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Abstract. In this paper, we propose a novel method for accelerating the
computation of geodesic distances over arbitrary manifold triangulated
surfaces. The method is based on a preprocessing step where we build a
data structure. This allows to store arbitrary complex distance metrics.
We show that, by exploiting the precomputed data, the proposed method
is significantly faster than the classical Dijkstra algorithm for the com-
putation of point to point distances. Moreover, as we precompute exact
geodesic distances, the proposed approach can be more accurate than
state-of-the-art approximations.

1 Introduction

Determining the shortest path between two points on a surface, geodesic, is a
fundamental task of many geometry processing algorithms. Mitchell, Mount and
Papadimitriou (MMP) [12] proposed the first algorithm on polygonal surfaces
with a practical computational complexity. Since then, several approaches have
been presented to improve specific characteristics of geodesic computation.

In this paper, we introduce a method to speed up the computation of geodesic
distances over triangulated manifold surfaces. Our method is based on a pre-
computation step where geodesic distances between vertices of an input trian-
gular mesh are computed and efficiently stored in a data structure that allows
fast querying. Storing all possible geodesics becomes practically infeasible in
the real case, as the required memory rises quadratically with the number of
vertices of the input mesh. Instead, our hierarchical data structure allows to
retrieve geodesic distances between arbitrary vertices in constant time and, con-
temporarily, the required memory rises linearly with the number of vertices of
the mesh.

Differently from previous methods, which are implicitly limited to compute
the plain geodesic distance, the proposed method can be used to compute the
shortest paths on a surface independently by the chosen distance metric. There-
fore, it can be efficiently used to integrate any kind of function/signal over a
surface. Our approach introduces an approximation error in geodesic computa-
tions, but this can be bounded in the preprocessing step.



2 Related Work

Exact Methods. The MMP algorithm, proposed by [12], is the first algo-
rithm that allows to compute exact geodesic distances on polyhedral meshes in
O(n2 log n) time (where n is the number of vertices of a mesh). This algorithm
subdivides each edge into intervals or windows. For each window, the distance
is exactly computed and then propagated in the wavefront order. Chen and
Han (CH) [3] proposed uses hierarchical windows to lower the complexity to
O(n2) time. However, Surazhsky et al. [16] showed that in practical cases this
algorithms is slower and the MMP which typically runs sub-quadratic. Xin and
Wang [19] discovered that 99% of the propagated windows in the CH algorithm
do not contribute to shortest distance computations. So, they proposed to fil-
ter these useless windows improving efficiency of the CH algorithm (ICH). This
has been implemented in the GPU [22] and extended for handling meshes with
holes [14].

Approximated Methods. Surazhsky et al. [16] presented a version of MMP
(AMMP) for the approximated computation of geodesic distances. By merging
adjacent windows, the AMMP algorithm gain a significative speed-up in the
computation (up to an order of magnitude), introducing only a 0.1% of relative
approximation error.Xin et al. [20] proposed GTU, a method based on a pre-
computation step where the mesh is decomposed in triangular patches. The
distance between each pair of point belonging to the same patch is precomputed
and stored in a table. Geodesic distances are obtained in a two step process: first
a Dijkstra shortest path computation is used to compute patch to patch distance,
a second step completes the distance computation by using direct access tables.
The Saddle Vertex Graph (SVG) approach recently proposed by Ying et al. [21]
consists of a sparse undirected graph that encodes complete geodesic information
so that every shortest path on the mesh corresponds to a shortest path on the
SVG. Both GTU and SVG produce a considerable speedup in the computation,
however the proposed method is limited to the computation of a specific geodesic
measure. Fast Marching Method (FMM), proposed by Sethian [15] is a special
case of the Level Set Method [13] for solving the boundary value problems of the
Eikonal equation. This original method is limited to work for the case of regular
grids. This method has been extended for the general case of triangular meshes
[7], modified for fast computations on graphics hardware [18], or extended to
work in meshes with holes [2]. Further extensions and modifications to the
original algorithm were proposed in [10,11], Kirsanov’s thesis [8], Martinez et
al. [9], and Bertelli et al. [1]. Crane et al. [5] proposed a novel approach called
Heat Method (HM). The main idea is to exploit the relationship between the
heat kernel function kt,x(y) and distance function; i.e. image to touch a point x
on the mesh surface with a scorching hot needle.The method is straightforward
to implement and produces good approximations for relatively smooth surfaces;
quality decreases in presence of fine details.
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Fig. 1. Overview of the preprocessing pipeline: (a) build a Voronoi partitioning of the
input mesh; (b) recursively subdivide each patch; (c) precompute for each region the
geodesic distances and compress it as a set of images; (d) simplify the vertex-patch
connecting graph by using a greedy pruning algorithm.

3 Algorithm

The preprocessing pipeline (see Fig. 1) to derive the hierarchical structure used
to compute geodesics is composed by the following steps:

– We build a hierarchical partitioning of the input mesh. We recursively use
a Voronoi-based approach using a set of uniformly sampled seeds (Fig. 1.a
and 1.b). See section 3.1.

– For each region, we precompute the geodesic distances and we store them in
a compressed graph based representation that allows for direct fast access
(Fig. 1.c). See section 3.2.

– We simplify this graph by using a greedy pruning algorithm that minimizes
the amount of introduced error (Fig. 1.c). See section 3.3.

– We assemble the graph that interconnects all the precomputed per patch
information, in order to perform geodesic queries between any vertex pair.

3.1 Patch subdivision

We want to subdivide the mesh into a set of disk-like patches that have ap-
proximately the same size. Moreover, in order to minimize the introduced error,
the border between patches should be reasonably smooth and possibly convex
with respect to the distance metric defined over the surface. To conform to our
constraints, we used a strategy based on centroidal voronoi partitioning of the



initial surface. Given a distance metric M defined over the input surface, we
start from a Poisson Disk sampling of the surface under the metric M by using
the algorithm proposed by [4] and choosing as seeds a subset of the mesh ver-
texes. Then, we perform Voronoi partitioning of the initial mesh by using the
poisson samples as initial seeds; i.e. each vertex is associated to the closest seed
under the distance metric M . In order to improve the partitioning, we interleave
this step with a Lloyd relaxation step choosing as centroid of each patch the
farthest point from boundary of the patch as in [17]. For this partitioning step
when computing all the distances (for computing Voronoi partitioning and for
Lloyd relaxation) we assume the use of the same distance metric of the geodesic
we want to approximate.

Fig. 2. A possible patching of the right ear of the ARMADILLO model. This parti-
tioning creates a patch with two border rings.

This strategy does not guarantee that each patch is homomorphic to a disk.
Indeed, it may produce patches with multiple borders. In the example shown
in figure 2, the yellow patch has two border rings. This topological issue may
commonly rise in correspondence of high curvature regions of the input surface
(e.g. the ear of figure 2 or the tail which is also present in the Armadillo
model). To overcome this issue, after a first partitioning step, we check each
patch to have a single border. When this condition is not satisfied for a patch
pi, we re-run the Voronoi partitioning algorithm on the portion of the surface
embedded by pi. We repeat this step until every newly generated patch has
exactly one single border.

This decomposition procedure is repeated in an hierarchical manner. We
decompose each patch using the same Voronoi strategy, keeping tracks of the
hierarchical relation between levels of subdivisions. In our experiments, we no-
ticed that two levels of subdivision are enough to our purposes. Figure 3, on the
left side, shows two examples of the patch decomposition.

The density of the patch subdivision is controlled by the number of seeds for
the first level and the number of seeds used for each patch on the finest levels
of the hierarchy. This constant can be set by the user at the beginning of the
precomputation and it can be optimized to maximize the performance.
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Fig. 3. On the left side, the first two levels of Voronoi decomposition of the bunny
model, together with the precomputed geodesics distances. On the right side, an ex-
ample of a triangulated patch. Border vertices (Bv) are shown in gray, internal vertices
(Iv) are colored in yellow.

For each patch, we classify the vertices among two categories: border vertices
(Bv) and internal vertices (Iv). In figure 3, on the right side, is shown an ex-
ample: border vertices are colored in gray while internal vertices are in yellow.
Border edges are highlighted in red.

3.2 Geodesic precomputation

We precompute the geodesic distances by using the implementation of the MMP
algorithm [12] as defined in Surazhsky [16]. This algorithm, despite the high com-
putational cost, provides a very accurate estimation of the geodesic distance. As
this is a preprocessing offline step, we are more interested in increasing the
provided accuracy with respect to the time required by the process. The com-
putation for each patch p can be summarized in the following steps:

1. For all the patches at any level, for each pair of border vertexes vi, vj ∈ p, we
compute and store their relative distances in a |Bv|× |Bv| triangular matrix.

2. For each patch at the final level of the hierarchy, we compute the distance
among border to internal vertices geodesic distance and store it in a |Iv|×|Bv|
triangular matrix.

3. For each patch at the final level of the hierarchy, we compute the geodesic
distances between each pair of internal vertices and store the values in a
|Iv| × |Iv| triangular matrix.

These matrices represents graphs connecting various subsets of the nodes and
whose arcs represents the precomputed distances. We keep these matrices as
compressed images (we used “.png” compression), so that they can be efficiently
stored to disk. We use floats to maintain distance values and the RGBA8888

format to encode each float value into a pixel. Intuitively, assuming 32bit (4
bytes) floating point, we map each of the 4 bytes of the float value into each
channel of the RGBA image format.
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Fig. 4. Left: Pruning of two nodes: a) Two red vertices are selected for pruning. b)
Pruning produces a new dummy node; Right:a) An example of a pair of nodes eligible
for pruning (green) and two pairs not eligible (blue and red). b) An example of a border
vertex and its |Bv| × |Bv| edges in both the patches it is contained. To have a clear
picture, edges are only sketched.

As each patch has an unique border, we can sort the vertices along the
border while internal vertices are sorted by considering their minimal distance
to the border. Since close vertices in the patch will correspond to closer rows in
the image, the produced image will vary smoothly allowing good compression
ratios.

3.3 Graph pruning

To reduce the size of the matrices described in the previous section, we simplify
the graphs they represent by using a greedy pruning procedure that decreases
the number of vertices actually used to generate all the pairs for which we store
distances. The pruning procedure is done by iteratively merging adjacent patch
boundary vertices: the intuition is that if two vertices are geometrically close
(e.g. two adjacent vertices on a patch border) then their geodesics distances to
other nodes will be “similar”.

The error introduced by a merging operation can be estimated as the average
difference of geodesic distances with respect to the other nodes of the adjacency
matrices. The merging operation is shown in the left part of figure 4.a. Obviously,
two nodes can be merged only if they belong to the same set of patches as shown
in the right part of figure 4.

Merging operations are executed in a greedy fashion by prioritizing the op-
erations with respect to the introduced error. The process halts when the intro-
duced error exceeds a given threshold, δ. We express δ as a percentage of mesh
bounding box diagonal. Results have shown that on small meshes (e.g. in the
70K-faces BUNNY model), a very small δ, such as δ = 0.01%, does not produce
a significant pruning. In the case of high resolution meshes, the error introduced
by every merging operation becomes smaller because the mesh is more densely
sampled. Furthermore, the pruning becomes effective producing a considerably
speedup.



3.4 Query step

The Dijkstra shortest path computation is modified to exploit all the advantages
of the hierarchical structure. There are two possible class of geodesic queries:
The SSSD geodesic computation which stands for Single-Source to a Single-
Destination and the MSAD geodesic computation which stands for Multiple-
Source to All-Destination.

a) b) c) e)d)

Fig. 5. An overview of the different class of relations and nodes that are contained by
our hierarchical structure: (a) Border and internal nodes; (b) Border to Border arcs;
(c) Internal to Border Arcs; (d) Border to Internal arcs; (d) Internal to Internal arcs

Figure 5 shows an overview of the different class of relations and nodes that
are contained by our hierarchical structure.
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Fig. 6. a) Different cases of geodesic computation between vertices that belong to the
same patch at the final level; b) The set of arcs enabled for Dijkstra shortest path
computation for the general case.

SSSD distance computation Given two arbitrary vertices, v1 and v2, we first
retrieve the patches containing them along all the level of the hierarchy. If v1 and
v2 belong to the same patch at the last level of the hierarchy pi (as in figure 6.a
left) then their distance can be simply retrieved by performing a direct access
to the matrix relating internal to internal vertices of pi.

Otherwise, when v1 and v2 do not belong to a common patch at the last lever
we implicitly build a subset of all the arcs on which runs Dijkstra shortest path
algorithm. We first retrieve the level Lv1,v2

of hierarchy where v1 and v2 belong



to a common patch. In the case there is no common patch, we consider the first
level of the hierarchy. We only consider the arcs that relate each vertex and its
ancestors up in the hierarchy until the level Lv1,v2 is reached. We also enable all
the arcs relating border to border relation at level Lv1,v2 . In this way, we allow
the propagation algorithm to make jumps as long as possible when the nodes
are far away. Then, we execute a finer propagation when the front approach its
final destination, see figure 6.b.

Moreover, we took advantage of the A* algorithm to further optimize the
search. The A* algorithm requires a knowledge-plus-heuristic cost function of
node v (denoted with f(v)) to determine the order to examine the visited nodes.
The cost function f(v) is a sum of two functions:

– the past path-cost function, which is the known distance from the starting
node to the current node v (denoted with g(v))

– a future path-cost function, which is an admissible “heuristic estimate” of
the distance from v to the goal (denoted with h(v)).

The h(v) part of the f(v) function has to be an admissible heuristic; that is, it
must not overestimate the distance to the goal. In our case, it is simply the Eu-
clidean distance to the destination vertex. Therefore, we obtain a heuristic that
is monotone (i.e. satisfies h(v) ≤ d(v, u) + h(u) for every edge (v, y)) and it is a
lower bound. Indeed, the length of the shortest path between two points cannot
be shorter than the norm of the vector connecting them. As exposed in [23,6], the
A* algorithm achieves better timing when using admissible monotone heuristics.

MSAD distance computation The MSAD distance computation algorithm
is a generalization of the SSSD computation. We first use patch internal geodesic
matrices to propagate all the distances to the vertices that belong to the same
patch. Then, we propagate distances to the border of the patch. We use all the
border to border adjacency matrices to propagate distances. Finally, we patch
internal geodesic matrices to propagate the distances to the final nodes.

4 Results

We implemented our algorithm in C++ using the VCG library 3, an open source
portable C++ template library for geometry processing. All our tests were per-
formed on a machine equipped with an Intel i7 processor with 8 cores at 2.6GHz.
Only the preprocessing part was parallelized.
Figure 7 shows the results of the computation of MSAD distance on different
models (distance isolines are visualized). Our results are compared to those ob-
tained by applying the MMP algorithm. We can see that our method produces
smooth geodesic fields. Moreover, by checking the isolines, no artifacts are visible.
The achieved accuracy in our results makes our results hardly distinguishable
from those computed by the MMP algorithm.

3 http://vcg.isti.cnr.it/vcglib/



Armadillo

n1

n2 100 200 300

5 0.01126s 0.01128s 0.01145s

10 0.01134s 0.01137s 0.01176s

15 0.01166s 0.01164s 0.01215s

Busto

n1

n2 100 150 200

5 0.01989s 0.01979s 0.01978s

10 0.01983s 0.01983s 0.01986s

15 0.01986s 0.01990s 0.01991s

Ramesses

n1

n2 950 1000 1200

5 0.06295s 0.06088s 0.06112s

10 0.06335s 0.06027s 0.06202s

15 0.65986s 0.06077s 0.06243s

Table 1. The average query time (left) and mean average error (right) statistics
when varying n1 and n2 on the Armadillo (173Kfaces) Busto (255Kfaces) and
Ramesses (826K faces) models.

Proposed [16] Proposed [16] Proposed [16]

Fig. 7. Comparison of geodesics computed with our method with respect to the exact
MMP algorithm by Surazhsky [16].

4.1 Parameters tuning

In our algorithm, the user needs to specify the δ parameter which controls the
introduced error during the pruning phase, see section 3.3). Additionally, the
user has to specify the number of patch subdivisions used for each level of the
hierarchy. We noticed that two levels of hierarchy are sufficient for high quality
result. We refer to n1 and n2 as the number of subdivisions created for the first
and second level of the hierarchy.
Some statistics relating the time needed to perform a query with respect to
different values of n1 and n2 are reported in table table 1. To estimate the time
needed to perform a query, we repetitively selected randomly pairs of nodes on
the mesh to perform SSSD searches. From experiments, we noticed that the
optimal number of seeds is proportional to the number of faces/vertices of the
input mesh.

In figure 8, we report the average query time when varying δ. The error ε is
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Fig. 8. Effect of parameter δ on query time and introduced error. δ and ε are expressed
as % of the diagonal of the bounding box.(a) Average query time T (s) plotted for
variable pruning threshold δ. (b) Average mean error ε plotted for variable pruning
threshold δ.

relative to the geodesic evaluated by using the exact MMP algorithm [16]. Both
δ and ε are expressed as a percentage of the diagonal of the model bounding
box. As expected, the query time is inversely proportional to δ which governs
the amount of merging operation performed during the pruning. Conversely, the
amount of introduced error is proportional to δ.

4.2 Preprocessing time

n1

n2 100 200 300

5 333.4s 218.7s 182.2s

10 287.3s 197.5s 202.1s

15 264.2s 191.1s 171.5s
Table 2. Timings for the pre-
processing step when varying
n1 and n2 on the Armadillo
model.

Model MPP VCG VoroGeo Speedup

Armadillo 1.3s 0.57s 0.011s 51x

Busto 8.1s 0.82s 0.019s 44x

Ramesses 47.3s 2.73s 0.061s 45x
Table 3. Comparisons of speedups of our algorithm
with respect to exact MMP algorithm by Surazh-
sky [16] and the algorithm for computing geodesics
included in the VCG library for the case of MSAD
computations.

We report in table 2 timings for the preprocessing step when varying n1 and
n2. Since our implementation runs computations for each patch in parallel, the
preprocessing time tends to decrease when increasing the total number of regions
in the first and second layers. On the other hand, as we discussed in section 4.1,
this does not necessarily imply a decrease in the query time.

A comparison of geodesics computed with our method with respect to the
exact MMP algorithm by Surazhsky [16] can be found in the additional material.



4.3 Speedup and comparisons

In table 3, we report the effective speedup achieved by our algorithm with re-
spect to the geodesic algorithm employed in the VCG library. Through several
experiments, we have also noticed that time performances became comparable
when applying the VCG geodesic algorithm to a decimated version of the mesh.
However, accuracy exponentially decreases making these results useless in prac-
tice.

5 Conclusions

We proposed a method to speed up the computation of geodesic distances on
arbitrary manifold surfaces. The method is based on a preprocessing step where
the mesh is decomposed into hierarchy of disk-like regions. Geodesic distances
are precomputed on subsets of the vertices of those regions and stored for a later
use.

Compared to previous methods, our method is independent from the metric
used to compute distances over the surface. Additionally, our method allows to
control the amount of introduced error with respect to the exact value.

We successfully integrated the exact geodesic computation proposed by Surazh-
sky [16] within our framework. This method [16] is very accurate (close to the
exact geodesic value), but it unfortunately demands high computational costs.
We showed several examples how our method can be used to speed up the entire
process introducing a very small approximation error.

We believe that many geometry processing algorithms may benefit from the
proposed method. Furthermore, our method may be used to integrate over man-
ifold surfaces any arbitrary point-to-point functions, independently from their
complexity, and make the querying very efficient. Thanks to this flexibility, our
method may be used as an essential component in various application scenarios.
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