/3D
registration problem between the images and the 3D

model obtained with, for example, a 3D scanner.

Some methods to solve this problem require user in-
tervention, or they are based on strong assumptions on
the type of object or the properties of the images to

be mapped. A simple solution, adopted in [54,56,20],
consists of taking calibrated pictures during the scan-
ning phase from a known (relative) position, for exam-

ple by mounting a digital camera on the laser scanner.
In principle, this strategy is limited by the fact that
the working conditions may not be optimal for taking

photographs during the 3D scanning. However, Yang et
al. [22] in particular have demonstrated that the color
information acquired during the acquisition phase can

also be used later to map digital photos with a very dif-
ferent visual appearance. Hence, the direct acquisition
of colored point clouds/range maps can be very use-

ful for solving the 2D/3D registration problem. In any
case, for certain applications, color information is not
available. For example, in some sites of interests, scan-

ning can be performed only at night (e.g. Piazza della
Signoria in Florence). In addition, the images and the
geometry may have to be collected separately, for ex-

ample by a professional photographer and a team that
scans for other purposes, such as in a project aimed at
visualizing David’s restoration [14], which was achieved

by mapping two different photographic datasets onto
a previously acquired geometry without color informa-
tion. Another issue is that some 3D scanners provide

very poor color information (such as some triangula-
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tion scanners) or have problems setting up a reliable

co-located calibrated camera (e.g. an airborne Lidar).
In this paper we propose a novel global 2D/3D registra-
tion pipeline, which is so general that it can handle any

type of application. The proposed pipeline simultane-
ously aligns a set of images on the 3D model of an object
without any user intervention, with no prior knowledge

and with no requirements regarding the geometry and
the visual features involved.

The underlying idea behind our proposed registra-
tion algorithm is to exploit the improvements in image-
based 3D reconstruction, where many robust Structure

From Motion (SFM) algorithms are now available. The
input photos are processed by an SFM algorithm, and
the output is the position and orientation of the cam-

eras at the time of shooting, along with a set of sparsely
reconstructed 3D points. The idea is to use this data
to compute the 2D/3D registration, by recasting it as

a problem of aligning the 3D point cloud produced by
the SFM to the geometry of the object. The transforma-
tion that aligns the point cloud to the object is applied

to the extrinsic parameters of the cameras. Due to the
sparseness and noise of these point clouds, the result-
ing alignment may be rather approximate. We there-

fore use a global refinement method based on mutual
information to improve the accuracy of the final 2D/3D
alignment. We will show that this registration pipeline

provides high quality results and consistent color map-
ping all over the surface of the model.

1.1 Contribution

In this work we propose a fully automatic 2D/3D reg-

istration pipeline consisting of three processing stages.
Two of the three processing stages can themselves be
regarded as a contribution. Thus, the main contribu-

tions of this work are:

– An algorithm for the alignment of partially overlap-

ping point clouds. The input point clouds can have
different non-homogeneous sampling densities and
different scales.

– A novel global registration refinement algorithm based
on a statistical analysis capable of re-positioning a
set of cameras in order to obtain very accurate and

globally coherent color mapping on the 3D model.
– These two algorithms, have been integrated in a gen-

eral, fully automatic, 2D/3D registration pipeline

in order to robustly align a set of photos on a 3D
model. No prior assumptions or additional informa-
tion regarding the input geometry and the set of

digital photos is required. Another important fea-

ture of our approach is that it is global, whereas

many other approaches align one image at a time.

While the idea of exploiting multi-view geometry
to improve 2D/3D registration is not new (Stamos et
al. [61,38] and Wu et al. [66]), our approach is not

bound by any strong assumptions regarding the shape
of the object to be acquired or the information avail-
able, such as colored point clouds, thus making it more

general than other state-of-the-art algorithms.

2 Related Work

Our pipeline exploits results from Structure from Mo-
tion (SFM) and point clouds alignment, thus important

studies in these fields are also outlined below, together
with a complete overview of 2D/3D registration meth-
ods.

2.1 Structure from Motion

Images are becoming the preferred way for the ubiqui-
tous, low cost acquisition of quality three dimensional

data. Several Structure from Motion (SFM) pipelines
have been proposed [7,31,59,64,28]. They usually pro-
cess images in batches and handle the reconstruction

process without making assumptions about the image
in the scene or the acquisition rig.

A key issue is the scalability of the SFM pipeline.

One strategy is to use partitioning methods [18], which
reduce the reconstruction problem to smaller and better
conditioned subproblems which can be then optimized

[62,45].

Another strategy is to select a subset of input im-

ages and feature points which represent the entire solu-
tion. Hierarchical sub-sampling was pioneered by Fitzgib-
bon [18], using a balanced tree of trifocal tensors over a

video sequence; this approach was subsequently refined
by Nister [46]. In Shum et al. [57] the sequence is divided
into segments, which are resolved locally. They are then

merged hierarchically, if necessary using a representa-
tive subset of the segment frames. A similar approach is
followed by Gibson [24]. A recent paper [59] that works

with sparse datasets describes a method of selecting
a subset of images whose reconstruction approximates
the result obtained using the entire set.

Gherardi et al. [23] proposed a hierarchical and par-
allelizable scheme for SFM. The images are organized

into a hierarchical cluster tree, and the reconstruction
then proceeds from the leaves to the root. Partial recon-
structions correspond to internal nodes, whereas images

are stored in the leaves. The SFM stage we use is based
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on this approach. We chose this approach since, thanks

to its hierarchical nature, the subsets of images that
provide a good reconstruction can be aligned indepen-
dently, if the overall reconstruction fails.

2.2 Point Clouds Registration

The problem of aligning point clouds has long been
studied, particularly in the case of range maps obtained
by digital 3D scanning.

One of the most well known is the Iterative Clos-
est Point (ICP) algorithm [3,55], which, given a set of

roughly aligned range maps, refines the alignment by
minimizing the Hausdorff distance between the over-
lapping range maps following an iterative approach.

The global registration of point clouds can be found
by extracting local shape descriptors, matching points
with similar signatures, and using these matches to

choose the best alignment transformation. Some exam-
ples of methods that use this approach include Spin
Images (Johnson et al. [29]), which uses a cylindrical

projection of local sets of surface points represented as
an image, the methods based on SIFT and RIFT de-
scriptors [36,58], and Kalogerakis et al’s method [30],

which extracts of line features directly on the point
cloud data. Makaida et al. [41] developed a method
for the fully automatic alignment of point clouds by

correlating Extended Gaussian Images (EGI) in the
Fourier domain. Pottman et al. [51] performed the op-
timization directly on the affine space, by applying the

rigidity constraint only toward the end of the opti-
mization. Krishnan et al. [34,33] proposed a framework
to perform the optimization explicitly on the mani-

fold of rotations through an iterative scheme based on
the Gauss-Newton optimization method, thus obtain-
ing a quadratic convergence rate. Bonarrigo et al. [4]

improved the optimization-on-a-manifold approach by
boosting its performance. None of the above methods
is very robust against noise or the presence of out-

liers. However, one of the most robust algorithms is
the 4-Point Congruent Set (4PCS) which combines a
non-local descriptor that is simple and fast to compute
(four coplanar points in the point cloud) and uses a

RANSAC scheme to choose couples of descriptors. We
propose here an extension of the 4PCS algorithm just
mentioned, which accounts also for the estimation of

different scale between the point clouds to align.

2.3 2D/3D Registration

Fixed-relative methods.One of the simplest approach

for the registration of images on range maps (or other

geometric data) is the fixed-relative position or co-located

camera approach, where it is assumed that the pose of
each camera is relative to a known position [54,56,20].
In principle, this approach cannot always be applied al-

though studies such as Yang et al. [22] demonstrate that
large number of applications can by exploiting color in-
formation, as stated in the Introduction.

Semi-automatic methods. Semi-automatic approaches,
where the user supports the registration process, are

generally robust. They are usually based on the setting
of several 2D-3D correspondences: one of the most re-
cent method of this type is the one of Franken et al. [19].

However, the procedure can be very time-consuming,
especially when tens or hundreds of images need to
be aligned. Automatic planning of the images required

could minimize image acquisition and remove the need
for registration, as in Matsushita et al. [43] where the
camera is positioned manually and the pose is opti-
mized in advance. Obviously, this approach can only

be used in controlled environments.

Features-based methods.Automatic image-geometry

registration can be achieved by analyzing the image
and geometric features in order to estimate the 2D-3D
transformation. Features can be points, lines, rectan-

gles, circles, etc. Neugebauer et al. [44] employed edge
intensity in their registration method. Liu et al. [37]
assume that the 3D scene contains clusters of verti-

cal and horizontal lines, and thus they used orthogo-
nality constraints for the registration. Parallelepipeds
are extracted from the range maps, and subsequently

matched to rectangles extracted from the input images.
This method is particularly suitable for urban scenes.
Unfortunately, the assumptions of the above methods

only hold in certain types of scenes.

Color-based methods. One way to make these meth-

ods more robust and reliable is to exploit the reflectance
values (laser intensity) or color information that some
3D scanners acquire. This helps the feature extraction

and the establishment of correspondences [27]. In fact,
Yang et al. [22] made their co-located camera approach
robust using this method. Wu et al. [66] exploited color

information to align two 3D scenes even from significant
viewpoint changes. Wu proposed a new local feature
called VIP (Viewpoint Invariant Patch) computed by

normalizing the local viewpoint and orientation using
local texture rectification and a dominant image gradi-
ent. A single VIP is sufficient to estimate the similarity

transformation to align two 3D models. This method
is particularly suitable for large-scale image-based re-
construction where several reconstructed parts of the

whole scene need to be aligned.

Silhouette-based methods. Several other algorithms

use a silhouette based approach to find the camera trans-
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formation by minimizing the error between the contour

of the object in the image and the contour of the pro-
jected 3D model [39,8,35]. Lensch [35] proposed a ro-
bust implementation of these techniques by introduc-

ing a similarity measure to compare them. Silhouette-
based methods require the entire object to be present
in each image. However, this may be a severe limita-

tion for large scale objects. Moreover, there normally
has to be a manual pre-processing step on the images
to remove the background.

Statistical methods. One of the mathematical tools
typically used for registration is Mutual Information

(MI), which catches the non-linear correlations between
the image and the geometric properties of the target
surface. This approach, which is extensively used in

medical imaging (see [48] for a survey), was pioneered
by Viola and Wells [65] and by Maes et al. [40]. Vi-
ola and Wells [65] suggested registering the image by

maximizing the mutual information of the surface nor-
mals with the corresponding gradient variations of the
image. Corsini et al. [13] extended this algorithm by in-

cluding other geometric properties in the alignment al-
gorithm, such as ambient occlusion and reflection direc-
tions. Cleju et al. [11] also extended Viola and Wells’s

work to align more than one image simultaneously. We
propose a similar approach to refine the global regis-
tration based on a completely different optimization

framework.

Multi-view methods. Our proposal is to exploit mul-

tiview geometry to simultaneously align the entire set
of images of interest. This is in contrast with almost
all of the methods presented so far, which register one

image at a time. Moreover, in many methods the con-
vergence depends on the initial 3D model position. Our
idea is not entirely new. In fact, the main works which

exploit Structure From Motion (SFM) during 2D/3D
registration process are those of Zhao et al. [67], Sta-
mos et al. [61] (which is an extension of the work of Liu

et al. [38]), Zheng et al. [68] and Pintus et al. [47].

The aim of Zhao et al.’s study [67] is to register a

video onto a point cloud. To achieve this goal, a point
cloud is computed from the video sequence using mo-
tion stereo and camera pose estimation techniques. The

point cloud obtained is then registered with the target
3D model using the ICP algorithm. This is similar to
our idea, i.e. to recast the 2D/3D registration problem

so that the aim becomes to align two point clouds. The
main difference lies in the alignment algorithm, which
is a standard ICP. This simple approach suffices thanks

to the fact that the coherency of the video sequence ex-
ploited to achieve the sparse 3D reconstruction enables
good initial registration to be directly obtained. Intrin-

sic camera parameters must be known beforehand.

Liu et al. [38] presented a feature-based method that

extends their previous work [37]. Due to the rigid ge-
ometry constraints of this method (orthogonality con-
straints between line features, three vanishing points

needed in the images) only a subset of the input im-
ages can be aligned. SFM is used to register the re-
maining uncalibrated images. The subset of aligned im-

ages is used to estimate the similarity transformation
(scale/rotation/translation) which maps the coordinate
frame of the cameras in the reference frame of the 3D

model. The geometric constraints limit this system to
aligning images of 3D buildings on the corresponding
3D models.

Stamos et al. [61] extended this system in order to
relax the orthogonality constraint so that the algorithm
can be used not only in strictly urban scenes, but for

example in indoor architectures. In any case, the archi-
tectures remain the main target of this pipeline. Zheng
et al.’s registration algorithm [68] is a features-based

method, which requires the parameterization of the in-
put model in order to extract features based on surface
normals. Corresponding features are extracted in the
images that are also calibrated using an SFM algorithm.

How the corresponding 2D features for the 2D/3D reg-
istration are extracted is not clearly explained in the pa-
per, thus making it difficult to carry out a real compar-

ison with the proposed approach. Moreover, the prob-
lem of different scale factors between the image-based
reconstructed points and the 3D model is neglected.

Pintus et al. [47] proposed a method for register-
ing images on point clouds, which is based on the use
of SFM. However, the rough alignment step entails the

user to manually align one or more images onto the
point cloud, and the global refinement step relies only
on the point cloud generated by the SFM algorithm,

which is not always reliable. We believe that the global
refinement should use the images and the 3D model
rather than the reconstructed points, as in Cleju et

al. [11] and in our method.

3 Overview

The alignment of 2D images on 3D models shares some

problems with range maps alignment. The procedure
can be divided into rough aligment and fine alignment ;
the algorithmic solutions for these two phases are usu-

ally different. In the first phase, an initial alignment
position is found, given that no previous information
regarding the object and the photographic set is known.

The alignment is then refined to an optimal position by
the second phase.

Our global registration pipeline (Figure 1) takes as

input a 3D model of an object of interest, P, repre-
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Fig. 1 Overview of the proposed global 2D/3D registration pipeline.

sented as a point cloud or a triangular mesh, and a set
of images to be registered on it, S. The pipeline has
three processing stages. In the first stage an SFM algo-

rithm is used to calibrate the images of S and to obtain
a sparse 3D reconstruction denoted by Q. Note that Q
can only cover a part of P (partial photo coverage) but

it might also contain points that do not belong to P
(everything in the pictures is reconstructed, including
objects in the background). In the second stage, Q is

aligned onto P, taking into account the aforementioned
problems and the fact that the scale factor of Q is un-
known. This is achieved by extending the 4 Point Con-

gruent Set (4PCS) algorithms by Aiger et al. [1]. The
output of this stage provides a rough alignment, and
is very important since a good initial position of the

image set is fundamental to obtain an accurate final
registration. However, small errors are allowed. During
the third stage this approximate registration of the im-

ages on the geometry of the 3D model is then globally
refined. Each camera parameter (position, orientation
and focal length) is adjusted to obtain a globally co-

herent color projection on the model. This is done by
combining a previous algorithm for the fine alignment
of 2D/3D registration based on mutual information [13]

with a graph-based optimization framework typically
employed in the global refinement of range maps [53].

In the rest of the paper we provide further details

of these three stages.

4 Structure From Motion: obtaining a sparse
3D Reconstruction

The Structure From Motion algorithm we use in the
first stage is called samantha [17,23], and it is devoted

to orient the cameras and recover the sparse structure
of the scene, up to a similarity. It consists of three sub-
stages: keypoint matching, clustering, and geometric

processing.

The keypoint matching sub-stage is fairly standard,
and mainly follows [6] and [59]; the details are reported
in [17]. The output of this sub-stage is a set of tracks,

i.e., keypoints that match in more than three images,
and a set of fundamental matrices and homographies
linking pairs of views.

In the second sub-stage the views are organized into
a hierarchical cluster structure that guides the recon-
struction. The method starts from an affinity matrix

among views, computed using the following measure,
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Fig. 2 An example of dendrogram for a six-views set.

which takes into account the number of common key-
points and how well they are spread over the images:

ai,j =
1

2

|Si ∩ Sj |
|Si ∪ Sj |

+
1

2

CH(Si) + CH(Sj)

Ai +Aj
(1)

where Si and Sj are the set of matching keypoints in
image Ii and Ij respectively, CH(·) is the area of the
convex hull of a set of points and Ai (Aj) is the total

area of the image.

Views are grouped together by agglomerative clus-
tering, which produces a binary cluster tree, called a

dendrogram (see Figure 2). The clustering algorithm
proceeds in a bottom-up manner: starting from all sin-
gletons, each sweep of the algorithm merges the pair

with the smallest cardinality of the ℓ closest pair of
clusters. The distance between two clusters is deter-
mined by the distance of the two closest objects, as in

the simple linkage rule.

This means that we soften the “closest first” ag-

glomerative criterion by introducing a competing “small-
est first” principle, which tends to produce better bal-
anced dendrograms. The amount of balancing is regu-

lated by the parameter ℓ: when ℓ = 1 this is the stan-
dard agglomerative clustering with no balancing; when
ℓ ≥ n/2 (n is the number of views) a perfectly bal-

anced tree is obtained, but the clustering is poor, since
the distance is largely disregarded. We found that bal-
anced results are obtained when ℓ = 5.

This procedure enables us to decrease the computa-
tional complexity compared to a sequential SFM pipeline,

from O(n5) to O(n4) in the best case, i.e. when the tree
is well balanced (see [23] for a complete proof).

The dendrogram produced by the clustering sub-

stage constraints the order in which samantha pro-
cesses the views. Each cluster is initialized with a two-
view reconstruction, after which the reconstruction of a

cluster is enhanced by adding new view from the same
cluster, as in the sequential pipelines. Alternatively, two
clusters are merged.

Each node is upgraded, as soon as possible, to a
Euclidean frame. If cameras are calibrated (the intrin-

sic parameters are known) then the Euclidean frame is

available from the beginning. If not, autocalibration is

run on nodes with a minimum of m views, where m de-
pends on the conditions (for example, autocalibration
with known skew and aspect ratio require a minimum

of four views to obtain a unambiguous solution).

This stage can be replaced by other SFM algorithms.
However, we decide to adopt this solution due to its hi-
erarchical nature, which, in principle, enables to provide

a good reconstruction even when the reconstruction of
the whole object fails, as highlighted by the results pre-
sented in Section 8.

5 Point Cloud to 3D Model Alignment

The aim of this stage is to align the sparse point cloud

obtained by samantha, hereafter Q, to a more accu-
rate 3D model P. Compared to the well known problem
of registering couples of range maps, this case has seri-

ous complications.

First, the point clouds produced by the SFM meth-
ods are a sampling of the real object up to an arbi-
trarily, and unknown, scale factor. If Q and P were

complete samplings of the same surface, we could (at
least approximately) recover the scale factor as the ra-
tio between the size of the oriented bounding boxes of

the two models. Unfortunately, and this is the second
difficulty, the two models can share any fraction of the
surface. Figure 3 shows an example where neither of

the two models includes the other.

The third complication is that the density of the
point cloud Q varies unevenly over all the model, thus

we cannot use it with any certainty to find the scale
factor. Finally, the point cloud produced by the SFM
is generally noisy and the approaches based on local

descriptors would be difficult to exploit in this case.

5.1 Alignment with 4 Points Congruent Sets (4PCS)

Our proposal is based on a recent work by Aiger et

al. [1]. They implemented a RANSAC approach to align
pairs of surfaces in arbitrary initial poses. Their idea is
to pick a fixed number of quadruples of coplanar points

on P and then, for each of these quadruples, to look
for all the quadruples in Q that are approximately con-
gruent, i.e. that can be transformed into the quadru-

ple in P with a rigid transformation. For all the can-
didate quadruples in Q the respective transformation
is applied to the whole point cloud. Then the number

transformed points of Q which is within a predefined
threshold from their closest point in P is calculated.
The candidate quadruples with the highest number of

such points define the chosen transformation.
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Fig. 3 An example of a partial overlap of the 3D model (P)
and the point cloud obtained by SFM (Q). Note that Q also
covers part of the building behind the statue which is not
represented by Q. On the other hand, the back of the statue
is covered by P but not by Q .

The 4-points congruent sets method has proven to

be fairly robust on noisy data, mostly because it does
not need to compute fragile local descriptors based, for
example, on normals, curvature and so on. However,

the efficiency of the 4PCS algorithm relies on a priori
knowledge of the size of the overlap of the two objects,
and on the assumption that there is no scale factor

between the objects. Since we cannot make these as-
sumptions, the complexity of the most time consuming
task of the algorithm, i.e. testing a candidate quadru-

ple, increases by a factor O(n) where n is the number of
vertices in Q (a more detailed explanation of the orig-
inal algorithm and the reasons for these assumptions

can be found in the original paper [1] and are concisely
summarized in Appendix A).

5.2 Our Approach

We propose a scale independent version of the 4PCS al-
gorithm by introducing two modifications. The first is

a preprocessing step to overcome the difference in sam-

pling between the scanned model and the point cloud

obtained by SFM. This is because the sampling of the
latter does not depend on object geometry alone, as it
does with the sampling with laser scanners, but on the

reconstruction stage as well. By expressing the point
cloud as a set of planar regions and resampling them
uniformly, we try to obtain a representation that is as

dependent as possible on the actual shapes and not on
the sampling provided by the SFM algorithm. This con-
sists in partitioning the two point clouds into a set of

quasi planar regions using the Variational Shape Ap-
proximation algorithm (VSA) [12] and then resampling
the clouds uniformly with respect to their area (details

in Section 5.3).

The second modification consists of introducing a

rasterization based algorithm that considerably reduces
the time needed to test candidate transformations. The
algorithm estimates if the integral of the distance be-

tween the two point clouds is below a certain thresh-
old using a hardware occlusion query and exploiting the
phenomenon known as z-fighting. Details of this tech-

nique can be found in Section 5.4. As in the original
version, we refine the result by applying the Iterative
Closest Point algorithm [55].

Listing 1 shows the steps of our algorithm:

Listing 1 Scheme of the proposed algorithm

ScaleIndependent4PCS(P,Q)
{
Pr = VSA_Resample(P);
Qr = VSA_Resample(Q);

nBest = 0;
for i = 0 to L

B = CoplanarBase(Pr);
Ui = FindCongruents(Qr);
forall Ui in U

T = FindTransformation(Ui,B);
if (ZFightingRejectionTest(T))
nClosest = CountClosest(T,δ);

if (nClosest > nBest)
nBest = nClosest;
Tbest = T;

RefineWithICP(T);
}

5.3 Resampling by the approximation-driven
Variational Shape Approximation (VSA)

The original version of the VSA algorithm takes as in-

put the number of regions into which the surface must
be partitioned, and returns a partition into planar re-
gions and an approximation error. We rewrote the VSA

algorithm so that it takes an approximation error ϵ as
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input and provides a partition into planar regions so

that the approximation error is below ϵ. The approxi-
mation error we use is critical. We cannot use an ab-
solute value, because the unity of measure of Q is un-

known, and neither can we choose a value that is de-
pendent on the size of a bounding volume (for example
a percentage of the bounding box), because we do not

know the overlap between the two point clouds a priori.

Instead, we find the value for ϵ by analyzing the
histogram of the approximation error of fitting a plane
to a point and its neighbors. For each point q let Plh(q)

be the plane best fitting the h closest points to q and q
itself, and let E(Plh(q)) be the approximation error of
that plane. In an ideal situation of an infinitely dense

sampling, the error E would be zero except when the
surface is not G1 (e.g. on the ridges and apexes). In a
non ideal but optimal situation, there is a very small

approximation error on all G1 points and higher value
on the non-G1 points, and the number of non-G1 points
should be less than the G1 points by a quadratic factor.

In other words, in an optimal sampling we assume that
a point and its neighbors describe a portion of plane
except for those points that are close to a feature point.

We apply these considerations to Q, which is not an
optimal sampling, by computing the error E for all its
points and taking the average value of the 80 percentile

as a value for ϵ. Thus, we try to filter out those sampling
points that are not likely to be on a planar region, and
we take the approximation error of the remaining points

as a value that accounts for sampling precision. Figure 4
shows the result of the VSA with our computation of
ϵ for the scanned model and the point cloud of two 3D

models. Although the partitions are different the size of
the regions is similar in the two datasets.

The partition of the point clouds into the coplanar

regions is used to prune the number of quadruples gen-
erated in P and Q, and, consequently, the number of
quadruples tested for the alignment. More specifically,

we restrict the choice of the points of a quadruple to
those that do not belong to the same planar region.
This assumes that the overlap region between P and Q

does not consist of a single planar region and it means
that we do not have to generate n2/r couples, where r
is the number of planar regions. Note that if the only

overlapping between the two point clouds were a pla-
nar region, our algorithm, like any other based on a
distance between surfaces, would fail.

Testing for a congruent basis on Q

Testing if a quadruple Ui in Q is congruent with a
quadruple B in P means to find if the transformation

that brings the two quadruples to coincide can be ex-

Fig. 4 Partition of the point clouds with the VSA algorithm.
(Left) The reference model. (Right) The point cloud obtained
by SFM.

pressed as a composition of rotation, translation and

uniform scaling.

Before trying to compute the transformation we use
two simple tests to discard non-congruent quadruples,

by computing and comparing two quantities that should
be the same for congruent couples. The first is the an-
gle αp between two segments (a, b) and (b, c) and the

second is the ratio between their lengths Rp = d1p/d2p
(see Figure 5). If the quadruple is not discarded, we
compute the 4× 4 matrix that brings Ui on B as:

M = RTS (2)

where S is a uniform scaling calculated as (d1p/d1q +

d2p/d2q)/2, i.e. the average ratio between the segment
lengths of the two quadruples, T is the translation that
makes the two intermediate point to coincide, and R

is the rotation around the (now common) intermedi-
ate point that makes s1q to coincide with s1p and s2q
to coincide with s2p. Note that this is an heuristic so-

lution and the more precise Horn method [26] can be
used instead. However, under the hypothesis that the
quadruple has not been discarded by the tests on angle

or the ratio of the lengths, we estimated experimentally
that the error produced is negligible. So, we decided to
adopt the heuristic since it is computationally cheaper

than the Horn method.
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Fig. 5 Test for early rejection of non congruent basis and
transformation.

5.4 Rasterization-based fast rejection test

Testing wether a transformation that coincides two quadru-
ples also brings the two surfaces close to each other
would be the most costly operation of the process, since

we need to apply the transformation matrix to every
single vertex of Q and then find its distance by P. Us-
ing a search data structure to keep the vertices of P,

there is a cost of O(n log n) for each closest-point test.

Instead, we harness the larger FLOPS and the par-

allelism of the GPU to make a very fast rejection test by
adapting the method presented in [50] (in the context
of fitting geometric primitives) to our case.

Let Q′ = MQ be the point cloud Q transformed

by the candidate transformation M and suppose the
two point clouds are visualized as in Figure 6(a) twice:
the first by translating Q′ along the viewing direction

v by a small amount +δ (Figure 6(b)) and the second
by translating it by −δ (Figure 6(c)). The first time the
points of Q′ have a greater chance to occlude the points

of P, and the second time the opposite is true. If P and
Q′ are far from each other, i.e. if the transformation
is not a good one, the two renderings will produce a

very similar, if not equal, result. This is because if they
are far, the translation of Q′ by a small amount will
make no difference. The nearer P and Q′, the more the

translation of Q′ will affect the result of the rendering.

Fig. 6 Estimating the overlapping between P and Q′. (a)
Definition of the area of the screen where both projects (b)
Fragments distribution when Q′ is moved towards the view-
ing plane (c) Fragments where Q′ is moved away from the
viewing plane.

Following these considerations we define the overlap
between P and Q′ as:

Ov(v,P,Q′) =
∥FQ(v,+δ)− FQ(v,−δ)∥

FP∩Q(v, 0)
(3)

Ov(P,Q′) = max
v∈V

Ov(v,P,Q′) (4)

where Fs(v, x) is the number of pixels of the rendering

belonging to the surface s ∈ (P,Q′) when Q′ is trans-
lated along v by x and V is a set of directions. The
implementation to compute Ov(v, P,Q′) is straightfor-

ward. We first set the viewing transformation, then ren-
der P, apply the translation +δ/−δ and set the starting
point of the occlusion query. The occlusion query is a

GPU function which counts the number of fragments
that have passed the depth test since the query was
started. In this way we know how many fragments were

produced by rendering Q′, i.e. the value of FQ(v,+δ).
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Note that this algorithm finds a lower estimate of

how much the portion of surfaces of Q and P′ are closer
than δ to each other. In the example in Figure 6, if
the view direction was horizontal towards the right,

the estimated overlap would have been 0. Therefore the
higher the number of directions tested, the more precise
the result and the higher the cost, because testing for

each direction costs two rendering passes. Since the test
is based on occlusion we do not directly render P and
Q as point clouds but we generate two low resolution

meshes using a Poisson reconstruction [32]. This is not
mandatory, we can also employ a simple splatting ren-
dering technique as long as the rendering of the point

cloud produces a reasonable occlusion.

6 Global Refinement

Once the transformation between the point cloud and
the 3D model has been found, by applying the same

transformation to the set of cameras estimated by SFM,
an initial alignment will be reached. As previously stated,
the point cloud resulting from SFM is sparse and less

accurate than the scanned model, thus we can only ob-
tain a rough alignment of the two.

The next step in the pipeline focuses on optimizing

the parameters (both extrinsic and intrinsic) of each
camera to obtain a coherent color projection of all the
images on the 3D model. This goal would be the same

as estimating the actual camera parameters at shoot-
ing time only if no approximation errors were commit-
ted either in the 3D scanning pipeline or in the SFM

reconstruction, which is never the case.
Our strategy is based on Mutual Information (MI)

among all the images in the set. Section 2.3 already

detailed some of the approaches using the maximization
of Mutual Information to align a 2D image on a 3D
model. Although these methods are reliable and robust,

they only enable the alignment of a single image at a
time, and only exploit the geometric properties of the
object (see [65,11,13]). The use of these methods on

a group of images will likely lead to a lower quality
color projection, for example when a few images are
not perfectly aligned.

In a global registration framework, the goal is to
“distribute” the alignment error among all the images,
in order to minimize the inaccuracies and improve the

quality of the final color of the model. This is also
the aim of the work by Cleju et al. [11] although the
optimization proposed, the stochastic gradient descent

method, is different from our solution. The core of our
global refinement lies in the maximizing the MI for
each image, calculated between the image itself and

a rendering of the projection of the other images of

the dataset on the 3D model. We apply a graph-based

global registration which is similar to an approach orig-
inally proposed by Kari Pulli [53], in the context of the
global alignment of range maps. In our graph, the nodes

are the images and the links connect the images which
projection on the model overlap. Our method is pre-
sented in the next section, after a brief description of

the single-image method of Corsini et al. [13] which is
useful for the clarification of aspects of the proposed
algorithm.

6.1 Single-image alignment using Mutual Information

Mutual Information (MI) measures the information shared
by two random variables A and B. Mathematically, this

can be expressed using entropy or joint probability. Fol-
lowing this interpretation, the mutual information MI
between two images IA and IB can be defined as:

MI(IA, IB) =
∑
(a,b)

p(a, b) log

(
p(a, b)

p(a)p(b)

)
(5)

where p(a) (p(b)) is the probability that the value of the
pixel IA (IB) is a (b) and p(a, b) is the joint probability

of the event (a, b). The joint probability distribution can
be easily estimated by evaluating the joint histogram of
the two images and then dividing the number of occur-

rences of each entry by the total number of pixels. A
joint histogram is a bi-dimensional histogram made up
of N ×N bins; the occurrence (a, b) is associated with

the bin (i, j) where i = ⌊a/m⌋ and j = ⌊b/m⌋ and m
is the width of the bin. This measure can be seen as a
measure of nonlinear correlation between the variables
A and B.

The image-to-geometry registration problem is cast
in this framework by determining the parameters of the

camera model that produce, the image IB that maxi-
mizes MI with respect to the image to align (IA). The
main problem is the generation of the image IB; the

lack of a-priori knowledge regarding lighting, color and
material properties of the model prevents realistic ren-
derings from being generated. However, the goal of the

rendering cycle is not to generate a photorealistic ren-
dering but to synthesize an image which has a high
correlation (even nonlinear) with the input picture un-

der a wide range of lighting conditions and material ap-
pearances. Corsini et al. [13] proposed several rendering
types that make the geometry of the model correlate

well with the images. For example, ambient occlusion
correlates well since the occluded parts of the geometry
often correspond with the dark parts in the real image

due to the poor illumination arriving at these points.
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In this context the registration can be formalized as an

optimization problem in a 7D space:

C∗ = arg max
C∈R7

MI(IA, IB(C)) (6)

C = (tx, ty, tz, θx, θy, θz, f)

where f is the focal length, (tx, ty, tz) and (θx, θy, θz)

define the position and orientation of the camera, IA
is the image to align and IB is the rendering (e.g. the
ambient occlusion map) of the 3D model. Obviously, IB
depends on the camera parameters (C). The Equation
(6) can be solved by a non-linear optimization algo-
rithm such as NEWUOA [52].

6.2 Extension to multiple images

Having more than one image turns out to be an advan-
tage for the aforementioned approach. With only one

image to align and the geometry of the 3D model we
had to analyze the geometric features that could cor-
relate with real photographs even in absence of color.

However, since we have a set of images, we can project
them on the surface and obtain the color information.
Obviously, at the beginning the projection will be in-

accurate, which is where the graph-based global opti-
mization comes into play to distribute and progressively
minimize the alignment error. In other words, the graph

is a structure where each node corresponds to an image.
The nodes are connected if the images overlap, and a
weight is associated with each arc. The value of the arc

between an image I1 and another image I2, indicated
with w(I1, I2), corresponds to

w(I1, I2) = MI (I1, proj(I2, I1)))O(I1, I2)) (7)

where the first term is the MI calculated between the
image I1 and the projection of the image I2 on the im-
age plane of I1. The projection is achieved as follows: if

the 3D model is “covered” by image I2, the correspond-
ing pixel value is used, otherwise the combined render-
ing (ambient occlusion + normals map) proposed by

Corsini et al. [13] is used. The value of the arc is also
weighted by the term O, which represents the amount
of overlap between the images, and is the ratio between

the pixel on I1 image plane which is covered by I2, and
the total number of pixels covered by the 3D model.
According to this definition, the graph related to each

dataset considers each image, and creates an arc for
each couple of images where there is enough overlap
(the threshold value for function O(.) is set to 0.2).

The result of the building phase is a weighted directed
graph. The 3D model is not represented in the graph,
but it plays the role of a “medium” due to the projec-

tions involved.

Fig. 7 (Top) One of the images of the dataset. (Middle)
The rendering proposed by Corsini et al [13]. (Bottom) The
rendering used to guide the global refinement.

6.3 Global graph-based refinement

The refinement approach is similar to the approach usu-
ally applied for the global adjustment of range map

registration, when the registration error between pairs
of range maps calculated as the Haussdorf distance is
minimized.

The refinement is obtained by considering one node
at a time, and refining all the nodes in the graph. The
procedure is repeated until convergence, which is when

the difference between the camera parameters before
and after the refinement operation is below a defined
threshold. The difference between two sets of camera

parameters can be evaluated in many ways. In our case,
this value is calculated by projecting a set of samples
from the target 3D model onto the image plane, before

and after refinement. The average difference in pixels
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Fig. 8 (Left) Starting alignment. (Center) Result using Corsini et al. [13]. (Right) Result using global refinement.

gives a reasonable measurement of the difference be-
tween the camera parameters.

The graph refinement follows this loop:

1. Selection of the node: of the nodes with the biggest

number of already refined neighbors, the node to be
refined is the one that, has the biggest number of
entering arcs.

2. Node refinement: the refinement is obtained by
maximizing the MI (solving (6)) between the im-
age requiring alignment and a rendering of the 3D

model where all the images associated with con-
nected nodes are projected on the geometry. Since
several images can be projected onto the same por-

tion of geometry, the color assigned is a weighted
contribution of all the images, based on the value
of the arc connecting the two nodes. Using this ap-

proach, the other images should “guide” each node
to find a common alignment, thus reducing or dis-
tributing the alignment error throughout all the nodes.

Figure 7 shows an image (top), the combined ren-
dering of the model proposed by Corsini et al [13],
and the corresponding rendering used to guide the

alignment. If portions of the geometry are not cov-
ered by any other image in the set, combined ren-
dering is used.

3. Node labeling: when the maximization procedure
ends, the node is labeled as refined, and the graph
is updated (all the weights of the arcs involving the

node are re-calculated). The procedure goes back to
step 1, until all the nodes are refined.

An example of the results on a single image, us-
ing the proposed approach, is shown in Figure 8. The
top image shows the initial alignment of the model (in

transparency) with respect to an image. Severe mis-

alignments are visible, indicated by the red squares.
The middle image is the result of the alignment algo-

rithm proposed by Corsini et al. [13]. The alignment
is improved, but there are still inaccuracies near the
left-hand side and in the rear area of the statue: this

happens because the information provided by the geom-
etry in this case is not sufficient. Using our approach
(see Figure 8 on the right) the image set helps to en-

sure a much more accurate alignment. However, before
running the graph-based optimization framework, there
is a pre-alignment step where Corsini et al.’s algorithm

is applied to each image separately. This improves the
initial estimation of the camera parameters estimation.
Our experiments show that the final quality of the re-

sults is slightly improved by this pre-alignment step.

6.4 MI vs NCC

It is important to underline here, that the novelty of the

approach lies in how we distribute the alignment error
among all the adjacent photos irrespectively of the dis-
tance metrics used between them . Hence, in principle,

other similarity metrics between images, such as the
NCC, can be used. NCC is usually employed in differ-
ent ways in many Multi-View Stereo (MVS) matching

algorithms (e.g. [21,5,25,49]) to optimize the color pro-
jection. In any case, for various reasons the quality of
our results is different, and in some cases worse than

the results obtained with the MI.

The first problem is that the pre-aligned phase can

be only done using the MI, since the combined looks
very different from the original image. Despite this,
the rendering correlates non-linearly with the input im-

ages [13]; the dark parts are dark due to the ambient oc-
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Fig. 9 MI vs NCC evaluation. (Left) Input image (Center) Alignment with the MI. (Right) Alignment with the NCC. Note
that the color projection created while using the NCC does not respect the geometric features (note the red pattern near the
small slug and the rear leg of the tortoise) due to a slight misalignment of the silhouette of the object.

clusion, normals are correlated with the shading. Hence,
we would expect a lower performance using NCC, and

preliminary tests confirm this.

The second problem in using the NCC in our opti-
mization framework is that the MI is evaluated between
the rendering of the 3D model obtained by projecting

the color of several overlapping images and the input
image, and not locally as in many MVS approaches.
Simply replacing the MI with the NCC RGB (using the

formulation proposed in Goesele et al. [25]) produced
problems for some datasets. For example, for the Tor-
toise dataset we obtain a good result in terms of color

projections, however the silhouette of the object is not
respected (as shown in Figure 9).

In conclusion, although the proposed framework is
specifically designed to work with the MI, a detailed

comparison of some NCC-based MVS approaches (prop-
erly adapted to the framework) would be interesting for
future research.

7 Experimental Results

In this section we present several experiments performed
on real data to assess the performance of the proposed

registration pipeline. The datasets used are listed be-
low, with a brief explanation for each one. The first
two are taken from the benchmark datasets proposed

by Stretcha et al. [63] to evaluate the performance of
multi view reconstruction algorithms. We use the reg-
istered cameras provided by these datasets to compare

their color projection with our approach.

Fountain-dense This dataset represents a fountain and
is made up by eleven 12 MPixel images acquired

with a Canon D60 digital camera. The geometry of
the model was measured with a Zoller-Frölich LI-
DAR laser scanner. The software provided by the

manufacturer was used to generate the final 3D model.
More information regarding the camera calibration
(both extrinsic and intrinsic parameters are pro-

vided) can be found in the original paper.

Herzjesu-P8 This dataset (Figure 10) represents the
facãde of a church and it is composed by eight 6

MPixel images. The model was acquired with the
same procedure as the Fountain model.

Shell This dataset regards a small object with highly

reflective material. It is composed by 35 (1728 ×
1152) images taken with a Canon EOS 350D. The
object’s geometry has been acquired with a Konica

Minolta Vivid 910 laser scanner and the final 3D
model assembled using Meshlab-open source soft-
ware for geometry processing [10].

Tortoise-top This dataset (Figure 10) regards another
small object, a painted clay statue of a tortoise. It
is made up of 19 (3456 × 2304) images taken with

a Canon EOS 350D. These images regard only the
top part of the object. The object’s geometry was
generated in the same way as the Shell dataset.

Tortoise-bottom This dataset is made up of 13 im-
ages of the bottom part of the object described above.
We separated the photographic campaign of the tor-

toise into two different datasets to show how to join
different image sets to form the final color of the
input model. The geometry used for the alignment

is the same as the Tortoise-top set.
Neptune Neptune (Figure 10) is a famous statue placed

on a large fountain in Piazza della Signoria, in Flo-

rence. This object was selected due to its size (more
than 5 meters tall) and its shape, which is very
complex. This model was generated starting with

eight scans acquired with a RIEGL LMSZ390i time-
of-flight scanner processed with Riegl software. A
Canon EOS 350D was used for the photographic

campaign (44 photos at 12 Mpixels).
Duomo This dataset is one of the most ambitious in

terms of resources. It regards a huge church located

in Piazza dei Miracoli, in the center of Pisa. The
full model of the Duomo, made up of about 350
millions of triangles with an accuracy of about 2 cm,
was acquired using a Leica time-of-flight scanner.

The photographic dataset is made up of 309 (1936×
1296) images, acquired on a sunny day and depicting
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only the rear of the Duomo. The results were used

to draw the scheme in Figure 1.

As is clear from the description of the datasets used
in our experiments, the geometry data came from differ-
ent devices. The images were also generated by different

digital machines with different resolutions. This makes
our tests particularly suitable in understanding the ap-
plicability of the proposed global alignment pipeline in

a real production scenario. In addition, we selected a
wide range, from small to big models, from simpler to
more complex shapes, thus highlighting that our ap-

proach does not rely on assumptions regarding the size
and shape of the 3D objects to be aligned. The only
requirement is that the object’s surface can be sparsely

reconstructed by the SFM stage. In the next section, we
present the results obtained against the ground truth
data mentioned, we evaluate the quality of the colored

model produced before and after the global fine align-
ment and we discuss the processing time required by
the different stages.

7.1 Visual Quality Evaluation

In the case of the image-to-geometry alignment, it is

difficult to measure the performances of a system, due
to the lack of a corresponding measure of the alignment
error of the range scans. Moreover, it is also difficult to

evaluate against a ground truth: even the data proposed
by Strecha did not prove completely reliable in terms of
the color projection, especially for the Fountain-dense

dataset (see Figure 14). Hence, most of the evaluation
lies in the visual quality, although we will present some
numerical analysis in the next section. The third col-

umn in Figure 10 shows that the point cloud to 3D
geometry registration was able to estimate an accurate
similarity transformation, thus finding an optimal start-

ing point for the global fine alignment.

In order to test the quality of registration, we pro-
jected the set of images on the 3D model using the
approach proposed by Callieri et al. [9], which provides

a robust framework for projecting an arbitrary number
of images onto detailed 3D models. A color is assigned
for each vertex as a weighted sum of the contributions

of all the images. Please refer to the original paper for
further details about this procedure.

The first evaluation was related to the capacity of
the global fine alignment to converge to a very good re-

sult regardless of the accuracy of the initial alignment.
Figure 11 shows the result of the projection of the set
of images on the models before and after the global re-

finement stage in two datasets: Duomo and Fountain. It

Fig. 11 Some examples of colored models before and after
the global fine alignment. (Top Row) Duomo. (Bottom Row)
A particular of the Fountain.

Fig. 12 (First Column) One of the image of the dataset.
(Second Column) A rendering from the corresponding point
of view of the 3D model.

is evident how severe initial misalignments were recov-
ered during the last stage of our system, which proves

robust even when the initial alignment is not accurate.

The second evaluation was intended to analyze the
accuracy of the image alignment. The first column of
Figure 12 shows an image taken from the Shell and

Herzjesu dataset, and there is a rendering of the 3D
model with color from the same viewpoint in the second
column. The quality of the color is perfectly comparable

to the initial images (which were of poor quality, in
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Image set 3D Object Rough Alignment Final Result

Fig. 10 Some of the dataset used in the experiments and visual results. The output of the second stage is shown in the third
column; the cloud point coming from the SFM stage is depicted in red color. The colored model obtained using the calibrated
images after the fine alignment is shown in the fourth column.

the case of the Shell). In the detail from Herzjesu, the
fine details are also perfectly preserved. This denotes an
extremely accurate alignment of the images, due to the

fact that one of the limitations of Callieri’s approach
was that fine details were blurred in the presence of
small image misalignments.

Finally, the third evaluation regarded the improve-

ments in global refinement w.r.t. state-of-the-art meth-
ods. Figure 13 shows the results of the color projection
using the approach by Corsini et al. [13], when each

image was aligned on the geometry (first column), and
using our global refinement approach (second column).
The quality of the projected color shows that the fine

details were preserved with greater accuracy (Tortoise
dataset, first row). In addition, given the not very accu-
rate geometry and a severely misaligned starting point

(Neptune dataset), the single-image geometry-related

approach was not able to converge, while the global re-
finement generated a much better result, and all the
images were projected correctly.

7.2 Quantitative Performance Evaluation

In order to quantitatively evaluate the performance of

the final alignment, we present two sets of numerical
evaluations. First, we provide an evaluation of the ac-
curacy of the camera parameters estimation, then we

evaluate the precision of alignment by measuring the
color coherency of the projected colors among the im-
ages.

This first evaluation can be performed only if ground
truth data are available. Hence, as previously mentioned,

we used the camera parameters of the Fountain-dense
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Fig. 13 Color projection after single image-to-3D fine alignment [13] (first column) and using the proposed global refinement
algorithm (second column). Note that the color projected using the proposed global refinement algorithm has an increased
overall sharpness making the texture details more readable.

and Herzjesu-P8 datasets provided by Stretcha et al. [63].

Unfortunately, when we used the reference camera pa-
rameters to project the images on the 3D model, we
discovered that the projection was not perfectly accu-

rate (see Figure 14). This is probably due to the fact
that also small errors in camera position and orienta-
tion can lead to a severe projection misalignment due

to the distance of the cameras from the models. We
recall that this benchmark is related to multi-view 3D
reconstruction and not to texture registration, but this

demonstrates the high quality of results that the pro-
posed pipeline is able to achieve.

Table 1 shows the errors with respect to the ground
truth data for the results of both the first and the sec-

ond stages of our method. Three types of errors are re-
ported: the mean of the position error, in terms of the
Euclidean distance between the camera position from

the ground truth position, the mean orientation error,
in terms of the angle between the Z-axis of the ground-
truth orientation and the estimated orientation, and the

re-projection errors, calculated by re-projecting each
vertex of the model in the corresponding image plane
using both the ground truth and the estimated cam-

era parameters and calculating the distance in pixels.
Analysis of the table shows that the global refinement
step reduces the average error by about 50% in terms of

the position. Regarding the re-projection error, which

seems to result in quite high values, it is necessary to

take into account that the final color projection gives
a better visual quality compared to the ground truth
data (see Figure 14).

The second type of results regards the quality of
color projection obtained from the registered image set.
Since, to the best of our knowledge, a universally ac-

cepted method to numerically evaluate this quality does
not exist, for each vertex we calculated the variance of
colors projected. We used the following formula:

C̄ =
N∑
i=1

Ii(xp(v), yp(v)) (8)

QC =
N∑
i=1

(
C̄ − Ii(xp(v), yp(v))

)2
(9)

where N is the number of images projected onto the

vertex v (occlusions are taken into account), and xp(v),
yp(v) are the pixel coordinates of the image plane ob-
tained by projecting the vertex v onto the image Ii us-

ing the i-th camera. This quantity is evaluated for each
image channel, hence we have a different quality for
the red, green and blue channel. Table 2 gives results

of this metric calculated on the datasets used in our
experiments. The table shows that the fine alignment
step always improves the quality. In addition, when the

ground truth was available, the final result was even
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Fig. 14 (Top) Color projection for Fountain dataset, using
ground truth camera data. (Bottom) Color projection using
the camera data estimated with the proposed method.

better than the reference. This further shows that the
ground truth data are probably not accurate enough to

be used for color projection.

The quality values are extremely good for the fi-
nal results in all the cases, except for the Neptune and

Duomo datasets, where they are larger than average.
For the Neptune dataset, the values of QC are quite
high compared to the others although the visual results

are pleasing. This is because the input images have a
very different luminance due to the different position
where the pictures were taken. In fact, if we evaluate

the variance of mean luminance of each image (in the
HLS space), we obtain a value of L = 671.808, while
the value of L calculated on the projected color in the

same way as the QC metric is L = 765.261, that is close
to the luminance variance of the images.

The higher value of the Duomo is essentially due to

the low resolution of the photographic dataset (1936 ×
1296), which led to the low quality of fine detail. More-
over, further errors were caused by some misalignments

that produced serious changes in the color projections,
i.e. the blue background which is sometimes projected
in some small parts of the model, and the black-white

differences around the columns of the Abside.

7.3 Processing Time

We now present the processing times of the three stages
of the proposed pipeline. The tests were performed on
an Intel Dual Core 2.33GHz machine, with 6GB of

RAM and a NVidia GeForce GTX 260.

For details on the processing time and complex-
ity issues for the SFM stage we refer to the original

paper [23]. In any case, the processing time depends
mainly on the number of images and to what extent the
dendrogram is balanced. In the implementation used,

mainly on CPU, the reconstruction got around one minute
for the Tortoise-top dataset (19 images only) to the two
hours and a half for the Duomo dataset (309 images).

The time required to align the reconstructed point

cloud to the input model can vary a lot due to the
RANSAC approach. It also depends on the number of
vertices of the two point clouds, on the size of the over-

lapping region between them and on the shape of the
object. For example, although the Shell dataset is made
up of only a few vertices and with an almost complete

overlap between the point clouds (i.e. few missing re-
gions, few spurious data) it required almost 300 min-
utes because the symmetrical shape of the object made

the GPU based rejection test ineffective in distinguish-
ing bad quadruples from good ones. On the other hand
much bigger datasets, such as Herzjesu, were completed

in less than 60 minutes. The most representative perfor-
mance index is the time required to estimating the over-
lap with our GPU based test against the corresponding

CPU based Hausdorff distance. The GPU test has a
constant of approximately 4 milliseconds, while com-
puting the CPU Hausdorff distance for an average size

model such as the Neptune, requires from 3 to 4 sec-
onds. This 103 factor is the main ingredient to fight the
curse of dimensionality caused by introducing the scale

on the 4PCS algorithm.

The time required for the global refinement is partly
dependent on the number of input images, but also the

overlap between them influences the complexity of the
graph. Moreover, the initial misalignment determines
the convergence time for each MI maximization due to

the steps required by the NEWUOA to converge. For
the biggest dataset, the Duomo, this stage completed
the final alignment of 309 images in 130 minutes. The
Tortoise-top dataset was completed in nearly 12 min-

utes.

In conclusion, the proposed pipeline automatically
manages very complex tasks within a few hours of pro-

cessing.
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Dataset Position Orientation Re-projection
Name error (cm) error (degree) error (pixels)

Fountain-dense (before) 11.671 0.248 48.33
Fountain-dense (after) 6.941 0.275 31.3
Herzjesu-P8 (before) 31.126 0.739 40.22
Herzjesu-P8 (after) 15.403 0.558 32.49

Table 1 Position, orientation, and re-projection error before and after the global fine alignment.

Dataset Ground Truth Rough Alignment Fine Alignment
Name Quality (QC) Quality (QC) Quality (QC)

Fountain-dense (151.791, 128.073, 171.849) (166.925, 151.025, 199.352) (107.614, 96.8494, 125.24)
Herzjesu-P8 (137.172, 133.097, 181.063) (194.082, 201.918, 249.1) (128.719, 128.96, 163.468)

Shell n.a. (327.643, 262.55, 286.673) (298.344, 256.597, 290.528)
Tortoise-top n.a. (531.674, 355.197, 364.923) (343.254, 256.33, 262.746)

Tortoise-bottom n.a. (1310.46, 637.017, 572.498) (362.296, 240.542, 224.799)
Neptune n.a. (993.332, 1028.991, 1167.722) (706.911, 735.617, 846.415)
Duomo n.a. (1799.06, 1763.01, 1734.5) (1033.62, 998.716, 956.778)

Table 2 Quality of the 2D/3D registration before and after the fine alignment stage. Color variance of the incident pixels
coming from different photos is used as quality factor. The mean of σr, σg, σb computed on the model surface is reported.

8 Discussion

The results on the above datasets highlight the strenghts
of the proposed method. In particular, it is:

– General: there is no strong assumption regarding
the object, since no particular feature, size or shape
is taken into account. This enables very different

cases to be handled, from small statues to entire
buildings.

– Automatic: the procedure requires no user inter-

vention. The total processing time is in the order of
a few hours even for very complex cases.

– Robust and flexible: the method can be adapted

for non-ideal cases, where the images and/or the 3D
model are not fully reliable. The point cloud gener-
ated by SFM is used only for the initial registration,

and the 3D model is used only as a ”medium” dur-
ing the global refinement. The alignment thus tries
to find the solution that fits the input data, even

such data are not of a high quality.

A further benefit is that the last part of the system
can be applied to photo sets from different SFM recon-

structions. Figure 15 shows the results of merging of
the Tortoise-top and Tortoise-bottom sets, which could
not be processed together because the object had to

be turned on the table to acquire different parts of the
surface. Starting from the two initial alignments pro-
vided by the second step in the system, and applying

the global refinement to all the images at the same time,
complete coverage of the object is achieved. Overlap-
ping parts of images from different datasets contributed

in obtaining an almost perfect alignment.

Fig. 15 (First Row) Tortoise-top colored model. (Second
Row) Tortoise-bottom colored model. (Third Row) The re-
sult of the global alignment applied on the two merged photo
sets.

Since MI is very robust for correlating images with

very different visual appearances, it is reasonable to ar-
gue that the proposed pipeline can be used to map
sets of images with very different lighting conditions.

This can be used for relighting large structures, such
as buildings or plazas, as a matter of interesting future
applications (for example taking inspiration from ap-

proaches such as the Polynomial Texture Maps [42]).



Fully Automatic Registration of Image Sets on Approximate Geometry 19

Despite all these advantages, some limitations still re-

main.

One limitation is the generation of the point cloud

through the SFM stage. In some cases the photos may
not be suitable for an image-based reconstruction, in
which case nothing can be done. This depends both

on how the photos were taken and on the reflectance
properties of the material of the object. For example,
an object made with very reflective materials (i.e. a

skyscraper full of glass) or an object made by transpar-
ent materials cannot be reconstructed effectively. An-
other potential problem is related to the cloud point

alignment stage; since it is based on a RANSAC scheme,
the processing time required for the alignment is not
easily predictable and can vary a lot even in the case of

similar datasets. Moreover, in some cases, such as the
Tortoise dataset where the shape is close to a sphere,
the transformation could be wrongly calculated. This

can be solved by simply re-launching the pipeline, skip-
ping the SFM stage.

The fine alignment step is very robust, and does
not suffer from particular limitations. Even if it is true
that the geometry can not correlate well with the im-

ages, so that hybrid approaches could be necessary [60],
the use of the information coming from many incident
images on the same parts of the surface prevents align-

ment problems. In other words it is very unlikely that
the final alignment will be worse than the initial align-
ment, provided that the initial alignment is near to the

best solution. In the case of severe misalignments of a
group of images, or in the presence of strong repeating
patterns, a group of wrongly aligned images may cause

the other images to give an inaccurate result. However
this should only happen in very particular cases, which
would be extremely challenging regardless of what ap-

proach was chosen.

9 Conclusions

We have presented a global 2D/3D registration pipeline

for the simultaneous alignment of an image set on a 3D
object acquired through laser scanning. The main ap-
plication of this pipeline is in the context of photoreal-

istic 3D object acquisition, for color mapping or for the
image-based estimation of surface properties.

The main advantage of the proposed approach is
its generality since no particular assumption regarding
the size and the shape of the object is necessary. The

only requirement is that it must be possible to even
sparsely reconstruct the object starting from a set of
images with standard SFM algorithms. The proposed

pipeline is also very flexible thanks to the combination

of the hierarchial SFM chosen and the cloud point align-

ment stage, which also handles cases where the recon-
struction is a sub-set or a super-set of the 3D object
to be aligned. In addition, the processing time is rel-

atively low, taking into account the complexity of the
problem and the amount of data to be processed. To
conclude, the proposed pipeline is able to obtain high

quality color mapping results, as demonstrated by the
experiments presented on real datasets.

An interesting direction for future research would

be to add an analysis step, in the pre-alignment phase,
to remove the images with high misalignments, since
such images can compromise the quality of the final

alignment. Approaches involving small warping of the
images [16,15] could further improve the quality of the
projected color, and thus more accurately preserve the

fine details. In addition, the SFM stage could be re-
placed with a dense multi-view reconstruction algorithm.
In some cases, this should improve the performance of

the subsequent stages. This replacement could also be
used in a more interesting way, i.e. to enrich the geomet-
ric details of the 3D model by integrating a dense recon-
struction and scanned geometry, in those areas where

the geometry acquired is missing or approximate, for
example due to the difficulties in positioning the scan-
ner with respect to the object.

Acknowledgements This research work was partly funded
by the EU Community FP7 ICT under the V-MUST.net
project (Grant Agreement 270404). We would also like to
thank the anonymous reviewers for their feedback which en-
abled us to improve the final version of the paper.

References

1. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent
sets for robust pairwise surface registration. ACM Trans.
Graph. 27, 85:1–85:10 (2008)

2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R.,
Wu, A.Y.: An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. J. ACM 45, 891–
923 (1998)

3. Besl, P.J., McKay, N.D.: A method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2),
239–256 (1992)

4. Bonarrigo, F., Signoroni, A.: An enhanced ’optimization-
on-a-manifold’ framework for global registration of 3D
range data. In: Proc. of 3DIMPVT ’11, pp. 350–357.
IEEE Computer Society, Washington, DC, USA (2011)

5. Bradley, D., Boubekeur, T., Heidrich, W.: Accurate
multi-view reconstruction using robust binocular stereo
and surface meshing. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR2008), pp. 1–8
(2008)

6. Brown, M., Lowe, D.: Recognising panoramas. In: Proc.
Int. Conf. Computer Vision, vol. 2, pp. 1218–1225 (2003)

7. Brown, M., Lowe, D.G.: Unsupervised 3D object recogni-
tion and reconstruction in unordered datasets. In: Proc.
Int. Conf. on 3D Digital Imaging and Modeling (2005)



20 M. Corsini et al.

8. Brunie, L., Lavallée, S., Szeliski, R.: Using force fields de-
rived from 3D distance maps for inferring the attitude of
a 3D rigid object. In: Proc. of the Second European Con-
ference on Computer Vision (ECCV’92), pp. 670–675.
Springer-Verlag (1992)

9. Callieri, M., Cignoni, P., Corsini, M., Scopigno, R.:
Masked photo blending: mapping dense photographic
dataset on high-resolution 3D models. Computer &
Graphics 32(4), 464–473 (2008)

10. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M.,
Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source
mesh processing tool. In: Sixth Eurographics Italian
Chapter Conference, pp. 129–136. Eurographics (2008)

11. Cleju, I., Saupe, D.: Stochastic optimization of multiple
texture registration using mutual information. In: Pro-
ceedings of the 29th DAGM conference on Pattern recog-
nition, pp. 517–526. Springer-Verlag (2007)

12. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational
shape approximation. ACM Trans. Graph. 23, 905–914
(2004)

13. Corsini, M., Dellepiane, M., Ponchio, F., Scopigno, R.:
Image-to-geometry registration: a mutual information
method exploiting illumination-related geometric proper-
ties. Computer Graphics Forum 28(7), 1755–1764 (2009)

14. Dellepiane, M., Callieri, M., Ponchio, F., Scopigno, R.:
Mapping highly detailed colour information on extremely
dense 3d models: The case of david’s restoration. Com-
puter Graphics Forum 27(8), 2178–2187 (2008)

15. Dellepiane, M., Marroquim, R., Callieri, M., Cignoni, P.,
Scopigno, R.: Flow-based local optimization for image-
to-geometry projection. Visualization and Computer
Graphics, IEEE Transactions on 18(3), 463 –474 (2012)

16. Eisemann, M., De Decker, B., Magnor, M., Bekaert, P.,
de Aguiar, E., Ahmed, N., Theobalt, C., Sellent, A.:
Floating textures. Computer Graphics Forum (Proc. of
Eurographics) 27(2), 409–418 (2008)

17. Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-
motion pipeline on a hierarchical cluster tree. In: IEEE
Int. Workshop on 3-D Digital Imaging and Modeling. Ky-
oto, Japan (2009)

18. Fitzgibbon, A.W., Zisserman, A.: Automatic camera re-
covery for closed and open image sequencese. In: Proc.
Europ. Conf. Computer Vision (ECCV1998), pp. 311–326
(1998)

19. Franken, T., Dellepiane, M., Ganovelli, F., Cignoni, P.,
Montani, C., Scopigno, R.: Minimizing user intervention
in registering 2D images to 3D models. The Visual Com-
puter 21(8-10), 619–628 (2005)

20. Früh, C., Zakhor, A.: Constructing 3D city models by
merging aerial and ground views. IEEE Computer
Graphics and Applications 23, 52–61 (2003)

21. Furukawa, Y., Ponce, J.: Accurate, dense, and robust
multiview stereopsis. IEEE Trans. Pattern Anal. Mach.
Intell. 32(8), 1362–1376 (2010)

22. Gehua Yang, G.Y., Becker, J., Stewart, C.V.: Estimating
the location of a camera with respect to a 3d model.
In: Proc. of the Sixth International Conference on 3-D
Digital Imaging and Modeling (3DIM2007), pp. 159–166.
IEEE Computer Society (2007)

23. Gherardi, R., Farenzena, M., Fusiello, A.: Improving the
efficiency of hierarchical structure-and-motion. In: Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2010), pp. 1594–1600
(2010)

24. Gibson, S., Cook, J., Howard, T., Hubbold, R., Oram,
D.: Accurate camera calibration for off-line, video-based

augmented reality. Mixed and Augmented Reality, IEEE
/ ACM Int. Symp. on (2002)

25. Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo
revisited. In: Proc. of CVPR ’06, vol. 2, pp. 2402–2409.
IEEE Computer Society (2006)

26. Horn, B.K.P.: Closed-form solution of absolute orienta-
tion using unit quaternions. J. Opt. Soc. Am. A 4(4),
629–642 (1987)

27. Ikeuchi, K., Nakazawa, A., Hasegawa, K., Ohishi, T.:
The great buddha project: Modeling cultural heritage
for vr systems through observation. In: Proc. of the
2nd IEEE/ACM International Symposium on Mixed and
Augmented Reality (ISMAR’03), pp. 7–. IEEE Computer
Society (2003)

28. Irschara, A., Zach, C., Bischof, H.: Towards wiki-based
dense city modeling. In: Proc. Int. Conf. Computer Vi-
sion (ICCV2007), pp. 1–8 (2007)

29. Johnson, A.: Spin-images: A representation for 3-d sur-
face matching. Ph.D. thesis, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA (1997)

30. Kalogerakis, E., Nowrouzezahrai, D., Simari, P., Singh,
K.: Extracting lines of curvature from noisy point clouds.
Comput. Aided Des. 41(4), 282–292 (2009)

31. Kamberov, G., Kamberova, G., Chum, O., Obdrzalek, S.,
Martinec, D., Kostkova, J., Pajdla, T., Matas, J., Sara,
R.: 3D geometry from uncalibrated images. In: Proc. 2nd
Int. Symp. on Visual Computing (2006)

32. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson sur-
face reconstruction. In: A. Sheffer, K. Polthier
(eds.) Eurographics Symposium on Geometry Process-
ing (SGP2006), pp. 61–70. Eurographics Association,
Cagliari, Sardinia, Italy (2006)

33. Krishnan, S., Lee, P.Y., Moore, J.B., Venkatasubrama-
nian, S.: Global registration of multiple 3D point sets via
optimization-on-a-manifold. In: Proc. of the 3rd Euro-
graphics symposium on Geometry processing (SGP2005).
Eurographics Association (2005)

34. Krishnan, S., Lee, P.Y., Moore, J.B., Venkatasubrama-
nian, S.: Optimisation-on-a-manifold for global registra-
tion of multiple 3D point sets. Int. J. Intell. Syst. Technol.
Appl. 3(3/4), 319–340 (2007)

35. Lensch, H.P.A., Heidrich, W., Seidel, H.P.: Automated
texture registration and stitching for real world models.
In: PG ’00: Proceedings of the 8th Pacific Conference
on Computer Graphics and Applications, p. 317. IEEE
Computer Society (2000)

36. Li, X., Guskov, I.: Multi-scale features for approximate
alignment of point-based surfaces. In: Proc. of the
3rd Eurographics symposium on Geometry processing
(SGP2005). Eurographics Association (2005)

37. Liu, L., Stamos, I.: Automatic 3D to 2D registration for
the photorealistic rendering of urban scenes. In: CVPR,
vol. 2, pp. 137–143. IEEE Computer Society (2005)

38. Liu, L., Stamos, I., Yu, G., Wolberg, G., Zokai, S.: Mul-
tiview geometry for texture mapping 2D images onto 3D
range data. In: Proc. of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 2, pp. 2293–2300. IEEE Computer So-
ciety (2006)

39. Lowe, D.G.: Fitting parameterized three-dimensional
models to images. IEEE Trans. Pattern Anal. Mach. In-
tell. 13, 441–450 (1991)

40. Maes, F., Collignon, A., Vandeermeulen, D., Marchal, G.,
Suetens, P.: Multimodality image registration by maxi-
mization of mutual information. IEEE Transactions in
Medical Imaging 16, 187–198 (1997)



Fully Automatic Registration of Image Sets on Approximate Geometry 21

41. Makadia, A., Patterson, A., Daniilidis, K.: Fully auto-
matic registration of 3d point clouds. In: IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, vol. 1, pp. 1297–1304 (2006)

42. Malzbender, T., Gelb, D., Wolters, H.: Polynomial tex-
ture maps. In: SIGGRAPH ’01, pp. 519–528. ACM (2001)

43. Matsushita, K., Kaneko, T.: Efficient and handy texture
mapping on 3D surfaces. Computer Graphics Forum
18(3), 349–358 (1999)

44. Neugebauer, P.J., Klein, K.: Texturing 3D models of real
world objects from multiple unregistered photographic
views. Computer Graphics Forum 18(3), 245–256 (1999)

45. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle ad-
justment for large-scale 3D reconstruction. In: Proc. Int.
Conf. Computer Vision, pp. 1–8 (2007)

46. Nistér, D.: Reconstruction from uncalibrated sequences
with a hierarchy of trifocal tensors. In: Proc. Europ. Conf.
Computer Vision (ECCV2000), pp. 649–663 (2000)

47. Pintus, R., Gobbetti, E., Combet, R.: Fast and robust
semi-automatic registration of photographs to 3D geom-
etry. In: The 12th International Symposium on Virtual
Reality, Archaeology and Cultural Heritage (2011). To
appear

48. Pluim, J., Maintz, J., Viergever, M.: Mutual-information-
based registration of medical images: a survey. IEEE
Transactions on Medical Imaging 22(8), 986–1004 (2003)

49. Pons, J.P., Keriven, R., Faugeras, O.: Multi-view stereo
reconstruction and scene flow estimation with a global
image-based matching score. Int. J. Comput. Vision
72(2), 179–193 (2007)

50. Portelli, D., Ganovelli, F., Tarini, M., Cignoni, P.,
Dellepiane, M., Scopigno, R.: A framework for user-
assisted sketch-based fitting of geometric primitives. In:
Proceedings of WSCG, the 18th Int. Conference on
Computer Graphics, Visualization and Computer Vision
(2010)

51. Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Ge-
ometry and convergence analysis of algorithms for reg-
istration of 3d shapes. Int. J. Comput. Vision 67(3),
277–296 (2006)

52. Powell, M.J.D.: Developments of NEWUOA for mini-
mization without derivatives. IMA Journal of Numerical
Analysis 28(4), 649–664 (2008)

53. Pulli, K.: Multiview registration for large data sets. In:
Proc. of the 2nd international Conference on 3-D digi-
tal imaging and modeling (3DIM’99), pp. 160–168. IEEE
Computer Society, Washington, DC, USA (1999)

54. Pulli, K., Abi-Rached, H., Duchamp, T., Shapiro, L.G.,
Stuetzle, W.: Acquisition and visualization of colored 3D
objects. In: Proc. of the 14th International Conference
on Pattern Recognition (ICPR’98), vol. 1, pp. 11–. IEEE
Computer Society (1998)

55. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp
algorithm. In: Proc. of the Third International Confer-
ence on 3-D Digital Imaging and Modeling, pp. 145–152
(2001)

56. Sequeira, V., Goncalves, J.G.: 3D reality modelling:
Photo-realistic 3d models of real world scenes. 3D Data
Processing Visualization and Transmission, International
Symposium on 0, 776 (2002)

57. Shum, H.Y., Ke, Q., Zhang, Z.: Efficient bundle adjust-
ment with virtual key frames: A hierarchical approach to
multi-frame structure from motion. In: Proc. Int. Conf.
Computer Vision and Pattern Rec. (1999)

58. Skelly, L., Sclaroff, S.: Improved feature descriptors for
3-D surface matching. In: Proc. SPIE Conf. on Two- and

Fig. 16 Quadruple characterization in 4PCS algorithm.

Three-Dimensional Methods for Inspection and Metrol-
ogy V, vol. 6762 (2007)

59. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: ex-
ploring photo collections in 3D. In: SIGGRAPH’06, pp.
835–846 (2006)

60. Sottile, M., Dellepiane, M., Cignoni, P., Scopigno, R.:
Mutual correspondences: an hybrid method for image-to-
geometry registration. In: Eurographics Italian Chapter
Conference 2010, pp. 81–88. EG (2010)

61. Stamos, I., Liu, L., Chen, C., Wolberg, G., Yu, G., Zokai,
S.: Integrating automated range registration with multi-
view geometry for the photorealistic modeling of large-
scale scenes. Int. J. Comput. Vision 78, 237–260 (2008)

62. Steedly, D., Essa, I., Dellaert, F.: Spectral partitioning
for structure from motion. In: Proc. Int. Conf. Computer
Vision (ICCV2003), pp. 649–663 (2003)

63. Strecha, C., von Hansen, W., Van Gool, L., Fua, P.,
Thoennessen, U.: On benchmarking camera calibration
and multi-view stereo for high resolution imagery. In:
CVPR’08, pp. 1 –8 (2008)

64. Vergauwen, M., Gool, L.V.: Web-based 3D reconstruction
service. Machine Vision and Applications 17(6), 411–426
(2006)

65. Viola, P., William M. Wells, I.: Alignment by maximiza-
tion of mutual information. Int. J. Computer Vision
24(2), 137–154 (1997)

66. Wu, C., Clipp, B., Li, X., Frahm, J.M., Pollefeys, M.: 3d
model matching with viewpoint-invariant patches (vip).
In: CVPR’08. IEEE Computer Society (2008)

67. Zhao, W., Nister, D., Hsu, S.: Alignment of continuous
video onto 3d point clouds. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 27(8), 1305–
1318 (2005)

68. Zheng, H., Cleju, I., Saupe, D.: Highly-automatic mi
based multiple 2D/3D image registration using self-
initialized geodesic feature correspondences. In: H. Zha,
R. ichiro Taniguchi, S.J. Maybank (eds.) ACCV (3), Lec-
ture Notes in Computer Science, vol. 5996, pp. 426–435.
Springer (2009)

Appendix A

A coplanar quadruple (a, b, c, d) is expressed as the com-
bination of the two segments s1 = (a, b) and s2 = (c, d)

and characterized by their length d1 = ∥a − b∥ and
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d2 = ∥c − d∥. Since the segments are coplanar, they

will meet at an intermediate point e, so the quadru-
ple is further characterized by the points along the two
segments where they meet, i.e. ratios:

r1 = ∥a− e∥/∥a− b∥ (10)

r2 = ∥c− e∥/∥c− d∥ (11)

Aiger et al. [1] use this simple characterization of
a quadruple to prune the number of possibly congru-
ent quadruples on Q and hence to speed up the pro-

cess. Consider a couple in Q as the segment (q1, q2) of
a candidate congruent quadruple (q1, q2, q3, q4). If this
quadruple is congruent to (a, b, c, d) it means that if we

generate the intermediate points on (q1, q2) and (q3, q4)
with the ratios r1 and r2 they will coincide, because
affine transformations preserve ratio of the distances.

Their approach consists in generating the intermediate
points for all the segments in Q and inserting them into
a range-query data structure [2]. This can be built in

O(k log k) time and accessed in O(log k) (where k is the
number of the intermediate points) Then, they only test
the quadruples made of two segments which intermedi-

ate points coincide. If we consider all the couples inQ as
potential segments of a congruent quadruple k is O(n2),
but if we restrict the choice to a couple of points at a

distance d1 or d2 from each other and assume a uni-
form distribution of points k will be O(n). Therefore
they have O(n2) for finding O(n) segments/intermedi-

ate points plus O(n log n) for building and accessing
the search data structure, and hence the global com-
plexity is O(n2).

In principle, we could almost apply it to our case with-
out any change, simply by including scaling in com-
puting the transformation between candidate congruent

quadruples. The problem with this is that we cannot
limit the list of couples in Q to those within a distance
d1 or d2 because there is a unknown scale factor be-

tweenQ andP. Therefore the order of magnitude of k is
O(n2) and the global complexity becomes O(n2 log n).
Although the total asymptotic complexity raised ”only”
by a factor log n the actual time for computing the re-

sult becomes very large. This is because the number of
quadruples to be tested for affinity with the base in P
raised by O(n) to O(n2) and the cost of evaluating the

transformation between two quadruples is high.


