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Abstract We present a novel interactive framework for
improving 3D reconstruction starting from incomplete
or noisy results obtained through image-based recon-

struction algorithms. The core idea is to enable the user
to provide localized hints on the curvature of the sur-
face, which are turned into constraints during an energy

minimization reconstruction. To make this task simple
we propose two algorithms. The first is a multi-view
segmentation algorithm that allows the user to prop-

agate the foreground selection of one or more images
both to all the images of the input set and to the 3D
points, in order to accurately select the part of the scene

to be reconstructed. The second is a fast GPU-based al-
gorithm for the reconstruction of smooth surfaces from
multiple views, which incorporates the hints provided

by the user. We show that our framework can turn
a poor quality reconstruction produced with state-of-
the-art image-based reconstruction methods into a high

quality one.

Keywords Image-based reconstruction · Image-based
modeling; Surface reconstruction · Depth maps fusion ·
Energy minimization on the GPU

1 Introduction

Image-based 3D reconstruction includes all techniques

that employ images to infer the 3D shape of an object,
e.g. shape-from-silhouette, shape-from-shading and multi-
view stereo 3D reconstruction. These techniques have

become a common tool for 3D object acquisition thus
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enabling a complex scene to be rapidly reconstructed
from a set of digital images on a consumer PC with
publicly distributed software to produce a dense re-

construction starting from a set of input images. Such
software includes VisualSFM, which is a bundled appli-
cation which includes several Open Source algorithms

such as Bundler [36] and PMVS [17] to produce a dense
reconstruction starting from a set of input images. This
can be also be achieved also with online services such

as the Autodesk 123D Catch Web application.

One weakness of most of the MVS algorithms is
that the quality of the final reconstruction depends
on some assumptions that are not always met. Incom-

plete or noisy reconstruction can be caused by vari-
ous quite common conditions, such as a few overlaps
between images, camera movements that provide in-

sufficient parallax information, homogeneous color ap-
pearance (lack of texture) of the object to be recon-
structed, hard shadows, and moving occluders such as

cars or people. These unfavorable conditions often hap-
pen for man-made functional elements, such as build-
ings, streets, bridges, pipes, toys, etc., which often con-

sist of smooth/flat surfaces of a homogeneous appear-
ance.

To account for these and similar problems, many al-
gorithms use different shape priors to increase the qual-

ity of the final reconstruction. For example, Sinha et al.
and Gallup et al. [35,18] assume that the surfaces in the
scene are flat, while Furukawa et al. [15] assume that ad-

jacent surfaces are flat and form a quasi-right angle (the
so-called Manhattan world assumption). More complex
shape priors may be used, such as the swept surfaces

adopted by Changchang Wu et al. [41] for the recon-
struction of architectural buildings. Another method to
improve the reconstruction of missing/incomplete parts

specific for architectural buildings is the one of Chen et
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al. [?] which approximate the building surface with pla-

nar and curve surfaces in a robust fashion, taking into
account that, in general, in this case many of the re-
constructed points are inliers. However, there are cases

where many different hypotheses for the missing sur-
face may be consistent with the data; In these cases
additional geometric constraints are not sufficient and a

semantic interpretation of the images is necessary. Bao
et al. [3] introduce semantic priors, that is, high level
priors (e.g. a car) which are extracted and collected in

a learning phase.

We propose an interactive framework to enable the
user to provide high-level geometric information to im-

prove the reconstruction. The user can specify with a
few strokes the object of interest and the geometric con-
straints on one or more images, i.e. parts of the ob-

ject that have one or more directions of zero curvature.
These hints are not helpful where the reconstructed sur-
face is something like a tree or a bas-relief, but they are

very useful for man-made objects such as walls, pipes,
panels, toys, etc. For example, if a region is flat, the
user can draw two orthogonal straight lines, if the re-

gion follows a cylindrical path, as in a pipe (see Fig-
ure 4), the user can draw a single line along the pipe,
and so on. The object selection is accurately propa-

gated between all the images and on the reconstructed
3D points by a novel multi-view segmentation algorithm
using a joint 2D-3D graph-cut formulation. This algo-

rithm can be seen as an extension of the GrabCut [32]
algorithm. The final surface, expressed as a union of
depth maps, one for each calibrated image, is obtained

by recasting the segmentation and the curvature hints
into an energy-based multi-view reconstruction prob-
lem, which is solved entirely in GPU. Each depth map

is computed by means of a minimizing an energy func-
tional which takes into account the user indications, the
initial reconstruction and the coherence among different

overlapping depth maps. The multi-view segmentation
and the soft constrained energy-based multi-view re-
construction algorithm of the framework are the main

novel contributions of this work.

2 Related work

This paper contributes to two different fields, both of
which have a substantial body of literature: Image Seg-

mentation and Multi-View Reconstruction. In the fol-
lowing we concisely review the state of the art on both
fields, focusing on those algorithms that are more closely

related to our work.

2.1 Image Segmentation

Image Segmentation refers to partitioning the pixels of

an image into groups that share similar characteristics.
Here, we are interested in partitioning the image into
foreground pixels, which represent the object of interest,

and background pixels. One of the earliest improvements
on the crude manual segmentation were Intelligent Scis-
sors [29], where the user defines various anchor points

along the silhouette of the object, and a minimization
algorithm adjusts the contour to match the gradient
change of the image. Active Contours (or Snakes) [23]

also work by minimizing an energy function over a con-
tour (that is, a snake) accounting for image gradient
and contour bending. More recent approaches do not

work on the parametric definition of the contour but
on the foreground/background classification of the pix-
els. In their seminal paper, Boykov and Jolly [6] recast

the segmentation problem as a graph problem. More
specifically, an image is mapped onto a graph where
each pixel is a node and is connected to neighbor pix-

els by arcs. There are also two special terminal nodes,
one for the background and one for the foreground, to
which all other nodes are connected. The cost of a pixel-

pixel edge is set to penalize separation between simi-
lar pixels, while the cost of a pixel-terminal penalizes
setting the pixel to the background or foreground (for

example on the basis of the initial manual pixel an-
notation by the user). With this formulation any cut
in the graph corresponds to a partition of the pixels

into two sets: those connected to the foreground termi-
nal and those connected to the background terminal.
The solution thus has a cost which is the sum of the

cost of the arcs in the cut, which can be minimized
by min-cut max-flow algorithms. Graph Cut methods
have become the de-facto standard for image segmen-

tation [2], thanks to their conceptual simplicity and to
very efficient polynomial-time solvers [28]. Since their
inception, the technique has been strengthened using

shape prior information to disambiguate similar color
areas [14], with an inclusion of Dijkstra’s algorithm to
preserve thin structures [39]. One of the most successful

improvements is due to Rother et al. [32] who proposed
an iterative algorithm where each iteration consists of
solving the min-cut problem and re-assigning the cost

functions on the basis of the solution found, until con-
vergence. In addition, they introduced the Gaussian
Mixture Model (GMM) to integrate color information

in place of the simpler intensity histograms.
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2.2 Multi-View Object Segmentation

Now that is common to have a set of calibrated images

of an object, the problem of segmenting a single image
has evolved into how several images (of the same scene)
can be segmented at the same time. Graph-cuts can

be naturally generalized to multiple images and thus
many algorithms use them. All the approaches need
to identify a way to connect pixels from different im-
ages. Sormann et al. [37] stack the images to form a

3D texture and use a preprocessing step to segment
each image in clusters so as to reduce the size of the
graph by using one node per cluster and not per-pixel.

They assume a short baseline, that is, consecutive im-
ages in the stack do not change too much, so that the
neighborhood among pixels of different images makes

sense. Campbell et al. proposed the Volumetric Graph-
Cuts [10], where the scene is voxelized and node-voxels
are added to the graph, an idea somewhat reminiscent

of the Voxel Coloring approach [34]. They use the fix-
ation hypothesis, that is, that all the images look to-
wards the object, which consequently is located roughly

at the center of each image. They can thus simultane-
ously initialize the foreground/background and define
the bounding box of the scene to be voxelized. The

voxel nodes are essentially a means to connect pixels
from different images. In a subsequent work [9] by the
same authors the voxel grid was replaced by adding

stereo correspondences and epipolar constraints to di-
rectly connect pixels from different images. Djelouah et
al. [12] use a set of sample points uniformly distributed

in the volume (under a similar hypothesis as in [10])
and consider the tuple of pixels defined by the projec-
tion of the sample point on the images. The key idea is

that if all the elements of a tuple are classified as fore-
ground, then the point belong to the object’s surface.
Similarly to [32], they use a GMM model and an iter-

ative process for a posteriori estimation (MAP) of the
classification variables. Sparse 3D samples are also used
by Djelouah et al. [13], where the problem of multi-view

segmentation is extended on the time dimension to sup-
port multi-view video segmentation and superpixels are
used to reduce the computational complexity.

Other approaches, such as Bleyer et al. [5] and Kowdler
et al. [1], assume that the objects in the scene can be ap-

proximated by planes, and that the baseline is so short
that a reasonable depth map can be estimated. In this
setting the segmentation can be set at an object level

and 3D spatial relations between objects are used.

2.3 Multi-view Stereo Matching

According to [33] the multi-view dense stereo recon-

struction algorithms can be categorized depending on
their properties, for example depending on the surface
representation used, on the reconstruction algorithm

used, on the initial requirements, and initial hypotheses
regarding the shape to reconstruct.

Many MVS reconstruction algorithms are based on

segmentation. Typically, each image is segmented into
the background and foreground (of the object of inter-
est). One of the oldest of this class of methods is the

shape-from-silhouette. Such methods estimate the vi-
sual hull of the object, that is the maximal surface con-
sistent with the silhouette for all the views, by carving

the volume of the object according to the silhouette in
the different views. More recently, Yezzi and Soatto [42]
explored the dual connection between the segmenta-

tion of an object in multiple images and 3D reconstruc-
tion of the underlying object. They employed a level set
method, solved with a multi-resolution scheme. Kolev

et al. [25] reformulated the problem as a Bayesian esti-
mation of the most probable shape that would yield the
observed images, making the method more robust with

respect to noise. In Sorman et al. [38] each image in the
set is first clustered using mean-shift and then these
clusters are segmented via GraphCut. However, seg-

mentation happens sequentially, whereupon each seg-
mentation provides a shape prior to be used in the
subsequent one. Kolev et al. [26] deal with the image

segmentation of all the views by projecting an evolv-
ing 3D surface. The problem is the setup in an en-
ergy minimization framework where the energy terms

proposed take into account background and foreground
terms plus a photo-consistency term. In a more recent
work [27], the authors added an anisotropy term to

this energy to also account for the orientation of the
evolving surface. Jancosek et al. [22] compute an over-
segmentation of the dataset as a first step in order to

reduce the computational load and to provide priors for
reconstructing flat areas of uniform colors. A recent hy-
brid (silhouette-based / correspondance-based) method

capable to improve the reconstruction of objects with
few visual features (e.g. uni-colored objects) has been
proposed by Hoangminh et al. [?]. This method exploits

the geometry reconstructed by means of standard SFM
approaches to improve the automatic extraction of the
silhouette. Another interesting paper to cite, even if not

an MVS method, is the work of Liangliang et al. [30]
which proposes a segmentation-based approach to com-
plete the sparse reconstruction produced by scanned

data.
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Many other MVS algorithms work by estimating a

depth map for each image and then integrating these
depth maps into a unique surface. Goesele et al. [19]
proposed a simple and effective algorithm to estimate

the depth for each pixel by evaluating the photocon-
sistency (using NCC) of each 3D point estimated. Only
pixels with high values of correlation are considered reli-

able. The sparse depth maps thus estimated are merged
together by applying the volumetric surface reconstruc-
tion algorithm of Curless and Levoy [11]. Bradley et

al. [7] developed a high-quality method by proposing a
viewpoint adaptive window to drive the stereo match-
ing between image pairs. The high quality depth maps

thus generated are then merged together using a lower
dimensional triangulation algorithm [20]. Furakawa et
al. [16] proposed one of the most general and accu-

rate algorithms for 3D reconstruction from calibrated
images. This algorithm is the core of the PMVS soft-
ware and is based on a patch representation of the sur-
face. The initial oriented patches are estimated, then

expanded to the nearby pixels, and filtered in an itera-
tive way to produce a dense reconstruction.

Our approach is inspired by the multi-view segmentation-

based methods but uses depth maps as evolving sur-
faces to obtain the final reconstruction. A depth map
is estimated for each camera by minimizing an energy

functional composed of three terms: a smoothness term,
a term to account for surface coherency which imposes
that overlapping depth maps must coincide, and a term

that takes into account the curvature hints. The cur-
vature hints drawn by the user as 2D curves are ex-
pressed per-pixel by expanding them over the selected

region (further details in Section 4). The advantage of
this approach is that depth maps are intrinsically free
of topological and geometrical inconsistencies (e.g. self-

intersections), since the energy value and its gradient
only depend on the depth values. In addition, the exist-
ing 3D reconstruction together with the curvature con-

straints reduce the ballooning effects typical of many
energy-based methods. Finally, the GPU implementa-
tion guarantees a fast computation of the final surface.

3 Segmentation on Calibrated Images

Our approach is mostly a direct extension of Rother
et el. [32] to the case of multi-view datasets. Unlike

previous approaches, 3D points are not only a way to
connect pixel of different images, but are also elements
that are classified. Therefore the user input is a selec-

tion of points or pixels, depending on which operation
is easier on the given dataset. Let V be the set of re-
constructed vertices. We know that each vertex in V

corresponds to a pixel in two or more images, that is,

the pixels that were matched to infer the 3D position

of the vertex. So we indicate with Corr(v) the set of
pixels corresponding to vertex v. Let G = (V ∪P,E) be
a undirected graph where V is the set of input vertices

and P is the set of pixels of all images. The set of edges
E is defined as:

E ={(pi, pj)|pi adjacent to pj}∪
{(pi, vj)|pi ∈ Corr(vj), vj}∪
{(vi, vj)|∥vi − vj∥ < τ}

(1)

where we use p to refer to pixels and v for vertices.
The first type of edge is the regular pixel-pixel edge
used in the single image segmentation algorithm. The

second type connects pixels that were matched to cre-
ate a vertex with the vertex itself, thereby generating
a 2D-3D connection. Finally, the third edge type con-

nects vertices that are closer than a threshold in 3D
space. This means that a selection made in one image
can propagate through space and end up in other im-

ages. Choosing the weights for the pixel-vertex and the
vertex-vertex edges entails taking into account the spe-
cific algorithm. Here, we use this general idea to extend

the GrubCut [32] algorithm.
The GrabCut algorithm [32] employs two Gaussian

Mixture Models (GMM), one for the foreground and

one for the background, to model color distribution.
These GMMs are mixtures of K full-covariance Gaus-
sians. A vector α ∈ {0, 1}N assigns to each element

(pixel) a flag indicating foreground or background. In
addition, Rother et al. [32] introduced the idea of using
also a vector k

¯
assigning an element to a specific com-

ponent of the mixture model. The element themselves,
that in our system can either be pixels or vertices, are
indicated with vector z

¯
∈ P ∪ V . The algorithm pro-

ceeds by globally minimizing a Gibbs energy function
of the form

Es(α, k
¯
, θ, z

¯
) = U(α, k

¯
, θ, z

¯
) + V (α, z

¯
)

where θ are the parameters of the Gaussian mixtures,
i.e. the weights for the components, and the means and
covariance matrices of the individual components. The

data term U is computed as in the original formula-
tion by evaluating the log-likelihood w.r.t the assigned
Gaussian from the GMM, with the difference that our

elements can be vertices in addition to pixels. More pre-
cisely:

U(α, k
¯
, θ, z

¯
) =

∑
N

(− log p(z
¯n

|αn, k
¯n

, θ)− log π(αn, k
¯n

))

(2)

The smoothness term is instead specified with re-

spect to an augmented neighborhood system C, which
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Fig. 1 The proposed algorithm vs the standard Grabcut al-
gorithm (1st row - user input, 2nd row - result, 3rd row de-
tails). Note that only 1 out of 27 images received input from
the user.

takes into account 2D-2D links between adjacent pixels
(the only type of link in the GrabCut), 3D-2D links be-
tween a vertex and its projection onto the images and

3D-3D links, between neighbor vertices in 3D space.

V (α, z) = γ
∑
i,j∈C


e−β||zi−zj || if i ∈ P, j ∈ P

Γ if i ∈ P, j ∈ V

e−(β||zi−zj ||τ ||pi−pj ||) if i ∈ V, j ∈ V

(3)

Constants β is set as in the 2D case, that is:

β = 2 (Jzi − zjK)-1
where J.K indicates the expected value, and z is in CIElab
color space, and constant τ for the 3D-3D links is found

by extending the same idea as τ = 2 (Jpi − pjK)-1 where
p is the position in 3D space.

where β is calculated from the expected distance in

CIElab color space, τ is calculated from the expected
distance in 3D space and Γ is a big constant that en-
sures that a pixel and its projected vertex do not get

classified in different sets.

The background and foreground pixels marked by
the user are used to initialize two Gaussian Mixture

Models for the foreground color distribution and the
background color distribution. This initialization is per-
formed with a k-means algorithm. The algorithm then

iteratively performs the following operations:

1. assign each unknown pixel and vertex either to the
background or to the foreground GMM (estimate α)

2. assign a specific Gaussian within the assigned GMM

to each pixel/vertex (estimate k
¯
)

3. re-estimate mean and covariance for each Gaussian

in the GMM based on assigned pixels/vertices (es-
timate θ)

4. solve minimization by GraphCut, estimating sink

and source energies according to the GMMs (esti-
mate α)

5. repeat from step 2 until convergence

Figure 1 shows some results of our technique vs
the Grab Cut approach. As expected, the multi-view
version is more accurate and requires less precise user

interaction. This is the obvious consequence of using
multiple images in our setting. Additionally, we shows
in Figure 2 a comparison with an automatic state of the

art multi-view image segmentation method, i.e. the ap-
proach presented in [12], on a dataset where the object
of interest, the car, is not fully visible in all of the im-

ages. It can be seen how, although both the algorithm
produce acceptable results, our approach is able to cor-
rectly classified the car’s pixel even behind vegetation.

Moreover, the technique [12] applied to the Museum
dataset (the one used in Figure ??) cannot produce any
usable result due to the fact that the object of interest

(the tree) is not in the center of the images.

4 Defining Curvature Hint

The aim of the curvature hints provided by the user is
to know, for a specific subregion of the image, that the
directional curvature along certain directions is zero.

In order to better explain how these curvature hints
work we will refer to a practical example. Figure 3
shows a drawing of a gas pipe. The user wants to hint

that the surface curvature is zero along the direction of
the pipe and does so by drawing a line like the red one
shown in the figure. The intended meaning is that on

any location of the line the curvature along the tangent
vector is zero. The other points of the region inherit the
direction vector of their closest point on the line so as

to obtain a vector field (described by blue segments in
the figure). In other words, we infer a vector field for
all the pixels of the region of interest starting from the

input curvature constraints.

To achieve this, first, the input line L is sampled
as Ls = {(l0, t0), . . . , (lk, tk)}, where li is the position
of the sample and ti is the tangent vector at li. Then

the samples are projected onto the 3D surface obtaining
L′
s = {(l′0, n0, t

′
0), . . . , (lk, ni, tk)} where l′i is the projec-

tion of li, ni is the surface normal at l′i and t′i is the

projection of ti on the tangent plane passing through
l′i, that is, the tangent plane at l′i. So far, we have ob-
tained the direction of the zero curvature for the sam-

pled points. The next step is to propagate this informa-
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Fig. 2 Example of joint 2D-3D dataset segmentation. The top row shows the 4 images out of 55 where the user provided
input for segmentation. The second row shows some of the output image and the third row the same image with the technique
introduced in [12].

Fig. 3 Scheme of the curvature hint. The user input is shown
as a red line, the inferred vector field with blue short seg-
ments.

tion to the rest of the surface. We obtain the direction
orthogonal to t′i as bi = ni × ti and then define a new

grid node (l′i,1, ni,1, t
′
i1
) where: l′i,1 is the 3D point found

by walking a distance ∆ from l′i,1 along bi, ni,1 is the
normal at l′i,1 and t′i,1 = bi×n′

i,1. We iterate this process

along bi and −bi for all i until we obtain a grid cover-
ing the projection of the selected region on the surface,
where the direction of zero curvature and the distance

from the point on the same line of the grid is associated
with each node.

The final step is to interpolate the directions stored
at the grid nodes for all the pixels. This can be simply

done using rasterization, by rendering the grid as filled
quads and letting attribute interpolation do the work.
However, note that, unless the line is a straight one,

pixels would be covered by more than one quads, while
our goal is to get the value from the closest point on
L′
s (see Figure 4). This problem is solved using an idea

proposed by Hoff et al. [21] to compute a voronoi dia-

gram of points and lines. To each grid node we assign

a z coordinate (in view space) as its distance from the
line L′

s. From the fragments with the same coordinates,
the depth test will thus automatically return the one

closest to the line.

5 Reconstruction

The reconstruction algorithm takes as input the recon-

structed geometry, the selection as defined in Section 3,
and the curvature hints. Then, it gives in output a set
of depth maps Z = {zh|h = 0 . . . N}, that is the depth

values for the pixels of the regions rh, which altogether
form the final reconstructed surface.

The algorithm proceeds by minimizing a four term
energy function E(Z), defined as

E(Z) =
∑
∀h

S(zh) + F (zh) +R(zh) + C(zh) (4)

S(zh) is a term to ensure the smoothness of the surface,
F (zh) is a term to ensure that the surface approximates
the original points, R(zh) ensures that different depth

maps agree on overlapping regions and C(zh) accounts
for the curvature hints given by the user.

The minimization is carried by iterative gradient de-
scent.Since we want to leverage on the graphics hard-
ware, we perform the gradient descent computation cam-

era by camera, that is:

zi+1
|h = zi + αi,h∇E(zi|h), h = 0 . . . k

∇E(zi|h) = ∇S(zi|h) +∇F (zi|h) +∇R(zi|h) +∇C(zi|h)

(5)
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Fig. 4 Curvature hint propagation. (a) From a user-given line in image space to a regular sampling on the surface with
inferred directions. (b) Inferring the directions in image space. Point p is included both in q0 and in q1, but the value of q1 is
used.

We use an adaptive step size αi,h which varies with

the global energy as proposed in [4] and increases the
convergence rate:

αi,h =
(zi|h − zi−1

|h ) ·∆i

∆i ·∆i

∆i = ∇E(zi|h)−∇E(zi−1
|h )

(6)

Note that the unknowns are the depth values of all the
pixels in the ROI. We formulate these energy terms in
such a way that the gradient ∇E(zi) can be evaluated

in the GPU for each depth map. In the following we de-
fine each of these terms, while we address the interested
reader to the appendix A for the complete algebraic

derivations of the gradient term.

Please note that the formulas for energies involve
derivations of the depth maps zh along x and y in

image space, more specifically second order derivatives
∂zxx(i,j)
∂zm,n

∂zxy(i,j)
∂zm,n

and
∂zyy(i,j)
∂zm,n

, while we will need the
gradient of these energies with respect to the z value,

that is, the depth of each pixels, which are the unknown
variables of the system.

5.1 Smoothness Term: S(zh)

The smoothness term is defined as the thin plate energy:

S(zh) =
∑
i,j

z2xx(i, j)+

2z2xy(i, j) + z2yy(i, j)∆x∆y

(7)

where we dropped the pedix h to simplify the notation.

5.2 Approximation Term: F (zh)

The aim of the approximation is to make the final sur-
face an approximation of the initially reconstructed one.

We use the implicit Moving Least Squares formulation

proposed in [31] to define the surface approximating the

input points. With MLS, the surface is the zero set of
a function F , s = {x|F (x) = 0}. At initialization time,
we sample the value of ∇F in the neighborhood of the

input points, storing the result in an octree. Note that
this is the only term for which we can pre-compute and
store the gradient because it does not depend on the

depth values but only on the input points.

5.3 Coherence term: R(zh)

The coherence term, forces two depth maps to coincide
on their overlapping 3D region. In general, depth maps
corresponding to the same portion of the real surface

do not actually match. This is due to two factors: first,
each depth map is obtained by interpolating a different
set of vertices, although all of them are approximately

on the real 3D surface (see also Section 5.5); second,
even if the set of vertices were the same, the image
space discretization of the depth maps would induce

large aliasing effects, especially near the silhouette of
each region where the surface is steep w.r.t.the camera
point of view.

The coherence term is defined as:

R(zh) =
∑
∀k

∑
ij

[ϕ (gk(i, j, zi,j)− fk(i, j, zi,j))]
2

(8)

where gk(i, j, zij) gives the depth of the projection on
the neighbor camera ck of the un-projection of the triple

i, j, zij of the camera h and fk(i, j, zi,j) is the current
depth value stored at the same location, as illustrated in
Figure 5. ϕ is a threshold function used to define when

two depth values are close enough to enforce them to be
the same. Note that the outer summation of equation 8
runs over the cameras that overlap with h. Typically,

for each pixel in rh, there are from 0 to 5 neighbors.
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Fig. 5 Enforcing coherence between overlapping range
maps.

5.4 Curvature term: C(zh)

The specified directions of zero curvatures are indicated
with u = [u, v] for the generic pixel and are obtained
as explained in Section 5.4. In order to simplify the

formula and avoid floating point divisions, instead of
minimizing the actual curvature we use the square of
the directional second order derivative of zh, which is:

C(zh) =
∑
ij

(uTH(zhi,j)u)
2 (9)

where H is the Hessian matrix of zh.

Note that the direction vector has to be specified
for all the cameras. However, it would be very tedious
for the user to manually define the directions of zero

curvature for each image and, worse, it is unlikely to be
consistent for all the cameras. Therefore we propagate
the vector uh on all the other cameras by projecting

it in world space and hence re-projecting it on each
camera.

This is achieved using the depth map zh obtained
by the initialization phase and therefore the approxi-

mation of the depth map will influence the projection
(we recall that only the smoothing term is considered
at the initialization phase). This means that the orig-

inal vector and its propagation on the other cameras
could be inconsistent on the real 3D surface, as shown
in Figure 6. To resolve this inconsistency, we perform

the propagation of the vector at each iteration, so that
it tends to converge along with the convergence of all
the depth maps.

The full formula is written as:

C(zh) =
∑
ij

(
zxx(i, j)u

2 + 2 zxy(i, j)uv + zyy(i, j)u
2
)2

Fig. 6 Propagation of the user-given hint on the direction
of zero curvature.

(10)

5.5 Initialization

Since we are using gradient descent, it is crucial to find
an initial solution, i.e. an initial depth map for each

camera, which is close to the global minimum and at the
same time approximates the input reconstructed points.
If the projection of the input points on a given camera

is dense (as can happen, for example, using the output
of PMVS, see the Toy Car example in Figure 9), we
can simply triangulate the projections and obtain the

depth map. On the other hand, if the starting point
is a sparse reconstruction (as with the Pipe and the
other models in Figure 9) we minimize the energy term

S(zh) by imposing the input points as hard constraints,
which is done by solving the resulting system ∇S(zh)
as shown in [40].

5.6 Handling Discontinuities in the Depth Maps

Note that using finite differences for approximating 2d

order derivatives always gives an expression of the fol-

lowing form:

∇(E(Z))ij =

i,j<2∑
h,k=−2

w(h, k)z(i+ h, j + k). (11)

This means that the gradient at pixel (i, j) is a lin-
ear combination of values in a 5× 5 kernel centered at
(i, j). In the derivation of the energy terms shown so far,

we have always employed central differences to express
the partial second derivatives contained in the formula,
i.e. ∂E(z)

∂xx ,∂E(z)
∂yy ,∂E(z)

∂xy . Unfortunately, depth maps have

borders, so we have to adjust the computation of second
derivatives on border pixels. A pixel may be on a border
in two cases: either because the adjacent pixels are not

part of the ROI or because there are discontinuities in



3D Reconstruction for Featureless Scenes with Curvature Hints 9

the depth maps. The latter case is detected by a check

that is run at the beginning of each minimization step,
by testing if the difference with one of their adjacent
pixels is above a certain threshold. Typically, these dis-

continuities appear as the surface evolves, while at the
beginning, triangulation alone or the thin plate energy
tend not to create very steep surfaces.

In order to handle discontinuities, we write the en-
ergy term E(zh) so that differential quantities are dis-
cretized using central, forward or backward differences

adaptively, depending on which adjacent pixels are avail-
able.

This is done by computing a bit code for each pixel,

that is, a tag, indicating how each differential quan-
tity must be computed. Listing 1 shows the algorithm ,
CxCx, FxFx and BxBx stand for central, forward and

backward difference and NOxx means that it is not pos-
sible to compute the second order derivative on that
pixel.

Listing 1 Algorithm to create the code for the 2nd order
derivative along x.

CodeDxDx( i , j )
{

i f ( ( i +1, j ) in rh && ( i −1, j ) in rh )
tag = CxCx ;

e l s e i f ( ( i +2, j ) in rh && ( i +1, j ) in rh )
tag = FxFx ;

e l s e i f ( ( i −1, j ) in rh && ( i −2, j ) in rh )
tag = BxBx ;

e l s e
tag = NOxx;

}

This means that the exact expression of∇(E(Z))nm
depends on how the differential quantities in the neigh-
bor pixels are computed. For each pixel of coordinates

(i, j), we compute a code that says how zxx, zyy and
zxy are computed. In a static LUT, for each code, we
store the coefficients to be applied to the neighborhood

pixels. Figure 7 shows an example of three entries of
the LUT (see Appendix B for the derivation of these
coefficients).

5.7 Performing the Iterative Minimization

Figure 8 shows a scheme of the iterative minimization
algorithm for a generic camera. We use a fullscreen quad
to enable the fragment shader to output a value for

each single zn,m. Each iteration of the minimization is
performed in four steps. In the first pass the tag values
explained in Section 5.6 are computed and stored in the

alpha channel of the target buffer BufferTag.
In the second pass, BufferTag, which contains the

current and previous solution and the previous gradi-

ent, is bound as texture. The fragment shader FS Com-

Fig. 7 Example LUT entries for computing the gradient of
the smoothness term on a pixel (the central one).

puteDelta computes the gradient∇E(zi) , passes along
the value zi and computes a first part of the Equation 5
(that is, the components to be summed to obtain the

dot product).

The third pass consists of summing all the values of
the componentwise products to obtain the two factors

of the fraction in Equation 5. This is done by building
a texture pyramid, as with mipmapping but summing
the four texel values instead of averaging them. Then

the final 1× 1 texture is readback in the main memory
and αi can be computed. The fourth and last step con-
sists of bounding the BufferStepSize as texture and

BufferPos as target and computing zi+1 and copying
zi and ∇E(zi).

Note that when computing zi+1
|h we need to keep

in video memory only the depth map h and the maps
overlapping with h, which are normally less than five.

The need for the overlapping depth map is due to the
only term that is not separable over the depth maps,
that is, the coherence term R(z).

To speed up convergence rate we also use a V-Cycle
multigrid method (see [8]) on each camera. The multi-
grid approach consists of transferring the solution found

for the original depth (grid) into a coarser grid (restric-
tion phase), performing some minimization steps and
then transferring back the solution to the finer grid (in-

terpolation phase).
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1

2

3

4

Fig. 8 The flow chart of the minimization algorithm.

6 Results

We tested our system on several datasets, acquired from
urban scenarios or daily life objects. Here, we highlight

five examples: a pipe, a garbage bin, a van, a toy car
and a plastic bath seat (for babies). Figure 9 shows on
the first column a sample image of the object, on the

second the input used by our system. In these experi-
ments we used both dense and sparse reconstruction to
demonstrate that the approach can work well in both

cases. The input for the Pipe, the Garbage Bin, the
Van are the points reconstructed by Bundler [36] af-
ter the camera calibration (note that these points are

quite dense for the Van). Instead, for the Toy Car and
the Bath Seat we use the output of the PMVS algo-
rithm as input. For comparison purposes, the images of

the third row are produced by the Poisson reconstruc-
tion algorithm [24] run on the 3D points reconstructed
using the PMVS [17]. Please note that the results ob-

tained with the PMVS+Poisson reconstruction are of
a poor quality w.r.t our final reconstruction (shown on
the fourth row) also when the shape is quite complex

like for the Bath Seat case. For the Pipe, the Garbage
Bin and the Bath Seat we needed only one constraint
to specify the direction of zero curvature (see Table 1).

Note also that, even if the input points are few and

Fig. 10 Reconstruction of the Pipe without any curvature
hint (Left) and with curvature hint (Right). Note that the
reconstruction without constraints does not meet the cylin-
drical shape of the original pipe due to small reconstruction
errors in the input points.

they are irregularly distributed (especially in the Pipe

test), they are sufficient for a good initialization of our
reconstruction algorithm.

Figure 10 shows two images of the reconstruction

of the Pipe dataset. It can be easily seen how not im-
posing any constraint (left image) results in a deformed
model where, although the smooth and overlapping en-

ergy terms are minimized, the final shape does not cor-
respond to the one of the original pipe.

6.1 Computation time

The lifecycle of a reconstruction consists of the follow-
ing steps

1. The user selects the region of interest on one or more
images.

2. The segmentation algorithm described in Section 3

and the initialization of range maps are run.
3. The user provides curvature hints as described in

Section 4.

4. The reconstruction phase is run.

where steps 1-2 and 3-4 can be iterated to improve the
final result.

Table 1 reports the time for the experiments run
on a PC with Intel I7 4820k, 3.70 Ghz, equipped with
32 GB Ram, graphics board nvidia GeForce GTX 780

and the number of strokes provided by the user. The
segmentation strokes are provided in the following way:
n1;n2, where n1 is the number of images annotated and

n2 is the total number of strokes on these images. The
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Image dataset Input geometry PMVS+Poisson Our Method
Our Method
(textured)

Fig. 9 Results of our experiments (last two columns) and comparison with reconstructions obtained by applying the Poisson
surface reconstruction algorithm [24] to the output of the PMVS algorithm [17] (3rd column).
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column “curvature hint strokes” reports the number of

images annotated with the curvature constraints in the
same way. For example, for the Garbage Bin we put
a vertical curvature constraint on its cylindrical part

on two images, for the Pipe the curvature constraint
follows the pipe profile in three images. The Bath Seat
requires only one curvature constraint in the center of

its white lower part. The Van requires two strokes, one
on the mirror and one on the hood to convey the right
curvature of these two parts. It can be seen that all the

times (segmentation, initialization and minimization)
are roughly proportional to the number of photographs.

Note that the reconstruction time is fast (just a

few seconds), while the segmentation and initialization
times are quite slow. This is simply due to the fact that
our system is still a prototype written in #F sharp.

This limits the overall performance but not the recon-
struction algorithm which is written entirely in GPU.
The time for initialization is all due to the solution of
the thin plate equation for each camera, except in the

case of the Toy Car, where the initial depth map was
obtained by triangulation in considerably less time. We
point out that in the cases like the Bath seat, where the

points density is moderate-high both the approaches
can be used. Hence, in this case the initialization time
can be reduced by using the triangulation approach.

Also, the number of strokes is very low in all cases,
thanks to the technique shown in Section 4 which al-
lows us to propagate the stroke done in one photo to

the neighbor cameras.

7 Conclusions

We have proposed a framework for the user-assisted im-
provement of image-based 3D reconstruction of man-
made objects. The framework is based on two novel

techniques: a multi-view segmentation based algorithm
allowing a dataset of calibrated images to be efficiently
segmented, and a GPU-friendly energy-based reconstruc-

tion algorithm with curvature constraints. A natural
evolution of the proposed framework would be to add
more possibilities for user-hints, for example to indicate

sharp features or straight segments. In addition, we aim
to modify the initialization phase of the reconstruction
by integrating silhouette-based reconstruction methods

to obviate the need for an initial sparse reconstruction.
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A Algebraic derivations of the gradient of the

energy terms

Smoothness term

The derivative of the smoothness term with respect to zm,n

is simply:

∂

zm,n
S(zh) =

∑
i,j

2zxx(i, j)
∂zxx(i, j)

∂zm,n
+

4zxy(i, j)
∂zxy(i, j)

∂zm,n
+

2zyy(i, j)
∂zyy(i, j)

∂zm,n
∆x∆y

(12)

The unrolled formula, using central finite differences, is:

∇Es(z)m,n =
∂

∂zm,n

∑
i,j

(zi+1,j − 2zi,j + zi−1,j)
2 +

1

8
(zi−1,j−1 − zi−1,j+1 − zi+1,j−1 + zi+1,j+1)

2 +

(zi+1,j − 2zi,j + zi−1,j)
2

(13)

which finally gives:

∇Es(z)m,n = 25zm,n+

3

2
(zm,n+2 + zm,n−2 + zm+2,n + zm−2,n)+

− 8 (zm+1,n + zm−1,n + zm,n+1 + zm,n−1)+

1

4
(zm+2,n+2 + zm+2,n−2 + zm−2,n−2 + zm−2,n+2)

(14)

Coherence term

d

dzi,j
R(zh) =

d

dzi,j

(
(gk(i, j, zi,j)− fk(i, j, zi,j))

2
)
=

2(gk(i, j, z)− fk(i, j, z))(
d

dz
gk(i, j, z)−

d

dz
fk(i, j, z))

(15)

So we need the derivatives of gk(i, j, z) and fk(i, j, z).
Since the cameras are calibrated we know the matrix

Rh,k that transform the depth values from camera k to cam-
era h:

Rh,k = IkEkI
−1
h E−1

h (16)

where I and E are the intrinsic and extrinsic matrices of cam-
era h and k.
gk(i, j, z) is defined as:

gk(i, j, z) = sw · v(z, i, j) = (r30i+ r31j + r33) z + r32 (17)

where sw the row vector that selects component w, (i.e. sw =[
0 0 0 1

]
) and the rij are the components of the R matrix.

The derivative of gk is then:

d

dz
gi,j(z) = (r30i+ r31j + r33) (18)

It is no surprise that the derivative does not depend on z, be-
cause function gk(i, j, z) simply returns the distance between
a point along a line and a plane, which varies linearly.

For function fk(i, j, z) things are a little harder, because
it describes the depth map zk along the projection of the line
on the image plane of camera k. Let us define the parametric
function describing such a projection:

u(z) : IR → IR2 =
sxy · v(z)
sw · v(z)

(19)

Function f is then the composition of z(x, y) : IR2 → IR
with u, i.e. (zk · u) : IR → IR. Therefore, the derivative of
the composition, is

d

dz
fk(i, j, z) =(zk · u(z))′ =

[
∂zk

∂x
,
∂zk

∂y

]
·

(ux(z),uy(z)) ·
[
d

dz
ux(z),

d

dz
uy(z)

] (20)

We still need to define what d
dz

ux(z) is (and, by sym-
metry, this will also yield its y-axis counterpart). This is the
derivative

d

dz
(sx · v(z)/sw · v(z)) (21)

of a function with the form αz+β
γz+δ

whose derivative is αδ−βγ
(γz+δ)2

.

Therefore

d

dz
fk(i, j, z) =

[
∂zk

∂x
,
∂zk

∂y

] [
sxy · v(z)
sw · v(z)

]
·[

αxr32 − r02γ

(γz + r32)2
,
αyr32 − r12γ

(γz + r32)2

] (22)

where αx = (r00i + r01j + r03) = dvx, αy = (r10i + r11j
+r13) = dvy and γ = (r30i+ r31j + r33) = dvw. In conclu-
sion, the gradient is:

∇R(z)m,n = 25zkm,n+

3

2

(
zkm,n+2 + zkm,n−2 + zkm+2,n + zkm−2,n

)
−

8
(
zkm+1,n + zkm−1,n + zkm,n+1 + zkm,n−1

)
+

1

4

(
zkm+2,n+2 + zkm+2,n−2 + zkm−2,n−2 + zkm−2,n+2

)
+

2(gm,n(z
k
m,n)− hm,n(z

k
m,n))(

d

dz
gm,n(z

k
m,n)−

d

dz
hm,n(z

k
m,n))

(23)
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Curvature term

Proceeding as for the smoothness term:

∇C(z)m,n =
∂

∂zm,n

∑
i,j

(
zi+1,j − 2zi,j + zi−1,ju

2+

2 (zi−1,j−1 − zi−,j+1 − zi+1,j−1 + zi+1,j+1)uv

4
+

zi+1,j − 2zi,j + zi−1,jv
2
)2

(24)

which, after a trivial but tedious derivation, gives:

∇C(z)m,n = 2 [ 24(u4 + v4) + 36u2v2) (zm,n)+

− 16(u4 − u2v2)(zm+1,n + zm−1,n)+

(4u4 − 2u2v2)(zm+2,n + zm−2,n)+

− 16(v4 − u2v2)(zm+1,n + zm−1,n)+

(4u4 − 2u2v2)(zm+2,n + zm−2,n+

(4v4 − 2u2v2)(zm,n+2 + zm,n−2+

8(u3v + uv3 + u2v2)(zm+1,n+1 + zm−1,n−1)+

− 8(u3v + uv3 + u2v2)(zm−1,n+1 + zm+1,n−1)+

u2v2(zm+2,n+2 + zm−2,n−2) ]

(25)

B An example of handling discontinuities with
the LUT table

In this section we show how the coefficients of the LUT table
are derived in a specific case. Let us consider, Equation 12
for the gradient of the smoothness term, which is a weighted
sum of second derivatives, and consider one of the terms of
the sum:

A =
∂

∂zm,n
z2xx(n− 2,m) = 2zxx(n− 2,m)

∂zxx(n− 2,m)

∂zm,n

(26)

If zxx(n − 2,m) is computed by central finite differences we
have:

∂zxx(n− 2,m)

∂zm,n
=

∂

∂zm,n

(
z(n− 3,m)− 2z(n− 2,m) + z(n− 1,m)

)
= 0

⇒ A = 0

(27)

In other words, since zm,n does not appear in the com-
putation of zxx(n − 2,m) the derivative on zm,n, and thus
A, is zero. Referring to Figure 7, this is because the entry for
this configuration (first row) is null.

On the other hand, if zxx(n − 2,m) is computed by for-
ward finite differences we have:

∂

∂zm,n
zxx(n− 2,m) =

∂

∂zm,n
(z(n− 2,m)− 2z(n− 1,m) + z(n,m)) = 1

(28)

and thus:

A = 2zxx(n− 2,m) = 2z(n− 2,m)−4z(n− 1,m) + 2z(n,m)

(29)

This gives as the coefficients to apply as just shown in Figure 7
(second row).


