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Abstract
High dynamic range images require tone reproduction to

match the range of values to the capabilities of the display.For
computational reasons as well as absence of fully calibrated im-
agery, rudimentary color reproduction is often added as a post-
processing step rather than integrated into the tone reproduction
algorithm. However, in the general case this currently requires
manual parameter tuning, although for some global tone repro-
duction operators, parameter settings can be inferred fromthe
tone curve. We present a novel and fully automatic saturation
correction technique, suitable for any tone reproduction opera-
tor, which exhibits better color reproduction than the state-of-
the-art and we validate its comparative effectiveness through psy-
chophysical experimentation.

Introduction
Recent advances in both capture and display technologies al-

low images of a much wider dynamic range to be photographed,
manipulated and displayed, better capturing the light of natural
scenes and giving artists unparalleled freedom. Unlike preva-
lent consumer imaging pipelines though, no high dynamic range
(HDR) standard has yet emerged defining the precise range, for-
mat or encoding to be used. As such, HDR data often needs to be
compressed for display on most current displays, a process known
as tonemapping [15, 2].

The aim of this paper is to preserve the appearance and infor-
mation content of the image as much as possible while ensuring
that it can be displayed on the chosen display device. To achieve
that, tonemapping algorithms typically operate on the luminance
of the image with little to no consideration for the color informa-
tion present, leading to noticeable changes in the color appearance
of the image, as shown in Figure 1. Commonly, tone compressed
images acquire an over-saturated appearance when only the lumi-
nance channel is processed [12, 18].

Image appearance models, which can be seen as tone repro-
duction operators with integrated color appearance management
[7, 9, 16], aim to reproduce color appearance, but they are de-
signed with calibrated applications in mind and often come at the
cost of higher computational complexity due to spatially varying
processing. Despite their accuracy, these factors can limit their
general applicability.

Some solutions exist for correcting saturation mismatchesaf-
ter tone reproduction [12, 18]. This leads to computationally ef-
ficient correction, although we have observed that existingmeth-
ods tend to create hue and luminance artefacts. Moreover, they
require manual parameter selection which is strongly imageand
tone reproduction operator dependent. Recently, a psychophysi-

cal study was conducted for defining an automatic model to derive
the parameters necessary for such corrections, but only allows pa-
rameters to be predicted when the tone compression or expansion
function is global [12].

Instead, we propose a new approach for correcting saturation
mismatches after dynamic range compression. We base our algo-
rithm on insights from color science and on the observation that
the amount of desaturation can be inferred from the non-linearity
applied by the tone curve, irrespective of whether the tone re-
production operator was spatially varying or not. As such, our
approach is parameter-free and agnostic to the operator used for
mapping the dynamic range of the image or video. We find that
our algorithm reproduces saturation significantly better than the
current state-of-the-art.

Related Work
Differences in viewing conditions may result in significant

mismatches in perceived color, which can be attributed to idiosyn-
crasies of the human visual system. To ensure that the appearance
of a scene is correctly reproduced on a display, many issues will
have to be taken into account, all broadly belonging to the field
of color reproduction [8]. Image appearance models can be used
to reproduce images as a human observer would see them under
given viewing conditions [5, 16]. Such algorithms can be config-
ured to yield calibrated color reproduction, and thereforedo not
require color post-processing. However, measurements of scene
and display conditions are needed as inputs to image appearance
models so that the human visual response can be accurately pre-
dicted. This requires specialist equipment such as photometers.
These algorithms also tend to be computationally expensive, fur-
ther limiting their use to offline processing.

Dynamic range mismatches between scenes and display de-
vices are therefore typically handled by tone reproductionopera-
tors. In essence, most of these algorithms focus on one dimension
of the color gamut, namely compression along the luminance di-
rection [15, 2]. Appearance effects are often ignored, leading to
images which may appear too saturated. This problem can be mit-
igated by combining tone reproduction and color appearanceal-
gorithms [1]. However, this solution still requires calibrated data
and measured viewing conditions to drive the color appearance
component.

A more common approach to saturation reproduction is to
post-process the tone-mapped image, manually adjusting satura-
tion to levels that appear plausible. Perhaps the most well-known
technique for color correction involves the adjustment of color
values by means of a power function, according to user param-
eter p ∈ [0,1] [18]. Given an original high dynamic range im-
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Figure 1. The same HDR image was tonemapped with different operators (left - [10], right - [16]). The left tonemapped image is overly saturated, while the

tonemapping algorithm used on the right has reduced the saturation too far. With our method, both images are automatically corrected to have a very similar

appearance by considering their relation with the original HDR image. (Source image from Mark Fairchild’s HDR Survey)

age with input pixelsMo = (Ro,Go,Bo) specified in some linear
RGB color space, and its associated per-pixel luminancesLo, it is
first tonemapped with an operatorf () that modifies the image’s
luminances,Lt = f (Lo). The color-corrected imageMc is then
produced with:

Mc =

(

Mo

Lo

)p

Lt . (1)

The primary drawback of this solution is that the selection of pa-
rameterp is both image and tone reproduction operator depen-
dent. As this formulation may also introduce undesirable lumi-
nance shifts, an alternative adjustment was proposed1 [12]:

Mc =

((

Mo

Lo
−1.0

)

p+1.0

)

Lt . (2)

Although this equation is claimed to produce smaller luminance
shifts, it may still create hue shifts [14]. Here, user parameterp∈
[0,1] can be set manually with the same disadvantages as above.

Alternatively, the setting ofp in either technique can be au-
tomated based on the slope of the tone curve at each luminance
level [12]:

p=
(1+k1)ck2

1+k1 ck2
(3)

wherek1 and k2 are constants2 and c is a factor indicating the
amount of compression or expansion applied. This factor is cal-
culated as the derivative of the tone curve:

c(log(Lt)) =
d

d log(Lo)
f (log(Lo)). (4)

We note that although in its original derivationf () was a simple
power function, it produces reasonable results as long as certain
conditions are met, most important of which is that the operator
needs to be global, i.e. spatially invariant. We view this asan
important limitation, as local tone reproduction operators often
allow better compression.

1In the remainder of this paper, we will refer to Equation (1) as
Schlick’s method, and Equation (2) as Mantiuk’s method.

2For Schlick’s correction:k1 = 1.6774,k2 = 0.9925. For Mantiuk’s
correction:k1 = 2.3892,k2 = 0.8552 [12].

Hue and Saturation Correction

The aim of tonemapping is two-fold; images need to be pro-
cessed so that their absolute luminance range is compressed, but
pixel relations also need to be altered to maximize visible detail,
therefore changing the contrast in the image. Changes to contrast
and luminance, however, often lead to changes in the appearance
of colors in the image and specifically in their saturation and hue.
Thus, our algorithm is designed to correct the image’s appearance
while minimizing luminance and contrast modifications.

Algorithm Overview

The input to the algorithm consists of two images given in
linearRGBspace: the tone-compressed imageMt and the origi-
nal, unprocessed HDR imageMo as it contains the original satu-
ration and hue values that we aim to reproduce. The goal of oural-
gorithm is to modifyMt such that it matches the color appearance
of Mo in terms of hue and saturation, while preserving luminance
values from the tonemapped imageMt . Note that matching the
appearanceof saturation requires active non-linear management
of saturation values to account for the Hunt effect.

Since in most cases accurate radiometric data is not avail-
able for HDR images, luminance values computed from the im-
ages will be inherently inaccurate. As such we focus on contrast
changes between the two input images and therefore normalize
both Mt andMo before converting them toXYZ tristimulus val-
ues. The image data is then transformed toIPT as this color space
has better hue uniformity than CIEL∗a∗b∗ [4].

As we need separate access to lightness, hue and chroma,
we then convert to a cylindrical color space akin to CIEL∗C∗h∗

[19]. This space is based onIPT and therefore we will refer to it
as theICh space, whereI encodes lightness,C represents chroma
andh is a measure of hue. The lightness channelI is not further
processed, because this was the main purpose of the preceding
tone reproduction operator. The hue in the tonemapped imageht

is subsequently set to the hueho of the original image, restoring
any hue distortions that may have arisen due to gamut clipping
during tone mapping.

The quantity that needs to be matched between high dynamic
range and tonemapped images is saturations. However, the afore-
mentioned cylindrical color space produces chromaC. Nonethe-
less, we can adjust chroma on the basis of per-pixel saturation
values computed on both images.
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Figure 2. Comparisons between different variants of our algorithm, in par-

ticular comparing performance in CIE L∗C∗h∗ against the cylindrical version

of IPT, termed ICh, paired with two different saturation formulations, namely

s=C/L and s=C/
√

C2+L2 (substitute L for I in the case of IPT).

Appearance Parameters
After the input images are normalized and converted toIPT,

chroma and hue parameters are computed for both images. To
convert fromIPT to a cylindrical color spaceICh [19], we fol-
low standard procedure and leave theI channel unchanged while
setting hueh and chromaC as follows:

h= tan−1(P/T) (5)

C=
√

P2+T2 (6)

Saturations is commonly computed ass(C, I) = C/I . Re-
cently, however, an alternative formula was proposed that follows
human perception more closely [11]:

s(C, I) =
C√

C2+ I2
(7)

Note, however, that to our knowledge application of this formula
in ICh is novel; its development was centered around CIEL∗C∗h∗.
The merit of using this formulation is shown in Figure 2.

Saturation Correction
Tone reproduction typically maps luminance values in a non-

linear manner. As a result, although the absolute luminancelevels
of the tonemapped image are likely to be lower than the original
HDR scene if displayed on a conventional monitor, the relative
luminance of many pixels will be increased compared to their
surrounding pixels. To deal with this mismatch, we first scale
the chroma of the tonemapped image. This step scalesCt to ap-
proximately what it would be if the original HDR image had been
tonemapped in theICh space:

C′
t =Ct

Io
It

(8)

Then, based on (7), we compute the ratior between the saturation
of the original and tonemapped image, albeit that we computethe
latter usingC′

t :

r =
s(Co, Io)
s(C′

t , It)
(9)

This ratio is then applied to chromaC′
t as a second factor to find

the chroma appropriate for the tonemapped image:

Cc = r C′
t = r

Io
It

Ct (10)

For convenience, in the following we will refer to the full adjust-
ment factor as:

r ′ = r
Io
It

(11)

Finally, we reset the hue by copying values from the HDR
images (hc = ho). Together with the corrected chromaCc, it is
combined with the lightness channel of the tonemapped image
Ic = It to produce the final corrected result, which can then be
converted back toRGB.

Evaluation
To assess the performance of our algorithm, we compressed

the dynamic range of many challenging scenes with different
tonemapping operators. We then processed the results with our
color correction method and compared our results against both
the automatic and manual versions of Schlick’s and Mantiuk’s
algorithms (Equations (1) and (2)) by means of psychophysical
experimentation.

Tone Curve Estimation
For Schlick and Mantiuk’s techniques we estimate the tone

curve from the image pair directly so that Equation (3) can beap-
plied to estimatep. If a global tone reproduction algorithm is used
a one-to-one mapping between the original luminanceLo and the
tonemapped luminanceLt can be obtained. For spatially vary-
ing tone mapping operators, many different input levels maybe
mapped to the same output level. To be able to infer a reason-
able approximation for parameterp in the automatic Mantiuk and
Schlick corrections, we compute the contrast factorc in (4) based
on the average luminance level inLo that corresponds to each lu-
minance levelLt in the tonemapped image. To further enforce
smoothness, this computation is carried out on a down-sampled
version of the image and the resulting tone curve is filtered with a
Gaussian filter kernel3.

In the following, we show the effect of our correction com-
bined with several tone mapping solutions as well as side-by-side
comparisons with other saturation correction techniques.The
comparative performance of saturation reproduction is also as-
sessed with a psychophysical experiment.

Results and Comparisons
The color correction method proposed in this paper is fully

parameter-free and aims to be applicable irrespective of the type
of processing that was applied to the image. The algorithm was
implemented in MATLAB, running on an Apple Macbook Pro
with an Intel Core 2 Duo processor running at 2.3 GHz. Although
our current implementation is not optimized for performance, typ-
ical examples tested at resolutions of around 1MP were processed
in approximately 5 seconds.

3Note that this approximation serves only for comparison purposes as
the relation betweenp andc is only formally defined for global tonemap-
ping operators.
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Figure 3. The Memorial image was tonemapped using both global and spatially varying tone mapping operators. The tone mapped images (top) obtain very

different appearances, which are corrected with our algorith (bottom). Although the tone mapped images have different luminance and contrast distributions, our

correction equalizes the color appearance between them. In particular, the different materials in the scene obtain a more natural appearance, notably the white

marble of the stairs or the gold leaf on the walls.

Our method corrects the saturation in the image on a per-
pixel basis. This ensures that even extreme changes in saturation
due to tonemapping or any other manual or automatic image pro-
cessing can be corrected. The quality of our algorithm is shown in
Figures 3 and 4. Note that if both the high dynamic range image
and the tonemapped image are individually normalized, the tone
reproduction process does not universally reduce the image’s dy-
namic range. Instead, some pixels are reduced in level, whereas
others are increased. As a result, some pixels require a commen-
surate decrease in saturation, while others need their saturation to
be increased.

Figure 3 shows that one effect of our method is that mate-
rial appearance can be correctly reproduced, irrespectiveof tone
reproduction operator. The gold leaf on the wall still appears as
gold for instance; an effect that is difficult to reproduce with other
methods that tend to create more washed-out colors. Figure 4
demonstrates that existing methods tend to desaturate parts of the
image that are both light and saturated, turning the yellow sign
and the shop interior white in the top images, and the sky greyin
the bottom images.

Psychophysical Evaluation
To assess saturation performance, we designed a 2-

alternative forced-choice experiment (2AFC) whereby two identi-
cally tonemapped images were post-processed with different sat-
uration correction algorithms and shown side-by-side on the dis-
play, underneath the high dynamic range input image as shown
in Figure 5a. A SIM2 HDR47E S 4K was used, which can emit

up to 4000cd/m2. To allow prolonged stable and calibrated use,
we used a peak luminance of no more than 2500cd/m2. The
background of the stimuli was set to 18cd/m2 while the peak
luminance for the tonemapped images was 100cd/m2. The left
and right 7cmof the display were unused as we found luminance
reproduction to be less accurate in those regions. The display
was driven by an Apple Macbook Pro running Matlab using the
Psychophysics toolbox extensions [3] and employing a custom
OpenGL shader for driving the display in calibrated HDR mode.

A set of 8 HDR images were drawn from the HDR Pho-
tographic Survey [6] and were tonemapped with the global ver-
sion of the photographic operator [17] and a spatially varying
operator [10]. Subsequently, the images were post-processed
with three different saturation correction algorithms: the proposed
technique, as well as the automatic versions of the methods given
in (1) and (2). A stimulus then consisted of the HDR image, below
which two differently post-processed images were shown. Tone
mapping operators were varied between stimuli, but not within
stimuli. In each trial, the participant was asked to select the image
which matched saturation best to the HDR image.

Before starting an experiment, participants were shown writ-
ten instructions, followed by a short training session to familiarize
participants with the difference between saturation and other ap-
pearance phenomena. General feedback was solicited after the
experiment, which lasted on average 20 minutes.
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Figure 4. Comparisons between our new algorithm and Schlick and Mantiuk’s automatic corrections. The two images were tone mapped with a spatially

varying [10] and a global [17] operator and then processed with the three correction methods. The local variations of the spatially varying operator lead to very

strong local desaturation when images are processed with Schlick’s and in particular Mantiuk’s correction formulae.

Experiment: Evaluation of automatic algorithms The task
for the experiment was to match the impression of saturationbe-
tween tonemapped color processed images and their HDR orig-
inals. Stimuli were created to compare our algorithm with the
automated version of Schlick and Mantiuk’s algorithm using
Li’s [10] and Reinhard’s [17] tone reproduction operators,leading
to a total of 48 trials per participant to account for all paired com-
parisons. There were 18 participants in this experiment, who were
between 23 and 53 years old, and all had normal or corrected-to-
normal vision as well as normal color vision.

We used a multiple comparison range test to determine if any
pairwise difference was significant. We have calculated thecoef-
ficient of consistentcyξ per image and per tonemapping operator.
For the photographic operator we find an average coefficient of
consistency ofξ = 0.78±0.1 (mean and standard deviation). For
Li’s operator we findξ = 0.85± 0.08. Thus, we have obtained
overall high consistency, supporting the following findings.

Significance tests were calculated on the differences between
the scores of pairs of color correction methods. These differences
are considered significant if they are greater than a critical value
Rwhich is defined as:

R=
1
2

Wt ,α
√

ut+
1
4

(12)

whereWt,α is the upper significance point for theWt distribution,
t = 3 is the number of compared methods, andu is the number
of observations. At a significance level ofα = 0.001,Wt,α values
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Figure 5. a. The setup used in our experiment. b. Results from our

experiment, grouped by tone reproduction operator. Also indicated with a

horizontal line is the difference with the longest bar in each group at which

significance occurs.

is of 5.06, see Table 22 from [13]. Figure 5b shows the overall
results of our experiment.

When we assessed the overall performance, for each
tonemapping operator, over all images, we found statistical sig-
nificance for Li’s tone reproduction operator at significance level
α = 0.001, with critical value critical valueR= 53, givenu= 144
for 18 participants× 8 images. In this case our method was se-
lected significantly more often. This is visualized in Figure 5b
where we have drawn a horizontal line at a height 53 below the
maximum score, noting that the bars for Schlick and Mantiuk’s



methods do not cross this line. For the photographic operator, we
found no statistically significant differences.

We have observed that Li’s operator on average requires
stronger saturation correction than the photographic operator. It
is therefore interesting to see that especially in the case of a local
operator our saturation correction method performs particularly
well. Moreover, for the photographic operator our algorithm per-
forms on par with the current state-of-the-art. Although for the
experimental evaluation only two tone mapping techniques were
included, our experiments indicate that our findings generalize
well to other operators, especially when the luminance channel
is processed in a locally varying way.

We also computed scores for the two tone mapping operators
combined. HereR= 75 asu= 288 (18 participants× 8 images×
2 tone reproduction operators). Overall, our method was selected
significantly more often (α = 0.001). In essence, this means that
our algorithm matches the impression of saturation betweentone
mapped images and their HDR originals measurably better than
the current state-of-the-art.

Conclusions
We developed a novel saturation correction algorithm for

the purpose of removing the often over-saturated appearance of
tonemapped images. Tone reproduction tends to be carried out on
a luminance channel, while leaving chromaticities unaffected. As
the appearance of saturation depends on relative luminancelevels,
ideally saturation should co-vary with luminance changes when
applying tone reproduction operators. Nonetheless, it is possible
to post-correct saturation mismatches given the input and the out-
put images of a tone reproduction algorithm.

Our algorithm is based on recent insights into the design
of perceptually linear color spaces as well as a recent formula-
tion of saturation. This has led to an algorithm that with respect
to the state-of-the-art better reproduces the color appearance of
the HDR input images, while preserving the luminance compres-
sion applied by the tonemapping operator. We evaluated our al-
gorithm and assessed its performance compared to the state-of-
the-art with many challenging images as well as a psychophysical
experiment. As the computational cost is similar to existing tech-
niques, we believe that our algorithm is a good candidate forcolor
post-processing of tone reproduction operators as well as manu-
ally processed images.
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