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Abstract—Multi-view stereo reconstruction methods can pro-
vide impressive results in a number of applications. Neverthe-
less, when trying to apply the state-of-the-art methods in the
case of a more structured 3D acquisition, the lack of feedback
on the quality of the reconstruction during the photo shooting
can be problematic.
In this paper we present a framework for the assisted recon-
struction from images of real objects. The framework is able
to provide, in quasi-realtime, a sparse reconstruction of the
scene, so that the user is able to spot the missing or problematic
parts. Moreover, the framework is able to separate the object
of interest from the background and suggests missing points
of view to the user, without any previous knowledge of the
shape of the scene and the acquisition path. This is obtained by
analyzing the sparse reconstruction and the connection between
the reconstructed points and the input images.
The framework has been tested on a variety of practical cases,
and it has proved to be effective not only to obtain more com-
plete reconstructions, but also to reduce the number of images
needed and the processing time for dense reconstruction.

I. INTRODUCTION

Multi-view stereo reconstruction is a process concerning
the automatic acquisition of objects and scenes models from
multiple photographs. It aims at obtaining a 3D represen-
tation of a real object, in the form of a point cloud or a
polygonal mesh, starting from a set of uncalibrated images.
Potential applications of this technology include: construc-
tion of realistic object models for the movie, television,
and video game industries; quantitative recovery of metric
information for scientific and engineering data analysis;
fast visualization via point-based rendering techniques; and
object replication through fast prototyping technologies.
The diffusion of high-quality, low-cost consumer digital
cameras and the advancement in the state-of-the-art of this
research topic made multi-view stereo reconstruction a very
promising technology widely available to the public. A sig-
nificant example of this is the Microsoft PhotoSynth online
service, but several other freeware or low-cost solutions are
also available.
The structure of most multi-view stereo reconstruction solu-
tions is based on an unsupervised strategy, where no previous
information about the images is known. The reconstruction
follows some steps which are usually fulfilled in a pipeline
fashion (see also Figure 1-top). Although based on different
steps, that could be driven by the user, the available systems

are usually structured as a black-box, because the algorithms
are optimized for the case where all the images are available
from the beginning of the reconstruction. The whole process
can take several hours, especially in the case of complex
scenes with several tens of images. In some cases, the user
can have an intermediate feedback by analyzing a sparse
reconstruction of the scene, but if some additional images
have to be added, the process must start again from scratch.
While the results that can be obtained are impressive, it
is harder (w.r.t. other acquisition technologies, like 3D
scanning) to know in advance if an object will be entirely
acquired or not. This is due to the intrinsic nature of the
approach, which matches a type of feature which is only in-
trinsically related to visible features on the object. Moreover,
the black-box approach prevents from having a real-time
feedback on the completeness of the reconstruction: the user
will not know if the acquisition is successful until the whole
dataset has been processed. This could be problematic in a
number of contexts, like archeological excavations, which
are essentially a destructive process [1]. In this case, if we
miss important view points in the photographic campaign,
we will discover it when the digging process would have
progressed further.
In this work we propose an approach for 3D object and scene
reconstruction that provides a quasi-realtime, assisted sparse
reconstruction. While the images are transferred from the
acquisition device to the processing system (i.e. a laptop),
the reconstructed scene is incrementally updated, and the
system provides feedback to the user to allow him to produce
a complete reconstruction of the scene, with a reasonable
number of images. The main contributions of the proposed
system are:

• An incremental, quasi-realtime approach for the cal-
culation of the sparse reconstruction of the scene.
The structure of the reconstruction scheme breaks the
blackbox paradigm, enabling an interaction between the
user and the system.

• An automatic method to identify the object(s) of in-
terest for our reconstruction, in order to disambiguate
it/them from the background, and to suggest the missing
points of view that will help in the completion of the
reconstruction.



• A system to reduce the number of images needed
to cover and sample the surface of interest (defined
according to our approach), thus reducing also the
processing time to produce the dense reconstruction.

II. RELATED WORK

In the last few years, multi-view stereo reconstruction
has been a very active field of research. The proposed
methods are essentially an extension of the idea of stereo
reconstruction. The approaches for Simultaneous Localiza-
tion And Mapping (SLAM) [2], [3], [4] usually provide an
approximate reconstruction of the scene, achieving the result
in nearly realtime. These methods rely on frame-to-frame
video tracking, and they are not always reliable for a wide
baseline case. For example, specific closing loop strategies
could be needed [5]. In our case, given the generality of the
scenes and the difference between the camera positions, the
best approach is represented by the combination of Structure
from Motion [6] and Multi View Stereo Reconstruction. This
pipeline can slightly vary among the approaches, and an
accurate overview is well beyond the scope of this paper.
Nevertheless, the reconstruction procedure is usually divided
in three main steps:
• Features recognition and Matching: the first stage con-

sists in analyzing the input images, extracting a number
of descriptive points, and matching them among all the
possible couples of images. Several types of feature
points can be considered, but the most robust and used
are the Scale Invariant Feature Transform (SIFT) [7],
that proved to be extremely flexible and to adapt well
to 3D reconstruction. Moreover, a GPU implementation
[8] enables to calculate the matching among big groups
of images in a reasonable short time.

• Camera Calibration and Bundle Adjustment: starting
from the matching table provided by the previous step,
the camera parameters associated with each images, and
the corresponding 3D points generated by the matching
tracks can be estimated to create a sparse representation
of the scene. This is usually obtained using a Bundle
Adjustment strategy [9], that was studied and modified
to handle very complex cases [10], [11], [12].

• Multi-view dense reconstruction: the result of the pre-
vious step can be (at least partially) used as a starting
point to compute a denser reconstruction of the scene
[13], [14], [15]. These methods can provide dense
models, but the processing can take hours especially
when dealing with hundreds of images.

The previous pipeline has become a standard for Multi-view
Stereo Reconstruction, and it was implemented in several
versions, both structured as webservices or closed systems,
where the user must provide all the images which were ac-
quired, and the interaction is limited to the possibility to tune
the parameters of the various steps of the reconstruction.
Some attempts have been done to break this paradigm, by

proposing methods to assist the user during the acquisi-
tion, essentially by estimating a set of missing view to
be suggested to the user [16], [17], [18]. Our approach
differentiates from the latter because there is no assumption
on the object shape and the acquisition setup, and the object
of interest and the suggested view(s) are generated only by
analyzing the sparse reconstruction of the scene.

III. MOTIVATION AND APPROACH

The goal of the present work is to actively assist the user
while acquiring images for Multi-view Stereo Reconstruc-
tion. The aim is to reduce the number of needed images, and
to be able to detect missing parts of the object of interest.
In order to obtain this, it is necessary to break the black-box
paradigm, to provide a feedback before the time-consuming
part of the pipeline, i.e. the dense stereo reconstruction.
Figure 1 shows the different structure of our method w.r.t.
the classic approach. On the top, the classic data processing
pipeline is shown, with the user providing and initial dataset
and receiving the final result. On the bottom, the structure
of our incremental method where, once shot, any image
is added to the reconstruction process. Hence, the point
cloud is updated, and a feedback loop analyzes the scene
and assists the user in completing the acquisition. The
user can have a nearly realtime feedback about the quality
and completeness of the reconstruction, in order to choose
the new images without adding redundant data. Moreover,
the system is able to suggest possible missing view(s),
that could complete the portions of the object which show
a lower density of sampled data. In order to obtain the
new acquisition structure, it was necessary to structure the
coarse reconstruction box (in green) in a new, incremental
fashion, and design the new block (in red) regarding scene
understanding and new views selection. The next subsections
present the structure of these two blocks.

A. Incremental sparse reconstruction

The recent advancements in literature and implementation
made the sparse reconstruction step a quite fast one, able
to complete in minutes even with datasets made of several
tens of images. Nevertheless, the current available tools
perform feature matching and bundle adjustment in a non
incremental way, needing all the images of the dataset.
Hence the reconstruction procedure was reorganized in
order to be able to refine the 3D point cloud every time a
new image is available. A different strategy is needed to
handle the startup and the purely incremental phase.

Startup. One of the critical steps of the incremental ap-
proach is the startup of the reconstruction, where a suitable
initial description of the scene is needed. If a wrongly esti-
mated scene is calculated, the whole reconstruction process
can fail. In the case of the blackbox approach, the strategy
is the same as in Bundler [6], where (after the feature



Figure 1. A) The structure of the black-box approach. B) The structure of the proposed method, with the feedback loop during acquisition

Figure 2. An example of the incremental reconstruction of a scene. Top: the 20 images used for the reconstruction. Bottom, the evolution with the
insertion of new images.

extraction and matching) a starting group of four images
is chosen as a starting set. In our system, it is not possible
to choose the best images. Hence, the strategy for startup is
as follows:

• The system is idle until the fourth image is received.
Then, a first reconstruction is calculated.

• The reconstruction is checked in order to prevent degen-
erated configurations. This is achieved by analyzing the
relative camera position, orientation, and focal length.
If the position and orientation of the cameras are
too similar, or the focal length is too different, the
reconstruction is discarded.

• If the reconstruction is validated, the system starts the
incremental mode (see below). Otherwise, the system
waits for another image and applies the Bundler ap-
proach, by selecting the best four for an initial recon-

struction, and then adding the others in an incremental
way.

Incremental reconstruction. Once that the reconstruction
has been initialized, the system waits for a new image. At
its arrival, two steps are fulfilled:
• The features of the new image are extracted and

matched with all the other images. The difference with
respect to the classic approach is that the track table
(the list of group of matches that concur in the recon-
struction) has to be updated, by integrating the existing
tracks, and adding new tracks that are created with the
insertion of the new image. An initial estimation of
the new camera parameters is calculated as well. If
the initial estimation fails, the image is discarded (see
below).

• The bundle adjustment is calculated on the updated set



of data. In the current system, we decided to implement
the MulticoreBA [12], where all the data are taken into
account and re-calculated. The choice of this solution
was due to the fact that the BA is completed in a few
seconds even when several images have been already
acquired, and the re-calculation tends to strengthen the
scene coherency. An incremental alternative to this was
proposed by Lourakis [10]: this could speed up the
reconstruction, while some assumptions on the acqui-
sition strategy (overlap between temporally adjacent
images) would be needed. Our choice was to put no
assumption on the acquisition strategy, leaving the user
free to choose its preferred sampling.

Figure 2 shows the evolution of the incremental
reconstruction, where the point cloud size and density
increases as soon as new images are added.

Recovering discarded images. Since the goal of the system
is to get the best of the images taken by the user, a
mechanism to recover the images previously discarded has
been added. Every time that a new image is correctly
added to the reconstruction, the system tries to add also the
images that were discarded before, by trying to calculate an
initial camera estimation, and eventually re-launching the
BA. This mechanism enables to account for cases where the
user does not provide an accurate coverage of the object,
but some ”bridging” images are provided in a subsequent
moment. Hence, adding a single image could lead to a big
improvement in the scene reconstruction.

B. Scene understanding and feedback

The evolution of the reconstruction already guides the
user in the acquisition process, but we implemented a
new method to analyze the reconstructed scene, so that a
useful feedback to the user can be provided. Both of them
are obtained by analyzing the reconstructed scene and the
behavior of the user.
The first one is related to distinguish the object of interest
(the one that the user is trying to acquire) from the back-
ground information, which is valuable for the reconstruction
process, but usually makes harder to understand the rendered
results. The second one analyzes the selected zone of interest
to find the zones which are less densely sampled, and
suggest possible points of view to speed up and complete
the acquisition process.

1) Extracting the object of interest: The aim of this
component is to discriminate the object of interest from
the background. In order to obtain a generic model,
independent from the type of object which is acquired, a
quality measure is calculated for each point of the cloud.
A first criterium could follow the amount of images that
generate the point, but this is also related to the strength
of the corresponding SIFT, which can be also part of the
background. Another observation, which follows other

Figure 3. Two examples of the quality value for background removal (red:
highest quality, blue lowest quality). Red indicates high quality, blue low
quality. First row: a subset of the images. Second row: the quality value
based on Equation 1. Third row: the smoothed quality value. Fourth row:
the automatic background removal.

works on object recognition and tracking [19], [20], is that
the object of interest quite often lay in the center of the
image. Following this assumption, we can assign to each
reconstructed point a quality value which is related to the
position in each image of the feature points which generated
it. Hence, given a point P in the sparse reconstructed point
cloud, generated by N images, we define its quality as:

Q(P ) =

∑N
i=1

max(|wi/2−xi|,|hi/2−yi|)
max(wi/2,hi/2)

N
(1)

where xi and yi are the coordinates of the feature in the i-
th image which generated the point, wi and hi respectively



the width and height of the image. Two examples of the
mapping of this quality function are shown in Figure 3,
second row. The two sets are representative of two different
acquisition types: a single object acquired with an hemi-
spherical pattern and an architectural context acquired with
a panoramic pattern. The use of the proposed quality value
shows that in the first case, the central object already appears
detached from the background, while in the second case the
quality value is well distributed among the portions of the
scene.
While it already shows the position and shape of the object
of interest, the quality measure is not enough to automat-
ically segment it from the background. Hence a pass of
smoothing is applied to the quality values of each point. The
smoothing is applied taking into account the density of the
point cloud: each quality value is recalculated by averaging
the neighbors which are at a distance which is below the
average distance of the 60-neighbors. In this way, the parts
of the point cloud which are of lower quality, but near to
high quality and dense portions, gain value, while the low
quality and sparse portions are hardly affected. The third
row of Figure 3 shows the quality value after smoothing:
the small cat is now fully separated from the background,
while in the second row the quality value is more equally
distributed in the scene.
After the smoothing step, a bigger difference is present
between the dense object reconstruction and the sparse
background. Taking advantage of the separation between the
object and the background, a threshold cut can be automat-
ically calculated by taking into account the histogram of
the quality values. The histogram (organized in 40 bins)
is analyzed by finding the maximum in the zone of high
quality. Then, the histogram is analyzed in the decreasing
direction of quality value, and the threshold to cut the
background is set on the first local minimum. The last row
of Figure 3 shows the automatic extraction of the object
of interest: in the first case, the object is extracted. In the
second case, the system is able to understand that almost the
whole sampled set of points constitutes the scene of interest.
Nevertheless, the user can manually tune the threshold, in
order to better visualize the object of interest.
It’s important to stress that the background information is
only detected and hidden, but it remains an active part in
the matching and reconstruction process.

2) Generating suggested views: Once that the object of
interest has been detached from the rest of the scene, the
system analyzes the sparse reconstruction in order to suggest
missing points of view to complete the acquisition. The
new views are created by taking into account the portions
at lowest resolution, and generating a camera with similar
parameters to the ones that were used for the reconstruction.
The procedure is defined as follows:
• A reference point is found on the point cloud. The point

represents the zone with less density in the point cloud,

and it’s selected by finding the point whose 60 nearest
neighbors have the highest average distance.

• The camera intrinsic parameters are set identical to the
other cameras of the reconstruction. The focal length
is assigned as an average of the focal length of all the
cameras.

• The direction of view is obtained by estimating the
normal of the point using its neighbors [21]. The
distance of the camera is set as an average of the camera
distances of all the other views.

• Since no previous information about the scene orienta-
tion and only the direction of view is known, the other
components of the orientation matrix of the camera
are estimated by using the intersection between the
direction of view and the ground plane which is defined
by the reconstructor. Unfortunately, the ground plane of
the scene is often different w.r.t. the real one. A small
intervention of the user could help generating also the
right orientation of camera. In any case, the proposed
views are accurate enough to provide a valid suggestion
to the user.

In order to generate views which are not too similar to the
ones used for the reconstruction, the direction of view is
slightly perturbed several times, and the chosen view is the
one which is the most detached from the others. Figure 4
shows five suggested views generated on a dataset acquiring
a statue. The Figure shows that the proposed views try to
break the circular acquisition path, in order to cover some
detailed part that needs peculiar points of view. Moreover,
the proposed views are correctly concentrated on the part of
the statue which exhibits more geometric detail.

Figure 4. An example of five suggested views (indicated by red circles)
in the context of the acquisition of a statue. The views concentrated on the
more detailed part of the object, and try to suggest different directions of
view.



C. Acquisition procedure and output

Given the components described above, the acquisition
procedure using the proposed framework is organized as
follows: the user starts acquiring the object, making a first
initial coverage. The sparse reconstruction visually guides
him to add missing images, until enough 3D data is avail-
able. The framework analyzes and separates the object of
interest. The user is then able to ask for suggested views,
which will focus on low density parts that are difficult to
spot when analyzing the point cloud.
Once that the user is satisfied with the input dataset, it’s
possible to export it in a compatible format for a dense
reconstruction [14]. Moreover, since the system has sepa-
rated the object and the background, it is also possible to
generate a mask for each image of the dataset, to shorten the
reconstruction time. Since only a sparse description of the
object is known, this mask is generated in a conservative
way, by applying a series of dilation and erosion steps to
close holes and preserve the silhouette of the object. Please
also refer to next Section and Figure 6.

IV. RESULTS

The framework was tested on a number of practical
cases. The experimentation was conducted using a Canon
Powershot S95, acquiring the images with a resolution of
5MPixels. The images were directly transferred (using an
Eye-Fi SD card) to a laptop with 64bit OS, 8 Gb Ram and
NVidia Quadro 2000M. All the processing was conducted
on the same laptop, in order to test also the applicability of
the on-the-field processing.
We present three of the test cases, which are paradigmatic
of different acquisition strategies: Cat, a small object that
can be acquired with an hemisphere of camera positions;
Statue, which can be acquired with a circular path of cameras
at similar heights; and City Wall, which represents the
acquisition of an architectural element using a panorama
style.
For each test case, we compared the results of our framework
with the one obtained with one of the fastest state-of-the-
art tools, VisualSfM [22]. After the use of our method and
VisualSfM, the output data were processed with the same
dense reconstruction method, PMVS2 [23]. For the analysis
of data, we focused on three aspects: the number of images
used in two approaches, the time needed for acquisition and
processing (taking into account also the use of the automatic
masks), and the final result. Table 5 shows some figures on
this comparison.
In general, the number of acquired images is similar, the
acquisition time is longer for our method, also because it
contains the sparse reconstruction phase. Hence, the pro-
cessing for the dense reconstruction is always longer when
using VisualSfM+PMVS2, not only for the bigger amount
of data calculated, but also because the matching and sparse
reconstruction is part of its process. During the acquisition

with our method, the time needed to add a single image
was between 4 and 25 seconds, depending on a number of
factors: number of images already in the input set, number
of matches and tracks, size of the scene.
Analyzing each set, in the Cat case we used the same input
dataset (acquired using our method) to compute the recon-
struction. The results, in Figure 6, surprisingly show that
VisualSfM+PMVS2 produces a bigger number of points, but
it’s not able to reconstruct the upper part of the Cat, although
the images covered it (as our method shows). Moreover,
the reconstruction obtained using masks does not depict the
background, needing a much lower amount of work for data
cleaning.
In the Statue dataset a similar number of images was

Figure 6. The Cat test set (32 images). First row, an example of an image
and of the automatically calculated mask. Second and third row, snapshots
of the reconstruction obtained with Our method and VisualSfm+PMVS2
[22]

acquired, but the processing time was definitely shorter in
the case of our method. This was because our framework
masked the background, obtaining the same number of
points on the object of interest in a much shorter time, see
Figure 7. In this case, the suggested views by our system
could be only partially followed, since some of the points of
view were not physically reachable from the ground level.

Finally, the City Walls case shows that dense recon-
struction is similar for the two methods, although Visu-
alSfM+PMVS2 is able to retrieve a bigger portion of the
scene, and the data are less noisy. This could be due to an in-
creased difficulty in handling planar objects and panoramic-
like acquisitions. These are more prone to deformation and
small matching errors, so that the incremental reconstruction



Ourmethod+ PMV S2 V isualSfM + PMV S2
N.Images Acq.Time Proc.Time (masked) N. points (masked) N.Images Acq.Time Proc.Time N. points

Cat 32 7 min. 176sec(90sec) 72114(51136) 32 - 480 sec 97800
Statue 31 12 min 480sec(290sec) 184546(133425) 37 7 min 980 sec 242263

CityWall 28 7 min 210sec(207sec) 126547(113174) 32 4 min 450 sec 179596

Figure 5. Table of data for the three test cases.

Figure 7. The Statue test set. First row, an example of some of the
images used for the reconstruction. Second row, the reconstruction obtained
with Our method (32 Images). Third row, the reconstruction obtained with
VisualSfm+PMVS2 (37 images) [22]

probably needs a more controlled situation, where the system
asks for more images to strengthen the final 3D structure.
Nevertheless, once again the background separation was able
to preserve the whole object although the acquisition was not
strongly focused on a portion of the scene.
In conclusion, the tests show that our system allows to

process the input data in a incremental way and performs in
a comparable way (if not better) w.r.t. one of the reference
tools for Multi-view Stereo reconstruction. Further testing
would be needed in the case of more complex acquisitions,
dealing with hundreds of images. In order to do this, we
need to improve the performances of the system to keep it
quasi-realtime (see next Section).

Figure 8. The City Wall test set. First row, an example of some of the
images used for the reconstruction. Second row, the reconstruction obtained
with Our method (28 images). Third row, the reconstruction obtained with
VisualSfm+PMVS2 (32 images) [22]

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for assisted
reconstruction from images. The framework provides a
sparse description of the scene in quasi-realtime, applying an
incremental reconstruction that is updated every time a new
image is available. The user can use the sparse reconstruction
to check the completeness of the acquisition. Moreover,
a novel analysis of the scene discriminates the object of
interest and the background, and possibly suggests missing
points of view, which will help in completing the sampling
task. The framework proved to be effective regardless of
the size and shape of the object of interest. The amount of
processing make it impossible to work on current mobile
devices, but the future improvements could include:
• An improvement of the incremental reconstruction



block, possibly implementing a fully incremental pro-
cess, as described in Lourakis [10]. At the moment the
system performs slowly when more than 100 images
are taken into account.

• The parallelization of the reconstruction routine, with-
out losing the need to have the system working on non-
high-end devices.

• The extension of the system architecture to be used with
mobile devices: in this case a client-server structure
would be needed. The mobile could upload the images
to a remote server, and retrieve the sparse reconstruction
in a very short time.
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