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Abstract—This paper presents an algorithm for the estimation
of the Surface Light Field using video sequences acquired moving
the camera around the object. Unlike other state of the art
methods, it does not require a uniform sampling density of the
view directions, but it is able to build an approximation of the
Surface Light Field starting from a biased video acquisition:
dense along the camera path and completely missing in the
other directions. The main idea is to separate the estimation
of two components: the diffuse color, computed using statistical
operations that allow the estimation of a rough approximation
of the direction of the main light sources in the acquisition
environment; the other residual Surface Light Field effects,
modeled as linear combination of spherical functions. From
qualitative and numerical evaluations, the final rendering results
show a high fidelity and similarity with the input video frames,
without ringing and banding effects.

I. INTRODUCTION

The photo-realistic rendering of the appearance of real-
world objects is a challenging problem in Computer Graphics.
Especially in the Cultural Heritage field, the acquisition of the
appearance is fundamental: the characteristic of the material,
the reflectance behavior and the texture of the artwork offer
major perceptual and cognitive hints with respect to the
visualization of the plain 3D geometry. On the other hand,
while for the acquisition of the 3D geometry there exist several
solutions that allow to obtain accurate and high resolution 3D
model in a simple and fast way, the appearance estimation
is still an open problem due to the reflectance characteristics
of the object and the constrains imposed by the acquisition
environment. A Cultural Heritage artwork can be composed by
different materials, which could present several types of patinas
and degradation processes that alter its appearance, making
difficult the modeling of the reflectance using mathematical
reflection models. Usually artworks cannot be moved in an
acquisition lab and the lighting environment cannot be substan-
tially modified, imposing to perform on-the-field acquisition
without the possibility to used controlled lighting conditions,
like a dark room. Even if solutions have been proposed to
estimate the Spatially Varying BRDF in these challenging
conditions ([1]), in some applications it is sufficient to estimate
a further simplification of the appearance in a more automatic
way. An example is a virtual museum, where, in order to
reproduce a real visit, the artwork can be viewed by different
positions but with fixed lighting conditions. In this context, the
Light Field Rendering [2] and its extensions are appropriate
solutions. One of the major benefits of these techniques is the
ability to create realistic renderings of a wide range of physical
surfaces (including anisotropic ones) with complex reflectance
behavior, without passing through the complex definition and

choice of intricate reflection models. Nevertheless, they have
some drawbacks in term of data complexity if we need to
increase the accuracy and the quality of the final rendering,
due to the huge amount of data to acquire. For this reason
hybrid solutions have been proposed. The main idea is to
combine acquired photos with some geometric information to
synthesize new views of the scene (Lumigraph [3] and Surface
Light Field [4]). An important issue in the image-based and
the hybrid methods for the Light Field (LF) estimation is
the sampling density of the view directions. Many state of
the art algorithms require a dense and uniform photographic
acquisition of the object, obtained for example with special
devices like camera arrays or robotic arms. However, in order
to make the method usable in the Cultural Heritage context,
we need an automatic system that is able to reconstruct the
appearance from partial and irregular acquisitions, reducing
the expertise of the operator needed to evaluate if the acquired
data are sufficient. Acquired data are often partial because of
the need to perform a fast sampling (not supported by a careful
planning) or due the physical limitations and constraints of the
digitization environment, like the presence of obstacles and
occluders, or the challenging position and size of the artwork,
which limit the free movement of the camera around the object
and make hard to capture a complete sampling.

We propose a method for the estimation of the Surface
Light Field (SLF) of a real-world object, starting from a
medium quality 3D model and some video sequences with
an irregular sampling of the view direction. The typical video
acquisition is composed by very simple movements around the
object, returning a view sampling biased by the camera path:
very dense only along the camera path and completely missing
in the other directions (see Figure 1). The algorithm uses the
idea of the Dichromatic Reflection Model [5] to separate the
estimation of the diffuse color from the estimation of the other
surface appearance effects. For the diffuse color, we use a
statistical method, based on the selection of the samples with
a higher probability to have a Lambertian behavior, while the
residual color, that is the difference from the diffuse color, is
employed to fit a linear interpolation of spherical functions
(Spherical and Hemispherical Harmonics).

Main contributions of our work are:

• a method to estimate the Surface Light Field without
banding and ringing artifacts due to the spherical
function fitting and the distribution of the input color
samples in the visible hemisphere biased by the simple
camera path (see Figure 2);

• a method to extract the Lambertian shading of the
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Fig. 1. Typical distribution of the acquired viewpoints (green line) in the
visible hemisphere for a single surface point

object using statistical operations, which simplifies
the modeling of the other Surface Light Field effects
and takes advantage from a rough estimation of the
acquisition environment map.

Even if the proposed method is not able to accurately predict
the view dependent effects from not acquired viewpoint, due
to the irregular acquisition, the main goal is to obtain realistic
renderings without artifacts (Figure 2).

Fig. 2. Comparison of the finale SLF obtained from a viewpoint not
acquired by the video sequences: (Left) rendering by trivial fitting of the input
samples with the first 25 Spherical Harmonics functions; (Right) rendering of
our algorithm. The trivial fitting produces artifacts, like ringing and banding
effects, due to the irregular viewpoint sampling and the missing color samples
in wide areas of the visible hemisphere.

II. RELATED WORK

In the Light Field and Surface Light Field literature, two
different approaches have been used to solve the problem of a
non uniform sampling of the view direction: hardware based
and software solutions.

In the hardware based approach the proposed solutions
use different type of special hardware devices that allow the
acquisition of a uniform sampling of the view direction, like

computer controlled gantry with planar camera motion ([2]),
camera arrays ([6], [7], [8], [9]), or camera systems with
additional devices (microlens array [10] [11], attenuating mask
[12]).

In the software approaches, the main idea is to use an
algorithmic solution to fill the gaps and the holes coming out
from a sparse an non-uniform directional acquisition. Gortler
et al. [3] used a hand-held camera with a special designed
stage for camera pose estimation. They rearranged the acquired
samples in a two-plane parameterization and used a pull-push
algorithm to fill the gaps on each plane due to an irregular
distribution of the acquired views. Heigl et al. [13] started
from an image sequence taken by a hand-held camera and
relaxed the restrictions imposed by the regular LF structure.
They rendered new views directly from the calibrated images
with the use of a local depth map, mapping directly the
original images onto one or more planes viewed by a virtual
camera. Isaksen et al. [14] proposed a new parameterization,
based on a general mathematical formulation for a planar data
camera array, which allows to represent moderately sampled
LF with wide variations in depth. The analytical formulation
of the minimum sampling rate for LF rendering is derived
in [15] using the sampling theorem and the Fourier spectral
analysis of the LF signals. Buehler et al. [16] proposed a
generalization of two image-based rendering algorithms (LF
Rendering and View-dependent Texture Mapping[17]) guided
by the distribution of the camera and the quality of the
geometry. Chen et al. [18] proposed the approximation of
the LF data by partitioning it over the mesh vertices and
factorizing each part into a small set of lower-dimensional
functions. They rearranged the input data into a matrix and
then computed an approximated factorization of the matrix
with two different methods: Principal Component Analysis and
Non-negative Matrix Factorization. In order to obtain a more
precise factorization, they applied a resampling of the data by
Delaunay triangulation of the original views in the xy plane
of the local reference frame of the vertex. This resampling
step requires a good distribution of the original view in the
local reference frame, a condition that our input videos do not
guarantee. Davis et al. [19] presented a system for interactively
acquiring and rendering a LF using a hand-held commodity
camera. They computed and provided a coverage map to the
user in real-time to show the views captured so far and to
help the achieving of a dense coverage. A visual feedback
mechanism for capture guidance is used also by Jachnik et
al. [20]. They proposed a real-time system for the capture of
the SLF of planar surface based on the splitting of the diffuse
and specular components. The method has two limitations: it
assumes an uniform specular behavior on the whole surface,
modeled as a Phong lobe, which cannot be easily extended
to objects with a more complex reflectance; it does not take
advantage of the approximation of the environment map in the
the estimation of the SLF. The separation of the diffuse and
specular components is also proposed by Wood et al. [21].
To generate a more compact SLF, they proposed two methods
to represent each lumisphere as a weighted sum of a small
number of prototype lumispheres. To improve the compression
performance they applied a median removal algorithm that
allowed to store the median texture map and to encode the
residual separately. It should be noted that these approaches
cannot be generalized for irregular sampling density. They
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require some prototype lumispheres with a good and uniform
sampling density that are difficult to obtain with a simple
camera path.

We want to remark that, even if the amount of our input
data (about 2000-3000 video frames) is bigger than the previ-
ous methods, these data can be very irregularly distributed in
the visible hemisphere for each surface points (see Figure 1 for
an example), due to few careful acquisition or to the physical
limitations imposed by the digitization environment, a condi-
tion that the previous software solutions cannot manage and
resolve without decreasing the quality of the final rendering.

III. BACKGROUND

The SLF was introduced in [4] to sample LF on a para-
metric surface directly. It is modeled as a four-dimensional
function L(u, v, s, t), where (u, v) defines a point on the sur-
face and (s, t) represents the orientation angles identifying the
view direction. Given a novel camera position, the rendering
is done by computing the view direction values (s, t) for each
surface point (u, v) and then indexing the SLF using (u, v, s, t)
to extract the color value. The use of the geometry of the
object permits to overcome some of the limitations of a generic
LF representation: the camera is restricted to certain regions
of space; the finite angular resolution leads to depth of field
effects; objects become blurry in proportion to their distance
from the image plane.

Our method is based on the separation of the diffuse
component of the surface appearance from the other view
dependent lighting effects. This separation process allows to
avoid rendering artifact due to the fitting and interpolation
process of the spherical functions. This idea is mathematically
supported by the Dichromatic Reflection Model [5]. Intuitively,
this model states that there are two independent reflection
processes, the specular and the diffuse reflectance, each one
characterized by a color whose magnitude varies with the light
~l and view ~v directions:

C(~l, ~v) = md(~l)Cd +ms(~l, ~v)Cs (1)

where C is the final RGB color, Cd and Cs the color of the
two components, and md and ms the magnitude of the two
components. However, in the context of the SLF, since we
are under fixed lighting conditions and we assume to have a
Lambertian diffuse component, we can simplify Equation 1,
that becomes:

C(~v) = Cd +ms(~v)Cs (2)

IV. ALGORITHM

Our algorithm takes in input a medium-resolution triangu-
lar mesh of the object, with an associated texture parameteri-
zation, and some video sequences acquired moving the camera
around the object. The target is to estimate the diffuse color
and the other view dependent SLF effects in two different
steps. In the first one, we estimate the diffuse component using
statistical operations. In the second step, we reconstruct the
other SLF effects, as linear combination of spherical functions.
The final color of a point p with texture coordinates u, v is
given by the following formula:

C(u, v, s, t) = D(u,v) +
n∑

i=0

x
(u,v)
i hi(s, t) (3)

where (s, t) are the spherical coordinate (θ, φ) of the view
vector in the local reference frame of p, D(u,v) is the diffuse
texture color of the point, x(u,v)i are the coefficients that are
associated to the selected basis of spherical functions hi(s, t).
The outputs of the algorithm are a texture map with the
diffuse color D(u,v) and a binary file with the coefficients
x
(u,v)
i , organized as an OpenGL texture array where the i-th

layers contains the coefficient x(u,v)i . The estimation process
is organized in four steps:

1) the video-to-geometry registration (Section IV-A);
2) the estimation of the direction of the main light

sources in the acquisition environment (Section
IV-B);

3) the approximation of the surface diffuse color (Sec-
tion IV-C);

4) the fitting of the view dependent SLF (as residual
from the diffuse color) in a set of basis spherical
functions (Section IV-D).

A. Video-to-Geometry Registration

Using the method proposed in [22], the intrinsic and ex-
trinsic camera parameters are recovered for each video frame.
The result of the registration process allows to compute the
color samples Cu,v = {I(j)u,v ∈ RGB} and the relative quality
value q(j)u,v projected by each frame j for each texel (u, v). The
quality value is computed using the framework proposed in
[23]. It is equal to the product of three measures: the distance
in image space from the nearest depth discontinuity, to penalize
possible wrong color samples due to small misalignment; the
depth of the texel in camera space, to give a higher quality at
the samples acquired by closer views; the view angle, to give
a higher quality at the samples that are less orthogonal with
respect to the view direction.

B. Lighting Estimation

In this step, the main goal is the approximation of the
direction of the main light sources that were in the acquisition
lighting environment, assuming distant lights. We start with
the construction of a rough environment map using a simple
accumulation approach along the specular mirror direction,
followed by a clustering method to detect the main light
sources.

In the specific, for each texel (u, v) independently, we
select all the projected color samples that have a higher proba-
bility to show a not diffuse behavior. We use a trivial approach
based on luminance thresholding, which selects all the color
samples near or in the saturation area of the camera sensor.
In the specific we select all the samples with a luminance
greater than a fixed threshold t = 0.98 (with a luminance range
[0.0, 1.0]). For all those samples, we compute the specular
mirror direction ~r of the view vector ~v, and then we increment
the value of the pixel in the environment map where the
spherical coordinates of the vector ~r are mapped. Then, the
map is normalized with the distribution of all color samples
in the environment along the specular mirror direction. This
distribution is computed as the total number of samples that
project in each specific pixel of the environment map along
the direction ~r. This normalization gives more robustness with
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respect to the camera movement, especially when the temporal
density of the acquisition is not uniform on the whole object
(for example very fast in front of the object and more slow in
the back). Finally, the environment map is normalized in the
range [0, 1] with respect to the maximum value. Even if the
trivial luminance thresholding with a fixed threshold is prone
to introduce noise in the estimation of the environment map,
especially for white object, the high redundancy of the video
data makes the estimation process more robust and stable.

An example of the estimated environment map, with a
comparison with the real one acquired with a reflective metal
sphere, is shown in Figure 3. The map gives us some clues
about the position of the main light sources in the scene,
creating several clusters that correspond to the main real light
sources. To detect the clusters we use a K-Mean clustering
where the number of clusters can be selected by the user after
the visualization of the estimated map. Finally we compute
the centroid of each cluster to obtain an estimation of the light
direction ~lk.

Fig. 3. Comparison of our approximation of the acquisition environment map
(Right) with the real one obtained with a photo of a reflective sphere (Left).

C. Diffuse Color Approximation

In this phase we use the light directions computed in the
Section IV-B to make more robust the estimation of the diffuse
color for each texel. The computation is performed in three
steps. The main idea is to take advantage of the high amount
of color samples projected on each texel to discard all the ones
that have a higher probability to introduce inaccuracy in the
computation of the diffuse color, such as specularity or wrong
projected samples near color discontinuities.

In the first step, color samples are sorted by their luminance
value to discard a percentage pt of them having the lowest
luminance. In our experiments we use pt = 15%. This step
allows to increase the local coherence near the color boun-
daries, avoiding abrupt changes in luminance due to wrong
projected color. In the second step, we discard all the color
samples with a higher probability to have a view-dependent
reflectance behavior, especially specular reflection. Knowing
that a specularity occurs when the view vector is aligned with
the specular mirror direction of the light vector, the idea is
to determine which samples appear close to this direction
and discard them. For this purpose, each light ~lk is reflected
with respect to the surface normal ~n to compute the mirror
direction ~sk and then we discard the color samples such that
arccos (~v · ~sk) < θt, where ~v is the sample view direction,

as depicted in Figure 4. We use a threshold θt = π/12. The
purpose of thresholds pt and θt is not to discard all the samples
with bad properties for the estimation of the diffuse color,
but to decrease the number of them in order to reduce their
influence in the following statistical computation of the diffuse
color. They are chosen to work in the most general cases.

At this point, the set S̃u,v of the remaining samples is used
to compute a threshold tu,v , which is an upper bound of the
median:

tu,v = µu,v + σ2
u,v (4)

where µu,v and σu,v are the mean and the average deviation
of the luminance of the samples in S̃u,v , weighted with the
quality q

(j)
u,v . Finally, the diffuse color Du,v is computed as

weighted average with the quality q
(j)
u,v of the color samples

that have a luminance value lower than the threshold tu,v .

Fig. 4. Graph of the distribution of the samples with respect to the angle
between the view direction and the surface normal. All the samples with an
angle from the specular mirror direction ~sk of the light vector ~lk less than
the threshold θt are discarded in the estimation of the diffuse color.

D. Color Residual Fitting

The idea is to use the residual images, obtained as positive
difference of the color samples from the diffuse color, to
compute the coefficients xi of a linear combination of a basis
of spherical functions hi, which just depend on the local
spherical coordinates (s, t) of the view direction:

n∑
i=0

x
(u,v)
i hi(s, t) (5)

We tested two different basis of spherical functions: Spherical
Harmonics and Hemispherical Harmonics [24]. Using the
Dichromatic Reflection Model, we assume a white light and we
model the color residual using only the luminance difference
between the diffuse color and the input color samples.

For each texel (u, v) we retrieve the set of color samples
Su,v that have a positive residual from the diffuse color and
we solve a system of linear equations:

Ax = b (6)

where A is an m × n matrix that for each row, one for
each sample in Su,v , contains the values of the spherical
functions computed for the view direction of the sample, x
is the vector of the n coefficients xi to estimate, and b is the
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vector with the luminance difference from the diffuse color.
To solve the overdetermined system in Equation 6 we use
a Weighted Singular Value Decomposition (SVD) in order
to take advantage of the quality information q

(j)
u,v related to

each sample. In this way, we compute a weighted least square
solution of the system:

min
{x1,...,xn}

 m∑
j=1

q(j)r2j

 (7)

where

rj =

(
n∑

i=0

xi hi(sj , tj)

)
− bj (8)

The weighted least square solution allows to reduce the
influence of a combination of misalignment in the video-to-
geometry registration and artifacts in the video frames, which
can alter the realism of the result. In general the samples in
Su,v used to solve the equation 7, cover only a small part of the
visible hemisphere. To avoid that the fitting procedure creates
artifacts (banding and ringing effects) in the not sampled areas,
we add some virtual samples, uniformly distributed in the
uncovered regions, with a residual color equal to zero (at
most 400 samples distributed with a Poisson-Disk strategies
with respect to the existing samples). Finally, to reduce the
GPU memory footprint need for the rendering of the SLF, we
compress the floating-point coefficients xi with a simple 8-bit
quantization.

V. RESULTS

For our experiments, we used three different objects of
different materials:

• the DWARF, a terracotta statue (30cm tall) that
presents different types of specularity, in size and
intensity: sharper and with a high-medium intensity
on the dress; wider on the face; almost completely
absent on the beard;

• the GNOME, a ceramic statue (15cm tall) that has
very sharp and high specularity on the hat and a near
diffuse behavior on the body;

• the SLEEPING BUDDHA, an acrylic resin Buddha
(10cm tall) with different types of coatings: a gold
paint on the body; a reddish specular paint on the
dress; a diffuse black paint on the hair.

The videos were acquired with a full HD video camera at
the highest quality to reduce the compression artifacts, while
the 3D models were generated by 3D laser scanning and
then simplified to obtain a medium resolution model for
the computation of the texture parameterization. Today 3D
scanning is a mature technology that guarantees the generation
of precise and accurate models in short time (both for the
acquisition and the processing of the data), in an easy and
completely automatic way and with low cost hardware (e.g.
consider the NextEngine 3D Scanner HD). For each object we
used a 2048×2048 texture. All the data about the datasets are
shown in Table I (the size in triangles of the 3D model, the
time for the generation of the medium resolution 3D model,
the length in frames of the videos used for the estimation of

the SLF, the time required for the alignment of the video on
the mesh using the method in [22], the time required for the
computation of our approximation of the SLF). We performed
our test on a PC with an Intel Core i7 950 with 12GB of RAM
and a NVIDIA GTX580 1536MB.

The figures 5, 6 and 7 show a comparison of the results
of our method with an original frame of the video used by
the algorithm. In the specific for each figure, we show the
original frame (a), our estimation of the diffuse color (c), and
our estimation of the Surface Light Field using two different
basis of spherical functions: Hemispherical Harmonics (HSH)
in the sub-figures (e)(f)(g); Spherical Harmonics (SH) in the
sub-figures (h)(i)(l). In SLF estimation we tested an increasing
number of coefficients (4, 9 and 16 coefficients for HSH and
9, 16 and 25 coefficients for SH) up to a number that allows
the real-time rendering (above 25 fps) on the last common
GPUs. From a qualitative evaluation of these results, we can
say that: the method proposed in the Section IV-C estimates a
good approximation of the Lambertian shading of the object
without artifacts and discontinuities, removing all the other
reflection effects, like the specularities (compare the (a) and
(c) in Figure 5, 6 and 7); the final SLF has a good similarity
with the original frame, a similarity that increases with the
number of spherical functions that are used.

To have a more objective evaluation of our results (Figures
5, 6 and 7), we used two different metrics to measure the
image fidelity between the original frames and the obtained
renderings: the Mean Squared Error (MSE); the Structural
SIMilarity (SSIM) index [25], a perceived fidelity measure
(the value is a percentage and the value 100% is returned
when we compare an image with itself). Table II contains the
value of the two metrics for our test cases. We included as
well the error between the original images and the renderings
with only the diffuse component (sub-figure (c)), in order to
highlight the improvement introduced by the term that models
the residual color. From the data in the table we can see how
the accuracy and fidelity of the SLF increase with the number
of used spherical functions and, given a number of coefficients,
the HSH representation outperforms the SH representation.

The renderings show some small differences from the
reference frames. In the diffuse color, we lost some of the
very small details due to small misalignment in the video-to-
geometry registration. Some highlights appear different from
the reference frame due mainly to imprecise normals (for
example on the hat of the GNOME). Our method does not
reproduce some specular highlights due to Fresnel effects
(for example on the nose and on the top-right part of the
face of the DWARF) because this type of effect appears near
to the silhouette of the object, where our algorithm gives a
lower quality at the samples. Finally the highlights appear
less bright than the original ones in the original frames due
to the limited number of functions (at most 25 functions for
SH and 16 for HSH) used to model the residual color. To be
more specific, the limited number of spherical functions used
does not allow to reproduce the narrower specularity peaks,
obtaining a band-limited reconstruction of the specularity. This
aspect is confirmed by the higher rendering quality obtained
by increasing the number of functions. The use of a higher
number of spherical functions can surely remove this type of
imperfections but at the cost of lower rendering performance.
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(a) Original Frame (b) Enhanced SLF (c) Diffuse color

(e) HSH - 2 bands (f) HSH - 3 bands (g) HSH - 4 bands

(h) SH - 3 bands (i) SH - 4 bands (l) SH - 5 bands

Fig. 5. DWARF results

In order to guarantee the real-time rendering of our SLF repre-
sentation, we can obtain a further improvement of the visual
results by introducing a small change in the rendering Equation
3, based on the enhancement of the residual component. We
introduce a new term Is, a user-defined parameter to change
the intensity of the residual component, used in the following
manner:

C(u, v, s, t) = D(u,v) + Is

n∑
i=0

x
(u,v)
i hi(s, t) (9)

The rendering results with this new parameter Is are shown in
the subfigure (b) of the figures 5, 6 and 7, using the SLF
estimated using 5 bands of SH (subfigure (l)). The values
assign to the parameter Is are 1.6 for the GNOME and the
DWARF and 1.2 for the SLEPPING BUDDHA. We can note
how the visual differences between the rendering (b) and the
original frame (a) are further reduced. This observation is
confirmed from the estimation of the MSE and SSIM metric
between the two images, reported in the last row of the
Table II. The video supplemental material shows a real-time
interaction with the our SLF approximation. The results are
realistic and without artifacts.

VI. CONCLUSIONS

We have presented a new method for the estimation of the
Surface Light Field starting from a 3D model and some video
sequences, acquired moving the camera around the object. The
video sequences do not guarantee a uniform sampling density
of the view direction. In order to avoid interpolation artifacts
due to the very irregular video acquisition, characterized by
a dense coverage sampling only along the camera path, we
separate the SLF in two components: the diffuse color and
the residual from the diffuse color. The first component is
estimated using statistical operations that take advantage of the
data redundancy of the video sequences. The main idea is to
discard all the color samples that have a higher probability to
exhibit a not diffuse behavior. We roughly estimate the direc-
tion of the main light sources by accumulation of the saturated
samples along the specular mirror directions and then we delete
all the samples with an angle between the view direction and
the mirror direction of the light vector above a fixed threshold.
The second component models the color residual, which is
the difference from the diffuse color, as linear combination of
a basis of spherical functions. The results on our test cases
do not present artifact due to the interpolation and fitting of
the spherical functions and the similarity measures proof a
high fidelity degree between the renderings with our estimation
of SLF and the original video frames used by the algorithm.
Finally, we have introduced a small change in the rendering
formula to allow the enhancement of the residual component
in order to overcome the limitation of a band-limited fitting
and, at the same time, preserve the real-time visualization of
the model.

For the future work, we will investigate three possible
directions: the study of the robustness of the algorithm with
respect to the temporal sampling, evaluating the rendering
quality obtained with a SLF estimated with a temporal down-
sampled version of the input video sequences; a method to
estimate the best parameter Is in the Equation 9 automatically,
using similarity metrics computed between the SLF rendering
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Geometry Mesh Processing Frames Registration time SLF estimation
(triangles) (minutes) (minutes) (minutes)

DWARF 200k 55 3382 113 72
GNOME 135k 40 2092 73 61

SLEEPING BUDDHA 205k 70 2414 83 65

TABLE I. MODELS AND INPUT DATASETS CHARACTERIZATION

DWARF GNOME SLEPPING BUDDHA
MSE SSIM MSE SSIM MSE SSIM

Diffuse 0.003075 85.187% 0.003089 76.533% 0.005666 79.546%
HSH - 2 band 0.002027 87.169% 0.003059 76.879% 0.002728 83.788%
HSH - 3 band 0.001259 88.365% 0.002661 78.211% 0.001972 85.948%
HSH - 4 band 0.001020 89.040% 0.002543 79.024% 0.001538 87.322%
SH - 3 band 0.001317 87.905% 0.002695 78.099% 0.002237 84.402%
SH - 4 band 0.001066 88.478% 0.002581 78.673% 0.001788 85.650%
SH - 5 band 0.000932 88.818% 0.002515 79.232% 0.001635 86.178%

SH Enhanced- 5 band 0.000869 91.414% 0.002473 82.998% 0.001081 89.481%

TABLE II. ERROR MEASURES

and some peculiar frames of the input videos; the improvement
of the rendering results of objects with a significant meso-
structure by optimizing an additional bump map.
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Fig. 6. GNOME results
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Fig. 7. SLEEPING BUDDHA results
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