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Presentation of 3D Scenes through Video
Example
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Abstract—Using synthetic videos to present a 3D scene is a common requirement for architects, designers, engineers or Cultural
Heritage professionals however it is usually time consuming and, in order to obtain high quality results, the support of a film
maker/computer animation expert is necessary.
We introduce an alternative approach that takes the 3D scene of interest and an example video as input, and automatically produces a
video of the input scene that resembles the given video example. In other words, our algorithm allows the user to “replicate” an existing
video, on a different 3D scene.
We build on the intuition that a video sequence of a static environment is strongly characterized by its optical flow, or, in other words,
that two videos are similar if their optical flows are similar. We therefore recast the problem as producing a video of the input scene
whose optical flow is similar to the optical flow of the input video. Our intuition is supported by a user-study specifically designed to
verify this statement. We have successfully tested our approach on several scenes and input videos, some of which are reported in the
accompanying material of this paper.

Index Terms—Multimedia Content Production, Video similarity, 2D vector field comparison, Computer Animation.
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1 INTRODUCTION

3D models have become increasingly available, due to
advances in 3D shapes acquisition (such as low-cost 3D
scanners and image-based algorithms, e.g. SfM), to en-
hanced in applications for creating them, such as Google
Sketchup. Having 3D content available is not enough, it
needs to be seen and understood by the public. How this
should be achieved depends both on the type of data
and on the purposes behind it. For example, presenting a
small 3D scanned model is different from presenting a large
complex architectural environment, due to the very different
geometry and visual properties. In this latter case, a video
produced offline is often preferable because it fully exploits
the 3D model, by tuning rendering parameters and camera
trajectories, and avoids the need for a possibly complex
graphical user interface. However, making a video can be
costly, both in terms of time and money. Thus, automatic
methods for defining camera paths have been proposed [1],
[2], which generally try to build camera trajectories follow-
ing cinematographic rules and/or other constraints.

In this work, we take an entirely different ap-
proach.Instead of creating a video from scratch, we start
from an already available real or synthetic video and, given
the 3D scene to present, automatically produce a new video
of the 3D scene which is “similar” to the one provided as
input. Broadly speaking, our approach makes it possible to
create a video for a 3D scene in the same way our favourite
film director might.

The notion of similarity is central to our approach,
and since input and output video contents are generally
unrelated, such a notion must as far as possible be content
independent. For example, we may have an input video
sequence showing a dolly-in on a green tree while our
3D scene contains neither trees nor green elements. We
therefore focus on the optical flow as the visual attribute
to be reproduced in the output video. The optical flow

combines the camera movement and the 3D scene geometry
and does not imply knowledge of the scene content. Hence,
we state that two video sequences are similar if their optical
flow is similar. This choice is supported by a user study,
described in the Results section, which shows, among other
things, that videos with very similar optical flows, are also
perceived as similar despite their content. Note that we use
the optical flow as an approximation of the motion field,
which is a common strategy when the 3D scene is unknown.
However, since we know the 3D scene for the production of
the output video, what we really do is to match the optical
flow of the input video with the motion field of the output
video. In the following, we use the term flow field to indicate
both the optical flow of the input video and the motion field
of the output video.

Our algorithm works as follows: first we estimate the
camera path from the input video sequence and compute
a per-frame descriptor of the video, based on its optical
flow. Such descriptors are matched against a non-redundant
database of the same flow field descriptors extracted by
pre-processing the 3D scene of interest. The results of this
matching form the basis used to relocate the estimated cam-
era path inside the scene of interest. A complete description
of the algorithm and the details of the processing steps are
provided in the following sections.

Beside the main result of this work, the automatic gener-
ation of high-quality video sequences to present a 3D scene,
we contribute to the state of the art by outlining:

• A technique to create a database of non-redundant
flow fields starting with a given 3D scene.

• A strategy to index and efficiently retrieve flow
fields.
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2 RELATED WORK

Our approach borrows from several fields and a complete
overview of the literature related to all such fields is beyond
the scope of this paper. Below we concentrate on the works
most closely related to the original contribution of this
paper, i.e.: assisted or automatic camera paths in 3D scenes,
the use of cinematography in computer graphics and the
metrics for estimating video similarity.

2.1 Assisted or Automatic Camera Paths in 3D Scenes

Several approaches share the idea of building a graph of the
empty space of the scene and deriving camera trajectories
from paths on this graph. In Salomon et al. [3] the graph is
built by random sampling the empty space and connect-
ing the paths which are collision-free. Andujar et al. [2]
compute the graph explicitly by positioning the nodes on
the medial axis of the empty space, which is approximated
by voxelizing the scene and computing a distance field. A
similar result is obtained by Di Benedetto et al. [4] where a
k-means-like approach is used to distribute the graph nodes
so that each point of the surface of the scene is seen by at
least one node. In Oskam et al. [5] a regular grid is used of as
large spheres as possible that do not intersect the model, so
that each segment connecting a pair of overlapping spheres
defines a collision free arc. Paths in the graph are then
refined and smoothed. In Secord et al. [6] a criterion for
assessing how good a specific view is given by combining
a number of known other criteria [7], [8], [9] and fitting the
outcome of a user test case. They were thus able to provide
a path along which the view is perceptually “optimal”. The
main limitation of this study is that it treats small objects by
only using a world-in-hand paradigm: the path is defined
over a bounding sphere and the view direction is assumed
to always point toward the sphere center.

2.2 Using Cinematographic Criteria

Using cinematographic criteria for presenting 2D-3D con-
tent is not a new idea. The seminal paper by He et al. [1]
formalized concepts of cinematographic language to pro-
duce automatic videos, and a tool for shooting dynamic
scenes without user assistance is also proposed. Kardan and
Casanova [10] build on this approach and propose a system
for the cinematographic shooting of a scene with many
actors. Note that these systems, like other similar ones,
assume semantic knowledge of the scene, that is, a scripted
animation. Cinematography is also used in presenting 2D
scenes, with the ubiquitous Ken Burns effect, which consists
of combining zooming and panning action on a single image
to animate still photographs. The technique is also used
in famous films such as “La jetée”(1962), where a small
trembling effect is also added to convey a stronger feeling
of watching a real take. More recently, Zheng et al. [11]
extended this technique by considering a small portion of
a light field and adding a parallax effect without the need
for segmenting front and backward parts of the image.

To some extent, these approaches pursue the same goal
as we do, that is, to provide a compelling view of 3D
content. Most try to include cinematographic principles and
language into the choice of a good point of view or planning

the camera path. Our approach is radically different. We
do not try to formalize the principles of film direction,
instead we “clone” the optical flow of a specific video and
transfer it to another scene in order to convey the same final
impression/perception as the input video. In order to do
this, we need a way to establish whether two videos are
similar, a problem already raised in other fields, such as
video retrieval.

2.3 Similarity Between Videos
Video similarity is a very general concept and various
attempts have been made to reduce this concept to quan-
tifiable criteria. Cherubini et al. [12] studied how several
characteristics influence the human perception of the sim-
ilarity of two videos: encoding parameters, overlay, audio
commentary, photometric variations and semantic content
are just a few discriminating factors. The problem mainly
occurs in Content-based Video Retrieval, that is the problem
of finding, in a large database of videos, the most related to
a new video provided as input using only the visual infor-
mation (i.e. audio information is not used). Typically, adding
a video to a database requires processing it, segmenting it
into sequences, to extract low-level features and creating a
video signature from these features for fast retrieval (see [13]
for a recent survey). Since in our case the visual content of
the input video may be very different from the 3D scene
of interest, we cannot use techniques that rely on color or
texture features. Our method to compare videos is close
to all those video retrieval approaches that use motion
features for indexing and retrieval. Fablet et al. [14] use
the causal Gibbs model to represent the spatio-temporal
distribution of local motion-related measurements and use
a statistical framework for the retrieval. Ma and Zhang [15]
generate a motion texture for each frame, which shares some
similarities with the histogram-based local descriptor we
propose.

A subfield of video retrieval is Near Duplicate Video
Retrieval (NDVR) (see [16] for a recent survey). NDVR is
used for detecting copyright infringement and redundancy
in large video databases such as YouTube, and the problem
lies in finding when two videos are “essentially” the same.
Motion estimation has proven to be a valuable feature
also in this context. The method proposed by Hampapur
et al. [17], splits the frame into sub-images, quantizes the
motion direction of each sub-image, then uses the distri-
bution of the vector on the possible directions as a per-
frame signature. Instead of considering static cells, Hoad
and Zobel [18] detect the motion of the centroids of the
brightest and darkest areas of the frames and then use the
distance between these centroids as a signature for the key
frames.

3 OUR APPROACH AT A GLANCE

Our approach relies on a function D(A,B), described in de-
tail later in this section, which defines the distance between
two videos of equal length. With this function we state our
problem as: given an input video A and a 3D scene S, produce
a video B of S that minimizes D(A,B).
Since the video we are looking for will be produced by
moving a camera along a camera path inside the scene of
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Fig. 1. The two main stages: scene pre-processing and video processing. The pre-processing phase consists of a sparse sampling of all the possible
motion fields that can be obtained by moving a camera in the input scene and efficiently storing them in a database. This phase does not depend
on the input video and thus is performed once for each 3D model. Video processing starts by extracting the optical flows from the input video and
its estimated camera path. With this information we query the pre-calculated database and then transform the input path to best fit the most similar
scene flows.

interest, we can re-formulate the problem in terms of camera
paths:

min
x∈P

D(A, υ(x)) (1)

where P is the set of all the possible camera paths and
υ(x) is the video produced by the path x. More specifically,
we define a camera path as a discrete sequence of cameras
x = {C0, C1, . . . , Ck}, where a camera Ci is defined by its
extrinsic parameters, that is, its position and orientation.

The brute force solution to this problem would be simply
to run over all the possible paths and pick up the one with
the minimum D. Clearly, the combinatorial complexity of
the dense sampling of camera positions and orientations
would make the problem intractable. We thus designed
a pipeline which, after a pre-processing of the 3D scene,
makes the problem solvable for any input video within a
few minutes.

Figure 1 shows a high level description of our algorithm.
The pre-processing phase of the scene consists of a sparse
sampling of all the motion fields that can be obtained by
moving a camera within the scene (see Section 5.1). These
flows are stored in a database that can be efficiently queried
to return the set of similar flows, with respect to a certain
distance function φ, to one provided as the input (see
Section 6 for further details). Note that this database only
depends on the input scene and it needs to be created only
once per model. As will be shown later, creating a database
of instant flows for a typical CAD model requires a few
hours.

The video processing phase takes the input video se-
quence and estimates the optical flows and the camera
path (up to a scale factor) that produced the sequence
(see Section 7). The domain of the problem in Equation 1

is then restricted to those paths obtained as a similarity
transformation of the camera path estimated from the input
video (see Section 7.1). By exploiting the database of flows
built in the pre-processing phase we find a set of candidate
paths. A voting scheme inspired by the Hough Transform
is used to select the best candidate paths (see Section 7.2).
Since there are many camera paths with very similar motion
fields, function D may have wide plateaus. We therefore
use a clustering algorithm to group the selected paths into
classes of equivalence (see Section 7.3). Finally, we perform
a non-linear optimization for refining each camera path (see
Section 7.4). The refined path with the smallest D value is
chosen as the output.

4 COMPARING VIDEOS BY MEANS OF MOTION
FIELDS

The notion of similarity between two videos is central to our
problem. Note that we cannot assume that the input video
and the video to be generated are related in terms of color
and texture information. The first can be any video sequence
(e.g. downloaded from the internet) and the second is a
synthetic video of the scene of interest. We thus compare
two videos through the movement of the camera w.r.t. to
the static scene, which is captured by the motion field,
that is, the 2D vector field where each vector describes
the displacement of the projection of a point of the scene
between two consecutive (or nearby) frames. As stated in
the Introduction, the motion field of the input video is
approximated by its optical flow. Since we want to produce
a video of the same length as the input video, input and
output videos have the same number of frames. We define
the distance between two videos A and B as:



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 2. Creation of the descriptor of vector field. The color wheel shows the color coding that maps the vectors from [−1,−1] × [1, 1] to the RGB
color. Tile (2, 2) is singled out to show how the relative distribution is stored with a histogram.

D(A,B) =
∑

i=0...k−1

φ(F (Ai), F (Bi)) (2)

where k is the number of frames, Ai and Bi indicates the ith

frame of the video A and B, respectively, F (.) is a function
returning the flow field and φ defines the distance between
two vector fields as explained in Sections 4.1 and 4.2.

There are many algorithms for computing the optical
flow from an input video, the Middlebury Benchmark web-
site [19] lists about 120 different solutions. For each pixel
of one image, the problem is to find the best candidate to
be the projection of the same 3D point on the other image.
Computing the optical flow of a video is thus prone to
errors, especially in the textureless parts of the image. We
evaluate the optical flow using the algorithm by Brox et
al. [20] which has a good trade-off between computation
time and accuracy/robustness. On the other hand, we can
compute the motion field of the virtual camera in the 3D
scene by re-projecting each pixel back in the 3D scene and
then onto the next camera frame.

4.1 Flow Descriptor
To design a distance function between two 2D vector fields
we must consider their nature. Since ours are produced by a
moving camera in a static environment, we can expect these
fields to be quite spatially coherent. For example a camera
crane (a straight upwards panning in CG parlance) would
produce a vertical vector flow pointing downwards, while
a dolly in would produce a vector field where all vectors are
radially oriented away from the image center.

In order to build our field descriptor, we first normalize
it by dividing all the vectors components by their maximum
over all the images. Since for real videos there may be
large outliers due to mismatching pixels, these maxima are
computed after a simple outlier removal step, where all the
vectors larger than a factor 1.5 of the standard deviation are
discarded.

Then we divide the images in regular T ×T tiles. Within
each tile the vector field tends to exhibit a slow varying di-
rection and magnitude. This flow can be easily represented
by a 2D histogram of the distribution of vector values Hhk.
In other words, each histogram Hhk stores the distribution
of vectors in the tile (h, k) in N × N bins. Our local
descriptor is the set of T 2 two-dimensional histograms, one
for each tile from which the image is subdivided. Figure 2
shows how the histogram is built considering each tile plus
50% of the neighborhood tiles. Considering overlapping
tiles mitigates the aliasing effects that can be produced. For

example, a small translation of the video may correspond
to a very large difference in the corresponding histograms.
Note that, due to removing the outliers the amount of total
units per histogram may not be always the same. This is
why we normalize each histogram.

4.2 Distance Between two 2D Vector Fields
We define the distance between two flow fields as follows:

φ(a, b) =
∑

h=0...T−1
k=0...T−1

EMD(H ′(ahk), H ′(bhk)) (3)

where H ′ is the normalized version of the histogram H and
EMD is the Earth Mover’s Distance (see Rubner et al. [21]).
The EMD defines the distance between two histograms as
the minimum number of units to move in order to turn
one histogram into the other. In other words, it is tightly
related to the amount of “work” necessary to transform the
first histogram into the second one. In our implementation,
equation 3 is efficiently computed using the L1 version of
the EMD, called EMD-L1 [22], which uses the Manhattan
distance instead of the standard L2 ground distance.

4.3 Flow Comparison and Descriptor
Our definition of the distance between flows (see equation 3)
depends on the number of tiles in the subdivision of the
image (defined by parameter T ) and on the number of
bins (defined by parameter N ) in the histograms. These
parameters affect both the value of φ(a, b) and the time
to compute this value. After a few trial and error tunings,
we found that values of T under 4 produce very similar
descriptors for dolly-in and dolly-out camera movements,
therefore failing to properly discriminate between them,
and values of N under 16 also led to noticeably different
camera movements to produce similar descriptors. Finally,
we found that T = 4 and N = 32 provides satisfactory
results.

Since higher values of T and N require a longer pro-
cessing time, we also investigated whether values higher
than the selected ones could improve the descriptor. We
thus created a reference set of 100 flow fields, computed
by picking random consecutive frames for a video. We then
chose a pivot field and sorted the other 99 in ascending
order with respect to φ. We then repeated this sorting for
different values of parameters T and N , and then compared
the sequences with the original one. We used Spearman’s
Rank-Order Correlation (ρ) [23] to measure how much the
ordered sequences differed. The comparison demonstrated
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that higher values of T and N basically produced the same
results (e.g. ρ = 0.96 for T = 8, N = 32 and ρ = 0.93 for
T = 8, N = 64). This confirms that T = 4 and N = 32 is a
sensible choice for these parameters.

5 PRE-PROCESSING THE SCENE: A DATABASE OF
INSTANT FLOWS

The basic building block of our pipeline consists of turning
a 3D scene into a (large) database of motion fields. We define
instant camera as a pair (C,∆) where C is a camera and ∆ is
a small 3D displacement, and instant flow is the normalized
motion field obtained considering the image produced by
the camera C and its translated version C + ∆. The length
of ∆ is chosen to be sufficiently small to guarantee that there
is virtually no disocclusion between C and C + ∆. This is
achieved by rendering the scene with C and setting ‖∆‖ =
10Dmin

w f , whereDmin is the minimum value of the depth map,
w is the viewport size in pixels and f is the focal distance.
This choice bounds the maximum length of a flow vector to
be at most 10 pixels.

With these new definitions, the problem of creating the
database of instant flows corresponds to sampling the space
of our scene with a suitable set of instant cameras. Each
instant camera is defined by eigth variables: three for the
position, three for the orientation and two for the direction
of the displacement vector ∆.

A simplistic way to build the database would be to
perform a regular dense sampling of the scene for the
camera position, and to consider for each position a set of
predefined orientations and displacements. Clearly that the
number of samples would rapidly grow to an unmanage-
able size. For example, even considering a 4 × 4 × 2 m3

empty room with a sampling rate of a position every 10
cm, 128 orientations and 64 displacement directions would
give over 262M instant cameras. The next section describes
an ad-hoc strategy to obtain an efficient time and space
sampling.

5.1 Adaptive Sampling of the Instant Flows

Let Cp be the set of all instant cameras with position p,
that is, that differ only in terms of their orientation and
displacement, and let S(p) be a panoramic depth map taken
from point p. If we create the instant flow of any instant
camera in Cp by rendering the depth map S(p) instead of
the actual 3D scene, the result will differ significantly only
where the disocclusions are, i.e. the part of the scene visible
from p + ∆ and not from p (and thus not in the depth
map created from p). Since ∆s are small (see below), we
can reasonably assume that there are few disocclusions and
that their effect is negligible. It follows that if the panoramic
depth maps for two points are the same, the corresponding
set of instant flows will also be the same. We can thus
reduce the number of dimensions of the domain to be
sampled from eigth to three, that is, the camera positions.
Therefore, the original problem can be re-stated as finding a
sparse sampling of 3D points (with associated sets of instant
flows) according to panoramic depth map differences.

The sampling process is incremental and consists of
sampling the volume with a layered series of the Poisson

Disk distribution with a decreasing disk radius. The samples
are generated with a technique inspired by the approach by
White et al. [24] for the 2D domain. We start by initializing
the sampling with a radius of R = 1/20th of the scene
bounding box diagonal. Then, at each sampling step the
radius is reduced by a factor equal to 0.8. Each candidate
sample at the ith step is inserted if there is no sample
within a radius (0.8)iR whose associated panoramic map
is too similar to that associated with the candidate sample.
In our implementation, the panoramic depth maps are im-
plemented as cube maps and the similarity is taken as the
mean difference of depths. Note that we add a large sphere
containing all the scene to prevent the constant far-plane
depth values from biasing the depth map comparison, as is
done in [4].

6 INDEXING AND RETRIEVAL

For each sampling point p, we create the set of instant cam-
eras Cp and the corresponding instant flows by rendering
the scene from Ci and Ci + ∆i for all Ci ∈ Cp. These instant
flows are then stored in a database.

Since we need to perform many nearest neighbours
queries on this database, we want the query to be efficient.
Unfortunately, the Earth Mover’s Distance, which is at the
core of the definition of our measure φ, is not amenable
to organizing the data into a hierarchical data structure.
Furthermore, computing the EMD entails solving a max-
flow problem, which is computationally demanding. We
thus define a Hamming Embedding, i.e. a binary hashing, to
map a real-valued vector containing the data of interest, to
a vector of boolean values. We then use the Fast Matching
algorithm by Muia and Lowe [25] for the fast retrieval of
nearest neighbours with respect to the Hamming Distance.
This algorithm is implemented in the FLANN library [26].
This is a classic strategy for many applications, for example
in the field of image retrieval. Storing the binary descriptor
instead of the original onealso enables us to reduce the size
of the database by about one order of magnitude.

Obviously, it is crucial that the embedding and the Ham-
ming distance produce similar mapping from histograms to
vector of bits. Following Joug et al. [27] we create the em-
bedding as follows. Each N ×N histogram Hhk is regarded
as a N2 vector of real values. A matrix Q of m random
orthogonal vectors is generated and forms a basis of a m-
dimensional subspace of RN

2

. Then, the embedding for a
tile is defined as

H ′Q(ahk) = Q H ′(ahk)

emb(ahk)[i] =

{
1 H ′Q(ahk)[i] > 0
0 H ′Q(ahk)[i] ≤ 0

(4)

The biggerm, the more accurate the mapping, and the larger
the database. In our experiments we set m = 128 leading
to a 128 bit long binary signature for each tile. The final
instant flow signature is simply obtained by concatenating
the signature of each tile thus obtaining a 128×4×4 = 2048
bit signature for the descriptor of each instant flow. Hence,
the database size is reduced by a factor of 32, that is 2 KB
instead of 64 KB (4× 4 tiles, 32× 32 bins).

The execution of a query is a two-step process: we first
retrieve the closest 2048 neighbors according to the embed-
ding, and then re-rank the result of this query according to
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Fig. 3. Two queries from two separate videos on the databases: Sibenik and Museum (see Section 8). (Top) The input flow is produced by a camera
track behind a tree. The result is a set of instant flows produced by a camera track behind various columns of the Sibenik 3D model (Bottom) The
input flow is produced by entering a room. The result is a set of instant flows produced by passing through an arch of the Museum 3D model.

the φ distance (that is, with the EMD distance) in order to
find the most similar instant flows.

Figure 3 shows two examples of queries and their results
on the databases: Sibenik and Museum (see Section 8).
We also report the value of φ for the first and the last
returned instant flows. Notice that the error range of the
first query ([13.98, 24.90]) is much smaller than the second
one ([45.82, 61.00]), which presents a more cluttered flow.

6.1 Two-step Query Accuracy
As explained above, the query of the instant flows is approx-
imated by a two-step approach. First, we query the database
of the embedding vectors. Second, we sort the results ac-
cording to the function φ. Since there is no guarantee that
the closest 2048 w.r.t. to the Hamming distance will contain
the closest 128 w.r.t. to the proposed φ distance we evaluated
the accuracy of this approximation empirically.

We compared our query result with the result obtained
by a linear search in the entire database using φ and taking
the closest 128 elements. More precisely, we measured the
accuracy A as:

A = 100
#{b |b ∈ N (a) ∧ φ(a, b) < φ(a,EMD128)}

128
(5)

where N (Ai) is the set of instant flows returned by our
query and EMD128 is the last element of the result returned
by the linear search. An accuracy of x% means that the x%
of A is within the distance of the 128th flows returned by
the linear search. We evaluated the query accuracy A over
100 frames randomly selected among an input sequence.
Eight 3D models were considered for this evaluation. For
each model, a database of about 150,000 instant flow was
generated. The number of instant flows was chosen so that
the linear search could be done in tractable time and, at the
same time is high as in the real scenario. On the average we
achieved about the 52.5% of accuracy, which is more than
enough for our purposes.

7 PROCESSING THE INPUT VIDEO

Given a shot of a static scene we can estimate, up to a scale
factor, the trajectory followed by the camera that produced
it. This is process is known as camera tracking. In out setup

this is done by using the Voodoo Camera Tracker software.
Given the estimated camera path P (A) and the correspond-
ing input flow F (A), we can define the search space of our
problem as the domain of the siilarity transformations of
P (A). In other words, we can relocate and scale the path
P (A) in our scene by looking for the transformation that
best replicates the flow of the input shot F (A).

arg min
τ∈Ω

D (A, v(τ(P (A)))) (6)

where Ω indicates the group of angle preserving affine
transformations and v(.) indicates the video corresponding
to the given path.

7.1 Finding Candidate Paths

Our aim is to reduce the search space in (6) to those trans-
formations that are most likely to provide a good result. We
now show how this is done using the database of instant
flows. Figure 4 illustrates an example with a path and a
scene. Given a generic frame Ai, we can define the corre-
sponding instant camera (CAi

,∆Ai
) where CAi

= P (Ai)
and ∆Ai

= ∇P (Ai). By querying the database for F (Ai)
we retrieve a set of instant cameras whose flow is similar
to F (Ai) that is, N (Ai) defined in Section 6.1. Each instant
camera Ch ∈ N (Ai) defines a transformation RT such that
RT (P (Ai)) = Ch, that is, the rigid transformation from
the camera P (Ai) to the camera Ch. This transformation
is found by expressing the camera parameters as a set of 3D
points and solving the point matching problem as in [28].
More precisely, each instant camera (Ch,∆h) is associated
with one point for its origin, three along the axes, one for
the direction of movement ∆h.

Note that choosing a single point onA does not uniquely
define a transformation τ , because the scale factor is unde-
fined. In other words, Figure 4 highlights that there are infi-
nite transformed versions of P (A) that go through (Ch,∆h)
in P (Ai). If, instead, we choose at least two points in P (A),
the scale will be determined and the resulting transforma-
tion will uniquely identify a candidate path. In summary,
for each pair of instants (Ai, Aj), we can create a set of
candidate paths Γ(i, j) = {τhk| (Ch, Ck) ∈ N (Ai) × N (Aj).
We recall that the sets N (Ai) and N (Aj) correspond to
those instant cameras whose flow is similar to F (Ai) and
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Fig. 4. (Top) The path P (A) is estimated from the videoA and an instant
camera is created for frame Ai. For each instant camera Ch ∈ N (Ai)
there is a rototranslation operation which brings the camera CAi

on
Ch, leaving the scale value undefined. (Middle) How a set of 5 points
is built from an instant camera in order to find the transformation RT .
(Bottom) Setting a correspondence for two instant cameras defines the
scale factor.

F (Aj). Therefore, the terms of the sum in equation 2 will
tend to be small for frames i and j. What we need is a path
for which as many as possible terms of that sum are small.
The problem thus becomes a fitting problem where D is
the error function and where each pair of frames (Ai, Aj)
produces a set of candidate paths, that is, solutions, Γ(i, j).

7.2 Best Paths Selection

In order to select the best paths we follow a Hough
Transform-like approach [29]. Any pair of instant flows cho-
sen along the path P (A) produce a set Γ(i, j) of candidate
paths. It is likely that distinct pairs of instant flows may
produce non-disjoint sets of candidate paths. Using a voting
scheme we can select those candidate paths that appear
in most sets. Votes are accumulated in a 7-dimensional
matrix M where each cell corresponds to a value for the
rototranslation and scaling parameters that define a candi-
date path. The voting scheme uses a subset of all possible
pairs as follows. First the video is adaptively subsampled
with respect to the change of optical flow: the higher the
change the denser the sampling. We conservatively set the
subsampling scheme to keep the 70% of the frames. Then we
consider all the pairs (Ai, Ai+1), (Ai, Ai+2) and (Ai, Ai+3).
This allows us to use only 3(0.7K − 1) frames out of the
K(K − 1) possible pair of frames without losing the local
coherence of the path.

For each pair (Ai, Aj)

1) We retrieve the two setsN (Ai) andN (Aj) from the
database

2) We compute the set of candidate paths Γ(i, j)
3) We quantize the elements in Γ(i, j) thereby obtain-

ing Γ′(i, j) ⊆ Γ(i, j)
4) for each element in Γ′(i, j) we add 1 to the cell
M[Γ′(i, j)] and to the 7-dimensional ball of radius
1 (in cells) centered in Γ′(i, j)

Thanks to the quantization in step 3, candidate paths that
fall in the same cell in the parameters space do not lead to
multiple votes. The extension of the vote to the adjacent cell
in step 4 is simply to mitigate banding effects.

7.3 Clustering

At the end of the voting the peaks of the accumulation
matrix will correspond to those paths that were voted by the
greatest number of pairs of frames. As expected, there is not
just one solution to our problem. The optical flow produced
by a camera moving along a corridor may be replicated on
each and every corridor of our 3D model. Thus usually there
are many reason the peaks of matrixM. Moreover, a set of
peaks close to each other may essentially describe the same
path. We thus apply a clustering algorithm to the peaks,
that computes a few well defined and distinct set of output
paths. In the current implementation clustering is carried
out by a simple k-means on the position of the camera.
We found that this is sufficient for our needs. Parameter
K controls the number of distinct paths produced by the
system. In our experiments we kept this parameter quite
high (K = 100) in order to examine how the different paths
explored the scene of interest. The number of distinct paths
can also be estimated automatically by applying one of the
methods for estimating the number of clusters of a dataset
(see [30] for an overview).

7.4 Final Refinement

In order to create the database of instant flows, we quantized
the set of all the possible orientations and displacements. To
find the candidate paths, we did the same for the 7D space
of transformations. Finally, we applied clustering to the final
outcome in order to return a usable number of solutions.
Although these approximations were necessary and are
fine tuned, it is clear that they may lead to sub-optimal
results, that is, paths which could be improved with small
variations. We thus applied a final optimization procedure
to each path returned by the clustering step (that is, each
transformation τ in equation 6). We initialized equation 6
with the returned transformation, and ran the optimization
with NEWUOA [31] (a derivative-free optimization algo-
rithm for unconstrained minimization problems), on the 7
parameters of the similarity transformation.

Since we consider K clusters, we should solve the op-
timization problem K times. Instead, we first order the K
path according to the distance D. Then, we only refined
the first K̃ < K paths (we used K = 100 and K̃ = 5
in our implementation). We refine only a subset to save
computation time due to the fact that the refined path is
quite close to the non-refined one and the order does not
change significantly. The final output video was chosen as
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the path with the minimum distance D after the refinement.
In the accompanying video we show an example of some of
the generated solutions ranked according to the distance D.

8 RESULTS

This section is organized in two parts. The first part rein-
forces the hypothesis we built our pipeline on, that is: the
optical flow plays a fundamental role in perceiving video
sequences as similar in static scenes. In order to do this, we
show the results of a user study we conducted.

The second part shows that our algorithm is efficient in
producing video sequences that are similar to the input one
in terms of time and resource use. Some output videos pro-
duced with our system can be found in the accompanying
material.

8.1 User Study
The idea behind this user study is to investigate the role of
the optical flow in evaluating the similarity of two video
sequences.

The test consists in showing a short reference video to
the user plus other five video sequences and asking him/her
to sort these five sequences from the most to the least similar
to the reference video. It was not specified what similar
means, that is, no suggestions were given concerning the cri-
teria the user was supposed to use in sorting the sequences.
We created five such tests with different models and camera
movements (described below) and presented them to each
subject through a web page. Figure 5 shows a snapshot of
the web page for one test. The GUI was designed to be as
straightforward as possible: when all the videos had been
watched, the user could drag and drop the corresponding
thumbnails to the right slot, rearranging and re-watching
the videos without restrictions. All the users were presented
with the same batch of five tests in a single scroll-down web
page. The order in which the tests and the five videos of each
test were laid out was always randomized to avoid possible
bias. The total duration of the experiment was about 15-20
minutes. The user study was conducted with 47 subjects:
75% of whom were male and 25% female. Around 75% of
the subjects had no specific skills in computer graphics or
video-related topics. On the opening page, a short video
tutorial showed users how to perform the test and a brief
textual description of the study itself is provided. Personal
data were collected using a form at the time of the results
submission.

All the video sequences were obtained through render-
ing in order to have full control on their visual properties
and on the camera movements.

We compared the ranking provided by the partic-
ipants to that produced by our distance function φ.
A high correlation between the two rankings indicated
that the optical flow played a role in assessing video
similarity. The user study web page is available at
http://similarvideos.isti.cnr.it.

8.1.1 Tests Description
The describes how the five tests were designed.
Test 1 - Buildings1 In this test the reference video is an

indoor sequence shot in a building, and all the other

drag & drop

Fig. 5. Using simple drag-and-drop operations, the subject should rank
the video sequences by similarity with respect to the reference one. The
position of each sequence above the sorting slots is always randomized
to avoid possible bias.

sequences are generated with similar camera paths
inside a different building.

Test 2 - Buildings2 This test is similar to the previous
one, but different camera paths are used.

Test 3 - Tree This test consists of a video shot from a
camera orbiting around a tree while the others video
sequences were shot with similar camera movements
but looking at different subjects. This test is designed
to understand whether a user to considers, videos with
similar optical flows but different content as similar.

Test 4 - Lighting In this test all the videos refer to the
same 3D model while camera paths and lighting condi-
tions vary. The 3D model used has a large opening on
the top, so we manipulated the lighting conditions by
simply using the sunlight as light source and setting a
different daytime for each video. Of the five videos, one
has the same daytime as the reference one, other two
are generated with slightly different daytimes from the
reference one, which causes a small visual difference
in the projected shadows. Finally, the last two have a
greater difference in the daytime settings so that not
only the shadows but also the overall brightness of the
scene are very different. We modify the path of these
videos so that the ranking of the videos according to
the lighting differences is the opposite of the ranking
according to the optical flow measure φ.

Test 5 - ColorGrading In this test the videos are charac-
terized by different camera paths but also with different
color grading operation (a simple hue-shifting plus
contrast changes are applied). The color of the video
is modified so that the ranking according to the color
difference is the opposite of the ranking according to
the flow field distance (more details on this point are
provided later).

In summary, the first two tests consider scenes with a
similar semantic content but with different camera move-
ments. The Tree test considers a scene with different cam-
era movements and different semantic content, and tests 4
and 5 are used to understand the impact of optical flow w.r.t
other visual attributes, i.e different lighting conditions and
different color gradings.
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Test Name Kendall τ -c Spearman ρ
Buildings1 0.4177 (0.0000) 0.9 (0.0833)
Buildings2 0.5422 (0.0000) 0.9 (0.0833)

Tree 0.1289 (0.0187) 0.3 (0.6833)
Lighting 0.4045 (0.0000) 0.8 (0.1333)

ColorGrading 0.4756 (0.0000) 1.0 (0.0167)
TABLE 1

Data analysis of the results. The numbers in parenthesis are the values
of the corresponding Null Hypothesis (rounded to the fourth decimal

place). Spearman’s correlation coefficient is computed on the
corresponding Normalized Rank (provided by the users).

8.1.2 Data Analysis

Our aim was to discover whether users sort the video
sequences in the same way as our flow field-based distance
function φ does. If this is the case, it means that our distance
function is successful at capturing the perceived similarity
between video sequences. To put this concept into numbers
we calculated, for each test, a value typically used in non-
parametric statistics for measuring the correlation between
two rankings: the Kendall τ -c value. This value expresses
the degree of correlation between a group of orderings
(provided by the users) and a reference one (provided by
our distance) and ranges between -1 and 1. A value of τ -c
greater than 0.4 means that the reference order has a good
correlation with the orderings provided by the users, while
a value greater than 0.6 means that the reference order is
strongly correlated with them. A value of 0.2 identifies a
weak correlation.

Table 1 reports the Kendall τ -c values obtained. The
value in parenthesis is the probability of the null hypothesis,
that is, the probability that τ -c value is not significant. For
further confirmation of the results obtained, we also calcu-
lated, for each test, the Spearman rank correlation coefficient
between the normalized rank given by the subjects and the
ranking provided by the distance φ. The normalized rank
is the overall rank which takes into account all the user
data for the specific test and is obtained by following the
normalization procedure indicated by Guilford [23].

8.1.3 Optical flow and semantic

Our approach is built on the intuition that the optical flow
of a video is related both to the camera motion and to the
scene content. We would thus expect two video shots with a
similar optical flow to be in some way perceived as visually
similar despite their 3D content. Clearly this is particular
true when we treat videos and scenes with similar content
while other factors may come into play when the content is
very different.

Our results revealed that our approach works very well
for all the tests except for the Tree test. Note that for
the Buildings1 and the Buildings2 tests, where the
correlation coefficients are very high, the 3D content used is
similar but not that similar. In fact the layout, the geometry
and the furniture of the building in the reference video is
different from the building in the comparison videos. In the
Tree test, the correlation between subjective rankings and
the optical flow distance φ is low as indicated by Kendall’s
τ (0.1289). Also the Spearman’s ρ is low (and not significant,
note the high p-value). This indicates that the optical flow

alone is insufficient to provide perceptually similar results
in this case, where very different scene content is used.

In conclusion, we can state that the results obtained
support our approach although the lack of semantic infor-
mation may prevent the output video from being perceived
as similar to the input one in some cases. However, this does
not automatically imply that the user is not happy with the
result obtained, in fact our user study did not investigate
the satisfaction of the user but only the perceived similarity.
Adding semantic information to the 3D model (for example
by annotation) and to the input video (for example by using
object recognition algorithms) could be useful to enable our
pipeline to produce an output video with the same semantic
content. For example, if the input video contains a shop
and we need to present the 3D model of a whole town,
the candidate paths that produce videos with a shop may
be preferred over others.

8.1.4 Optical Flow vs Other Visual Attributes
Although only two tests of this type were carried out,
interesting aspect needs highlighting: the optical flow is a
stronger stimulus than lighting or color grading in assessing
video similarity.

In the ColorGrading test, the perceived visual differ-
ence caused by the color grading is evaluated by measuring,
for each frame, the CIELab distance and taking the mean as
a global value. Since the camera paths are set such that the
objects observed are more or less always the same in all
the frames this measure is a reasonable choice to objectively
evaluating the impact of the color grading for each video.
Taking this distance into account, we obtain a Kendall τ -c of
-0.4045 (with high significance) and a Spearman’s ρ of -0.8
w.r.t to the subjective evaluation. Instead, the optical flow
predominates over color stimulus with a strong correlation
with the human judgements (Kendall’s τ−c = 0.4045,
Spearman ρ = 0.8). These values are exactly the opposite
because the videos are generated such that the color grading
distance is inversely correlated with the φ distance.

We obtained very similar results for the Lighting test.
Videos produced under different lighting conditions were
perceived as similar to the reference one thanks to the
low differences in the optical flow, that is low values of
φ. Taking into account that the use of a different time for
the daylight simulation leads to very different shadowing
effects between the reference video and the videos rated as
the most similar, this again demonstrates the importance of
the optical flow in evaluating the perceived visual similarity.

8.2 Test Data and Performance

In order to test our approach, we downloaded several
models from public repositories (Trimble 3D Warehouse,
Archive3D). Table 2 shows a view of these models along
with statistics regarding their size, time required to build the
database of instant flows, and the corresponding database
size. We performed the flow sampling using 16 orientations
and 18 directions of displacement. The first layer of our
sampling was done inside the bounding box of the scene
inflated by a factor 0.3. Inflating the bounding box allows
the cameras to be positioned outside the scene as well. As
shown in Table3, the size of the database is not related
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Museum Sibenik Town Floorplan House 1 House 2 House 3
Input
#polygons 1,468,260 69,853 14,865 5,684,739 38,367 22,026 32,051
Database
# Instant Flows 3,952,512 2,996,064 2,453,184 3,743,712 1,506,240 2,282,688 1,991,232
Size (GB) 1.37 1.03 0.87 1.29 0.53 0.81 0.70
Proc. Time
Sampling 2.03 0.19 1.07 7.25 0.12 0.16 0.19
Instant Flows 5.15 3.41 3.01 5.4 1.52 2.45 2.27

TABLE 2
Statistics on the scene pre-processing for the 3D models used in our experiments (timing in hours). Note the compactness of the databases

despite the large number of instants flows stored. Processing times are acceptable given the fact that datasets are built only once and can be
reused for any video.

to the size of the scene as much to its complexity. This is
not surprising, since the more complex the scene the more
chances there are for different flows to be create by the
sampling. With respect to the database sizes and calculation
times, despite the high number of instant flows stored, the
databases have a manageable size and their creation time is
acceptable given the fact that they are created only once and
can be reused for any video.

The list of input sequences used in our tests is given
in Table 3. The corresponding results are shown in the
accompanying video. The first five entries of the table are
various shots taken from YouTube. “The Great Beauty” is
the initial sequence of shots of the famous Oscar winning
movie by Paolo Sorrentino. Using this kind of movie is
an entertaining use of our system. The most practical use
is to automatically produce presentations for a portfolio
of 3D models. To demonstrate this application, we took
three shots of a simple CAD model and then replicated
them automatically for three different models (referred to
as “House1”, “House2” and “House3” in Table 3).

Table 3 also reports the overall processing time for
each video and the performances of the main stages of
our pipeline. The “Track&Flow” column reports the time
needed for the optical flow and the camera path estima-
tions. The “Query - Step HM” and “Query - Step EMD”
columns provide details on our two-step query approach
(as described in Section 6). Finally, the “Candidates Paths”,
“Clustering” and “Final Refinement” columns report the
processing times for the candidates paths selection, the clus-
tering and the NEWUOA optimization, respectively. The
total processing time is reasonable and is dominated by the
EMD re-ranking and by the final optimization step. We used
100 clusters with the final refinement applied to the 5 best
sequences. NEWUOA optimization is one of the most time-
consuming step of our pipeline, however, in most of our
tests, this optimization does not significantly improve the
final quality. All tests were run on a desktop PC equipped
with an Intel Core I7-4820K CPU and an nVidia GeForce
GTX 780 GPU.

Finally, for the sake of completeness, we show two
examples (see Figure 6 and Figure 7) of input videos and
the corresponding output videos as a collection of frames.
For a clear evaluation of the quality of the results obtained
we refer to the accompanying video.

8.3 Discussion and Limitations

To the best of our knowledge, there are no other approaches
that use a video guidance to produce automatic navigation
of a scene. So, we give here a qualitative comparison w.r.t
other methods instead of a quantitative comparison. Many
approaches share broadly the same scheme, i.e.: computing
a network of non colliding paths using distance field-like ap-
proaches and use them to constrain the camera movement.
Their final goal is to control the camera to show the scene as
in [2], [3], [4] or to follow a specific target inside a scene [5].
Avoiding collisions and, more generally, keeping the camera
away from the scene surface are limitations our approach
does not have. In fact, if the input video is a sequence going
through a wall, the computed camera path will most likely
do the same. By not precomputing paths, but only a dense
sampling of instant flows, we have much more flexibility
in the camera paths that can be created, and providing an
example video is just a way to tell the system what type
of path to create. On the other hand, our approach does
not guarantee that every part of the scene will be shown
in an output video, or that a specific landmark will be
seen (although it could be easily constraint the search space
to instant flows in the region around a specific region of
interest).

The main limitation of our approach is the inability
to work with dynamic scenes, where animated characters
move and interact. In such cases, it is very difficult to try
to obtain a similar flow field in the output sequence. One
possible solution is segmenting the computed optical flow
(as in [32]) in order to isolate and hence ignore the moving
foreground parts, thus limiting the influence of the other
moving objects. Another issue may arise from the process-
ing of the input video; the optical flow may be difficult to
estimate reliably in the case of large textureless areas. For the
same reason, estimating the camera path may fail or provide
poor results. Finally, the intrinsic camera parameters are
defined at scene sampling time. While this limitation may
be overridden by extending the sampling to cover a range
of intrinsic parameters, the dynamic combination of camera
movement and focal change would add further uncertainty
in terms of camera tracking and finding candidate solutions.
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Video Sequences
Name Length Track&Flow Query - Step HM Query - Step EMD Candidates Paths Clustering Final Refinement Total
Tree 1.33 30.15 3.23 154.98 12.77 1.81 116.23 319.17

Showreel 3.84 84.25 14.25 392.54 55.98 4.55 272.17 823.74
Documentary 5.07 104.21 16.05 452.40 71.30 3.22 442.29 1,089.47
Ambulance 5.07 104.13 14.23 530.25 66.23 2.92 369.21 1,086.97

Villa 20.75 417.23 83.41 1,846.80 296.07 26.14 1,813.69 4,483.34
Great Beauty 17.07 363.87 72.02 1,252.68 224.38 13.25 1,459.44 3,385.64

House1 17.57 n/a 24.75 1,448.43 143.47 15.21 1,179.21 2,811.07
House2 17.57 n/a 28.35 1,448.43 121.55 18.80 1,165.81 2,782.86
House3 17.57 n/a 26.21 1,448.43 156.22 17.51 1,181.97 2,830.34

TABLE 3
Processing times for the video sequences (timing in seconds). The table also shows the performance details for the main stages of our algorithm.
For the videos House1, House2 and House3 there is no camera track estimation nor optical flow calculation as the input is a known virtual camera

path designed on a different CAD model.

Fig. 6. Output video (2nd row) produced using the 3D model Sibenik and the input video shown in the first row. The algorithm is able to reproduce
the moment of passage of the tree by replacing it with a column of the 3D model.

Fig. 7. Output video (2nd row) produced using the 3D model Museum and the input video shown in the first row. The algorithm maps a video of a
camera entering a door to a path where the virtual camera enters an arch of the 3D model.

9 CONCLUSIONS

We have proposed a new approach to the problem of unas-
sisted presentation of 3D scenes. Our algorithm produces a
video which presents a static scene using another video as
reference. We build on the idea of finding the camera path
(or paths) in the 3D scene with the most similar optical flow
as the input video. The processing steps of our pipeline have
been finely tuned and the results produced are promising.

We presented a user study that enables us to assess the
impact of the optical flow in perceiving two different video
sequences as similar. This is still a early result and the results
obtained are very interesting. We think that more exhaustive
and complex subjective tests about video similarity and
visual preferences in video production would be of great
interest for the video editing/processing community.

Our algorithm could be further improved by transferring
other visual attributes from the input to the output video,
such as lighting and/or the colour grading in order to
better reproduce the overall “mood” of the input video.
Aside from the complete algorithm itself, our contribution
includes an efficient strategy to index and retrieve optical
flows. It would be very interesting to investigate the per-
formance of the proposed optical flow descriptor and the
related index and retrieve approach in different application
contexts, for example for near duplicate video detection or
for content-based video retrieval.
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