Volume-encoded UV-maps

Marco Tarini*

Figure 1: The same volume-encoded UV-map is used to apply the same 2D texture (in Fig. 2) over all levels of a LoD pyramid. The models
(64K, 10K, 1K, and 650 faces) are produced with an unconstrained automatic simplification tool [Cignoni et al. 2011], unaware of the
UV-map, and consist in “naked” meshes, with no uv associated to vertices.

Abstract

UV-maps are required in order to apply a 2D texture over a 3D
model. Conventional UV-maps are defined by an assignment of uv
positions to mesh vertices. We present an alternative representa-
tion, volume-encoded UV-maps, in which each point on the surface
is mapped to a wv position which is solely a function of its 3D po-
sition. This function is tailored for a target surface: its restriction
to the surface is a parametrization exhibiting high quality, e.g. in
terms of angle and area preservation; and, near the surface, it is
almost constant for small orthogonal displacements. The represen-
tation is applicable to a wide range of shapes and UV-maps, and
unlocks several key advantages: it removes the need to duplicate
vertices in the mesh to encode cuts in the map; it makes the UV-
map representation independent from the meshing of the surface;
the same texture, and even the same UV-map, can be shared by
multiple geometrically similar models (e.g. all levels of a LoD pyra-
mid); UV-maps can be applied to representations other than polyg-
onal meshes, like point clouds or set of registered range-maps. Our
schema is cheap on GPU computational and memory resources, re-
quiring only a single, cache-coherent indirection to a small volu-
metric texture per fragment. We also provide an algorithm to con-
struct a volume-encoded UV-map given a target surface.

Keywords: texture mapping, seamless parameterization
Concepts: eComputing methodologies — Texturing;

*e-mail:marco.tarini @isti.cnr.it

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. (© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24 - 28, 2016, Anaheim, CA,

ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925898

Figure 2: Artist painted 2D texture (20482 pixels) used in Fig. 1.

1 Introduction

Texture mapping is a fundamental mechanism in Computer Graph-
ics which consists in enriching a surface .S with a signal (e.g. colors
or normals) from a 2D texture image 7.

Texture mapping necessitates that every point of the surface S is
mapped into a 2D position v in texture space Q = [0, 1]%. This
is termed the UV-map of S. A UV-map is a form of surface pa-
rameterization, but here we use the former term because we focus
on texture mapping applications, which impose a specific set of re-
quirements.

It is well understood that UV-maps require cuts (also called seams);
this is both for topological reasons (when S is not a topological
disk) and to reduce the unavoidable distortions introduced by the
map (when S is not developable).

http://dx.doi.org/10.1145/2897824.2925898

1.1 Overview

Traditionally, the UV-map of a polygonal mesh S is represented
by explicitly assigning wwv positions as per-vertex attributes. Stan-
dard linear interpolation inside faces provides a uv position for each
point on S’ cuts are encoded by means of duplicating some vertex
and assigning different uv attributes to the two geometrically coin-
ciding copies.

In contrast, we introduce volume-encoded UV-maps, where a 3D
point p on S implicitly has a uwv position given by

(u,v) = f(p)

regardless of the belonging face. During fragment processing, f is
evaluated at current point p, then the final texture is accessed at the
resulting position (u,v), as usual (e.g. with bi-linear interpolation
and MIP-mapping). Required cuts are, simply, discontinuities of f.

RS Q

Function f is tailored, beforehand, for a given target surface .S,
seeking two objectives: the restricted map between S and f(.S)
must be a good UV-map for S, e.g. it must present low distortions,
injectivity, a good packing of texture space, etc; in the proximity
of S, and for small displacements along directions orthogonal to S,
f must be close to constant. We refer to the latter property as the
orthogonality of f.

The challenge is to represent f so that it is extremely efficient to
evaluate, yet expressive enough that the two above objectives can be
met for a given target surface S. Our solution is based on defining
f as the trilinear interpolation of (u, v) values defined in a coarse,
regular volumetric grid, stored in a small 3D texture, and is detailed
in Section 3. In order to demonstrate its usability, in Section 4, we
show one heuristic to construct an f tailored for a given surface S.

One central aspect of our representation is the extremely small com-
putation overhead imposed at rendering time (a single extra indirec-
tion); this works well for a large set of surfaces, but, as a limitation,
it is not as general as per-vertex UV-map for shapes where tiny fea-
tures are present and important (see Sec 7.1).

1.2 Motivations

Our volume-encoded UV-map schema offers multiple qualitative
advantages over traditional, per-vertex ones:

Connectivity independence. Neither the UV-map, nor the 2D tex-
ture are tied to the way S is meshed. Since function f is computed
per fragment, cuts of the UV-map need not be present in a mesh as
sequences of edges, and mesh triangles can freely span across cuts
without causing any artifact. Therefore, the same UV-map and the
same 2D texture can be applied directly to any remeshing of the
original mesh.

Geometry independence. Thanks to the orthogonality of f, the
above point extends also to meshes having a similar but not iden-
tical geometric shape to S. For example, all the levels of detail
models of a LoD pyramid can share both the same UV-map and
texture (see Fig. 1 and many other examples in the demo).

No vertex duplications. Even considering a single polygonal
mesh with a given connectivity, an advantage is that no vertex du-
plication is required, simplifying data structures' (e.g. augmenting
procedurality, and bypassing the need of keeping the copies consis-
tent during any processing).

'With per-vertex UV-maps, a workaround to avoid vertex replications
is to assign ww positions not as per-vertex attributes but as per-wedge at-
tributes. This just means replicating uv positions everywhere instead of
replicating vertices at seams.

Representation independence. Because it does not rely on at-
tribute interpolations inside faces, this schema is not limited to
polygonal meshes. It can be directly applied on other surface rep-
resentations, like point clouds (see Fig. 12), triangle soups with no
consistent connectivity, collections of registered range scans (see
Fig.10), or ray-traced implicit surfaces. For example, both the UV-
map and the texture built for a set of range-scans or a point cloud
can be directly employed over the two-manifold mesh resulting
from their subsequent fusion.

Compactness. The UV-map is encoded independently from the
mesh, and no uw position is stored (or sent) per vertex. The amount
of memory used to encode f depends on the complexity of the over-
all coarse shape of the object, not on the tessellation density nec-
essary to describe its fine-grained geometry, and can be (but is not
always) much smaller.

Robustness of construction. The UV-map construction can safely
ignore local mesh inconsistencies, like non two-manifold configu-
rations, topological noise, holes etc.

2 State of the Art

Surface parameterization is an heavily studied subject (see [Hor-
mann et al. 2007; Sheffer et al. 2006] for surveys), and its use as
UV-maps for texturing is invariably included among the intended
applications. Most of the concepts devised in this literature are still
relevant to the case of our volume-encoded UV-maps, so we briefly
summarize them here.

Single-patch parameterization techniques target disk-like sur-
faces; typical sought objectives include: area preservation, con-
formality (angle preservation), isometry (implying both), and in-
Jectivity (implying absence of fold-overs). Lack of preservation of
angles or areas, referred to as distortion, has to be minimized but is
unavoidable for any non-zero Gaussian curvature surface. A gen-
eralization of seeking uniform areas preservation is to aim at adap-
tivity (also referred to as signal specialization), where more texture
area is devoted to more important regions.

Global parameterization techniques introduce seams to “cut
open” a surface with any topology into one or more disks, thus
reducing the problem to the previous case. Cuts also serve the pur-
pose of trading Gaussian curvature inside patches for line curvature
at their boundary, reducing distortions. A UV-map where cuts split
S into separate disks, each mapped into a separate chart, is referred
to as an Atlas-based UV-map (e.g. [Sander et al. 2003; Zhou et al.
2004; Pietroni et al. 2010]). In other approaches (e.g. [Gu et al.
2002; Pietroni et al. 2011]), S is mapped into a single chart.

Global techniques add more items to the list of sought objectives.
Some of these are less crucial for UV-maps, compared to other ap-
plications of parameterizations like remeshing; these include global
smoothness (implying that u— v isolines are continuous across cuts,
up to prescribed rotations), alignment to geometric features or to an
input cross field defined over S. Vice versa, objectives like lack of
global overlaps in uv space, good coverage of uv space (e.g. pack-
ing of patches in an Atlas), and an appropriate placement of cut
lines, are crucial for UV-maps, but can be disregarded (and often
are) when the parameterization is intended for remeshing.

Importantly, all these concepts are orthogonal to the representation
of the UV-map. Just like per-vertex ones, our volume-encoded UV-
maps can feature variable degrees of: distortions, injectivity, adap-
tivity; they, too, can be either single-patch or global, Atlas-based or
not, adaptive or not, and so on.

2.1 Alternatives representations for UV-maps

In the literature several alternatives have been proposed to con-
ventional per-vertex UV-maps defined per-vertex over triangle
meshes. Each alternative achieves some subsets of the advantages
of volume-encoded UV-maps listed in Sec. 1.2, through different
routes, and with important differences.

Connectivity based representations. In Ptex [Burley and
Lacewell 2008] and Mesh-Color [Yuksel et al. 2010] techniques,
the high-frequency signal (e.g. color) is sampled at each mesh el-
ement independently, regardless of its shape. In Ptex, a small tex-
ture is automatically assigned at each polygonal element; in Mesh-
Color, samples are arranged in a predefined pattern inside each tri-
angle. Like in our case, no uv needs be stored (or sent to GPU) per
vertex. However, this is achieved employing exactly the opposite
strategy: the uw is fully determined by the connectivity of the mesh,
instead of being fully independent from it. As a result, the signal for
a given surface cannot be used if the surface is remeshed arbitrarily
— for example, if it is coarsened (in Ptex, it can be used, however, if
it is refined regularly, e.g. within the GPU). Moreover, the sample
distribution on the surface is also dependent on the meshing.

Volume based representations. If the high-frequency signal was
sampled in the 3D volume embedding S, any problem linked to the
mapping would be avoided. A naive implementation of this idea
has a prohibitive cubic cost of memory occupancy, but countermea-
sures have been proposed. Spatial hashing techniques [Lefebvre
and Hoppe 2006; Garcia et al. 2011] can be used to store only the
non-empty cells in a virtual 3D texture. However, there is no ge-
ometry independence (for example a simplified model would likely
pass in places where no signal is defined). If bilinear interpolation
is to be supported, the total memory occupancy of [Lefebvre and
Hoppe 2006] for the same number of samples is about one order of
magnitude larger than in our schema (see Sec. 6 for a quantitative
comparison). The signal samples, being regularly spaced in a 3D
grid, are poorly distributed on the 2D surface, and their density can-
not be made adaptive. The same considerations (except adaptivity)
apply to the techniques striving to compress a volumetric texture
which encode a signal only in a small volume around a given sur-
face, by means of octrees [Benson and Davis 2002; Lefebvre et al.
2005] or similar structures, like brickmaps [Christensen and Batali
2004]. The per-fragment workload and total memory cost are even
higher than with hashing (as shown in [Lefebvre and Hoppe 2006]).

Other connectivity unaware representations. As mentioned, in
standard schemes cuts constrain mesh connectivity and impose the
presence of replicated vertices. There are, however, a few excep-
tions. These are: the GPU hard-wired cube-map texture mecha-
nism (when used to texture map a sphere-like surface), the spe-
cial cylindrical and toroidal UV-maps [Tarini 2012] (only for sur-
faces with the respective topology), and, for general topologies,
Polycube-maps [Tarini et al. 2004] and TileTrees [Lefebvre and
Dachsbacher 2007; Dachsbacher and Lefebvre 2008]. The com-
mon mechanism behind all these solutions, and ours, consists in a
per-fragment processing capable of re-directing a final 2D texture
access to the proper location, in a way that is aware of cuts. In
Polycube-maps S is mapped over the surface of a textured poly-
cube, via an per-vertex uv assignment (which requires three para-
metric coordinates rather than two). The per-fragment workload
is considerably heavier than in our case. Also, the automatic ro-
bust construction of polycube-based UV-maps for a given S is a
difficult problem, still unsolved despite intensive research (e.g. [He
et al. 2009; Xia et al. 2011]), more so than with traditional maps.
In tiletrees, squared texture patches are kept in the leaf nodes of an
octree structure, allowing for a robust and easy construction. This
share with our work the idea that the final uwv positions for a point is
defined as a function of its position (and, there, its normal), avoid-

ing per-vertex storage. In tiletrees, exploitation of normals allows
to deal better with tiny mesh features than in our case, due to the
likely differences in normals. However, limited geometry indepen-
dence is offered; e.g. a low res and high-res models cannot share
the same UV-map or texture, because the former cannot reproduce
the normals of the latter. Moreover, the per-fragment workload is
orders of magnitude more demanding (requiring dozens of texture
accesses to traverse a hierarchy), and the overall storage is also con-
siderably heavier, as we show later. The quality of the map is also
drastically worse, both in terms of cuts and distortion (see Fig. 11).

With respect to all alternatives, an important additional benefit of-
fered by our representation is the ability to express maps which are
similar, in customizability and quality, to traditional per-vertex ones
(see Fig. 11). For example, we fully preserve the fruitful analogy
between textures and 2D images, thus making it possible to reuse
2D painting tools over 7', or to apply 2D image filters, to define 3D
tangent directions (needed for tangent-space normal maps), and, in
general, to embed our new representation in existing production and
usage pipelines (see Sec. 7).

2.2 Special UV-map construction techniques

Although we are mainly interested in proposing a novel representa-
tion (Sec. 3), our construction approach (Sec. 4) can be compared
to existing unconventional parametrization techniques.

Construction not over manifold meshes. Techniques have been
presented which are able, as ours, to produce UV-maps over sur-
faces initially represented by means other than two-manifold trian-
gle meshes, like rangescan collections [Pietroni et al. 2011], point
clouds [Zhang et al. 2010; Jakob et al. 2015]. Even if the targeted
application is remeshing rather than texturing (for example, global
overlaps in parametric space are not addressed), the results could
probably be adapted. The produced map is still defined by the per-
sample assignment of uv positions (and is therefore tied to the sur-
face used as input). Still, a form of representation independence
is reached: one difference is that in our case not only the construc-
tion process but also the final result is independent from the original
representation of the surface.

Simplification aware UV-maps. Parameterizations which are de-
fined over simple domains, e.g. featuring straighter and fewer cuts,
impose fewer constraints in the connectivity of meshes using them
as UV-maps [Tarini et al. 2011; Gu et al. 2002], and sometimes
[Sander et al. 2001; Purnomo et al. 2004] this an explicit motivation
for doing so. These approaches make the map more connectivity in-
dependent, but some degree of dependence remains (e.g. adaptation
of simplification algorithms is still required). Also note that this
does not avoid the need of vertex duplications in data structures.

Parameterizations constructed as restrictions. Our construc-
tion method can be considered akin to a small class of alternative
approaches to geometry processing, consisting in working on volu-
metric basis functions (hat functions, in our case) and restricting the
resulting 3D function to the surface e.g. [Chuang et al. 2009]; this
approach has been explored for example to successfully speed-up
parametrization of densely tessellated meshes [Panetta et al. 2012],
intended for remeshing (e.g., taking care of continuity of parametric
lines across cuts). A conceptual difference is that we are not inter-
ested solely in the restriction of f on S, but also on its behavior in
the proximity of S. For example, these solutions achieve represen-
tation and connectivity independence, like ours, but limited geom-
etry independence, because orthogonality is not explicitly sought.
Note also that our specific representations, targeting real-time tex-
ture mapping, is designed around evaluation efficiency and GPU
friendliness.

3 Volume-encoded UV-maps

First, we focus on the simpler case of a map defined over disk-like
surface, so that f can be continuous everywhere (Sec. 3.1), then we
show how to represent cuts (Sec. 3.2).

3.1 Disk-like surfaces

2x2x4

4x4%x8

8x8x16

Figure 3: Effect of resolution on volume-encoded UV-map quality.
A single patch volume-encoded UV-map computed at three different
resolutions (reported on top). Top row: the surface S is color coded
according to belonging voxel. (e.g. on left, there are 1x1x3 voxels).
Second row: uv space. Two bottom rows: uv isolines on the 3D
model. As revealed visually and by measurements (table 1), higher
resolutions allow for more isometric maps.

The domain of f is a solid 3D axis-aligned box B containing sur-
face S. First, we trivially map B into a ‘logical space’ L C R?:

L =10,s, —1]x[0, 8y — 1] %[0, s, — 1]

though a conformal-scale-and-translate operation ¢ : B — L.
The three natural numbers s, .| are the logical resolution of the
volume-encoded UV-map (which is unrelated to the resolution of
the 2D texture T').

We store a uv position (in Q = [0, 1] x [0, 1]) at each integer posi-
tion of L. A unit-sized cube in L, with its eight corners at integer
locations, is termed a voxel.

Our mapping function f is given by
fp) =7(o(p)) ey

where function 7 : P — € is piecewise defined, inside each voxel
of logical space, as the trilinear interpolation of the values stored at

the corners of that voxel:

=Y, ddyd (ifjfjj) @

a,b,ce{0,1}3

where (Uqbe, Vabe) is the uv position stored in P at the (a,b,c)
corner of the voxel containing g, scalars (j[lm)y’z] are the fractional

part of the x, y or z coordinate of ¢, and cj?z’yyz [1z,y,z]‘

1 =1-4
The choice of values s, 4, reflects different balances between con-
ciseness and expressive power: smaller values reduce memory oc-
cupancy, larger values result in more freedom at expressing UV-
maps with, potentially, higher quality (see Fig. 3), and are neces-
sary for complex overall shapes. Typical values range between 4
and 64.

GPU evaluation of f. Atrendering time, uv values of P are stored
as texels of a two channeled 3D volumetric texture of the same res-
olution. Evaluation of f(p), in the fragment processor, consists
simply in applying scale-translation ¢ = o(p) (a single Multiply-
And-Add operation, which can be lifted to vertex computations)
and a single trilinearly interpolated texture access at g, which re-
turns 7(g). This operation substitutes the linear interpolation of
per-vertex uv in traditional schemas. Note that we exploit the native
hardware-supported trilinear interpolation of texels values, which
is highly optimized in term of speed and GPU/texture-RAM band-
width. Moreover, the access is extremely cache-coherent. The re-
turned value is used directly as the address for the final texture 7.

Rationale. Even if f needs be evaluated only in proximity of o (.5),
we store values in a simple, padded regular grid, foregoing any hier-
archical structure. This choice is critical to achieve a undemanding
constant time evaluation of f at rendering time. The strengths (and
the limitations) of our approach stem from this choice. The key ob-
servation is that uv values can be made to vary smoothly and regu-
larly over S, contrary to the signal stored in the final 2D texture 7T';
only low resolutions are typically needed for P, also thanks to the
expressive power of rectilinear interpolations, making its memory
occupancy contained despite the volumetric nature.

3.2 Encoding cuts

Figure 4: Function ¢, with zone side k = 2, mapping a logical
space L of res TXTx5 (composed of 6 x6x4 voxels), into physical
space P; a unit sized gap is added by ¢ to separate each zone.
Here and in other images, different zones are alternatingly colored
green and blue, and different voxels within a zone are colored with
alternating darker and lighter shades.

So far, f is C° continuous everywhere by construction. In the gen-
eral case we need to introduce discontinuities in f, which corre-
sponds to cuts in the UV-map of S. We partition logical space L
into blocks of kxkxk voxels called zones, for a given small integer

Figure 5: A simple example of volume-encoded UV-map applied
over a sphere model. Top: S colored according to belonging voxel
and block (see color coding in Fig. 4). Note triangles spanning the
cut, in the wireframe (close-up, top-right). Bottom: uv lines over
S, and uv space.

k. The idea is to define the map within each zone independently, so
that f is allowed to be discontinuous across zones.

To implement this, we now differentiate between the logical space
L, where the surface is mapped to by o, and a physical space P,
where uv values are stored at integer locations. P accommodates a
single layer of gap voxels between zones of L (Fig. 4).

The function ¢ which maps a position in L into the corresponding
position in P is:

#(q) = q + Lg/k] 3)

(where | | is the component-wise floor operator). In place of (1),
we re-define f as:

fp)=7(¢(a(p))) ©)

Intuitively, the role of ¢ is skip over gap voxels, so that function 7
never gets computed inside them; any uv value stored in P belongs
to exactly one zone, and interpolation 7 never occurs between uv
values belonging to different zones.

Consider two neighboring voxels of L belonging to different zones,
and their shared quadrangular face. At each of the four corners of
the face, uv values can be chosen independently for the two voxels
(beacuse they correspond to distinct integer positions of P). If ev-
ery wv pair are chosen to be matching, f will be continuous across
the two voxels; otherwise, a discontinuity will occur across the face,
which then we term cut-face. Note that, of the k x k potential cut-
faces separating two adjacent zones, we can elect all, none, or only
some to be (actual) cut-faces.

The final cut-lines on S are the intersections between ¢ (.S) and the
cut-faces.

GPU evaluation of f. The additional computation costs to add
discontinuities is negligible, amounting to a per-fragment evalua-
tion of (3). Evaluation of sub-expression gk~ can be lifted to the
vertex processor. This leaves only a flooring and an addition opera-
tion per fragment.

Rationale. In our schema, the choice of value &k determines a grid
of potential cut lines, any subset of which can then be elected as
actual cut lines (see Fig. 4). This limits the freedom of picking the
cut lines for a map, but the benefit, once again, is an immediate

evaluation of f, dealing with cuts without adding another level of
indirection.

Memory costs. For smaller values of &, the grid of potential cut
lines become denser, but, for the same a logical space L resolution,
the occupancy of P is increased by a factor (k -+ 1) /&3, which is:

k | 1 2 3 4 5 6 7 8 9
factor‘S.OO 338 237 195 1.73 159 149 142 137

4 Construction

We now present a possible procedure to construct a volume-
encoded UV-map for an input target surface S.

Objectives. In the restriction of f on .S, we seek the set of charac-
teristics of a parameterization making it useful for texture mapping
applications: we aim to maximize isometry (preservation of both
angles and areas) [Hormann et al. 2007]; we go for injective maps,
i.e. we want to avoid local and global overlaps in uv space; we
strive to keep the amount of cutting (discontinuities of f) low; we
want most of the texture area to be covered by f(.S), to avoid wast-
ing texture RAM; optionally, we can target a prescribed local ratio r
between surface area and texture area, with r a scalar varying over
S, so that parts of S which are more important are mapped into
larger texture regions.

Aside from these aims, which are shared by per-vertex UV-maps
schemes, we also target a new objective over f, orthogonality (see
Sec. 1.1), needed for the geometry independence.

Preliminary: sampling S. First, S is sampled, and the set of
geometry surface samples {so, .., s, } will serve as the sole input
of our UV-map construction. Each surface sample s; represents a
small portion of S and comes with a 3D position p;, a normal 7,
and an area a;.

Surface-sample sets of this kind can be produced easily and robustly
for many initial representations of S. If S'is a polygonal mesh or an
unstructured triangle soup, then a surface sample is produced for
each polygon; beforehand, any triangle spanning multiple voxels is
subdivided into as many subpolygons, so to obtain a good coverage
with no assumption on triangle sizes. If S is a set of reciprocally
aligned range scans (each range scan consisting in a grid of range
points), then a unit area surface sample is produced for each range-
point. If S comes in the form of an unstructured point cloud, we
produce a surface sample for each point; normals, if unavailable by
other means, can be estimated e.g. with [Mitra et al. 2004].

Optionally, a desired local area ratio r; can be associated to each
surface sample s; (otherwise assumed to be 1, meaning uniform
area preservation over all S); values of r; can be set to mirror the
relative importance attributed to the portion of S around s;, thus
allowing for signal-specialized maps (e.g. see Fig. 6).

Preliminary: determine resolution. The resolution of the
volume-encoded UV-map is a parameter corresponding, as men-
tioned, to a trade-off between achievable map quality and memory
usage. In our implementation, we use only powers of two, to max-
imize supportability by graphic cards, usually ranging between 27
and 2° (see Table 1). If the resolution is insufficient, it can prove
impossible to avoid local loss of injectivity: unless that can be tol-
erated, the resolution must be increased and the construction re-
peated. The aspect ratios of the logical space is always selected to
match as closely as possible the bounding box of S.

4.1 Construction of continuous UV-maps

We first cover the construction of volume-encoded UV-maps need-
ing no cuts (Sec. 3.1). The objective is to assign a uv position to
each 3D integer position of P being the corner of any non-empty
voxels, i.e. the ones containing at least one surface sample. The set
of these uv values constitutes the variables of our system.

Inspired by the success of this approach on standard UV-map con-
struction [Lévy et al. 2002; Desbrun et al. 2002], we optimize for
desired properties on the gradients of the solution. Given an assign-
ment of variables, the gradients of f in u and v directions evaluated
at position p, Vu(p) and Vu(p), expressed in logical space, are
given by the gradients of 7 (eq. 2) computed in ¢ = o(p):

~a b
q; q- (Ulab — Uoab
b

)
Vup) = D | & dE (warb — vaos) ©)
)

JU
a,b€{0.1} \ Gz Gy (Uab1 — Uabo

2 (
o (
@Z fjlz’ (Ulab - UOab)
Vo) = D> |86 (vars — vaos) ©)
(

o b
a:b€{0,1} \ G5 Gy (Vab1 — Vabo)

where symbols have the same meaning as in (2). Note that Vu(p)
and Vv (p) are linear with the variables.

For f to be orthogonal, Vu(p) and Vv(p) must be on the tangent
plane of S, i.e. they must be orthogonal to its local normal 77; for
the map to be conformal, Vu(p) and Vv (p) must be equal in length
and reciprocally orthogonal; for the map to also preserve areas, we
need ||Vul| - [[Vv]| to be equal to one (or, more generally, to the
prescribed local area ratio r); to rule out local fold-overs in the map,
we need to ensure the “handedness” of the frame Vu(p), Vu(p), 7t
to be consistent, e.g. to be always right-handed.

All these conditions are satisfied exactly, at a surface sample s;
(with pos. p;, normal 7i; and targeted area ratio r;), if and only if:

i X Vu(p;) = Vo(p:) (N
Vou(pi) x 7 = Vu(p:) (3
Vu(pi) x Vo(pi) = ri -)

(x being the cross product). Therefore, we define our energy Eror
as a measure of the fulfillment of the above vectorial equalities, area
weighted and summed over all surface samples:

Eror = Zai . (EZU) + Ei(s) + E;Q)) (10)

where Eim, Egg), EZ@) are the squared residual of (7), (8), (9):

ED = | @ x Vu(ps) — Vo) |
E® = | Vop) x i —Vup) |
EP = || Vu(ps) x Vo(pi) = 77 |

The energy terms a; - (Eim +E§8>) are quadratic, and can be seen as
an equivalent, for the volumetric case, of the Least Squares Confor-
mal Maps energy designed for common per-vertex UV-maps [Lévy
et al. 2002]. Analogously to [Lévy et al. 2002], minimizing these
terms conveniently amounts to solve a sparse Least Squares prob-
lem, which accounts for conformality, and tends to avoid fold-overs.
In our formulation, this also optimizes for orthogonality, a charac-
teristic which has no counterpart in per-vertex UV-maps (because,
for them, U and V gradients are tangent to the surface by construc-
tion). In other words, our novel objective of orthogonality turns out
to be as easily pursued as conformality.

Figure 6: Example of an adaptive volume-encoded UV-map. User-
defined prescribed area ratio r; is color-coded from red (r; = 1)
to green (r; = 9). Left: a UV-map with constant area ratio 7.
Right: an adaptive UV-map (devoting more texture areas to the red
regions). Above: uv lines. Below: uv space.

Unfortunately, to seek area preservation, and thus isometry, we also

need the terms a; - Efg), which are quartic, and specifically bi-
quadratic.

System solution. Directly solving a large bi-quadratic multivariate
systems is impractical, so we adopt a simple local-global heuris-
tic, which consists in solving a succession of global sparse linear
systems, until convergence. In the first system we minimize (10)

disregarding term EZ-(Q), which as noted results in a quadratic Least
Squares problem. The minimizer is determined up to a global 2D
scaling, rotation, and translation of the variables, which is specified
by imposing constant values to two uv positions.

In each subsequent system, we first compute a pair of local con-
stant vectors ; and U; for each sample i, as the vectors Vu(p;) and
Vuv(p;), computed from the previous solution with (5) and (6), then
projected on the plane orthogonal to 7i;, made reciprocally orthog-
onal (with polar decomposition), and re-scaled so to have length
NG

Then, in (10), we substitute Efg) with the average of two approxi-
mations of it, EZ-(QA) and EZ-(QB):

—

ECY = || Vu(p) x

- 2
— i |
EPP = d x Vo) — it |

resulting in a new quadratic Least Squares system for the next iter-
ation (with the same set of variables).

As a speedup, instead of solving each system in full, we perform, in
all iterations except the last one, just a few steps of a simple gradient
descent, starting from the previous solution. Another optimization
consists in merging together samples sharing the same voxels, ag-
gregating the associated values, to reduce the system size.

Finalizing the map. In the final phase, in order to further increase
the geometry independence of the map, the uv values produced by
the system as corners of non-empty voxels are propagated to all
other integer locations of P, abiding to the orthogonality of f: first
we assign an average normal to all non-empty voxels of L (as the
area-weighted averaged normal of all samples inside that voxel);
then we expand this normal over empty voxels, with a trivial dif-
fusion algorithm (we zero the normals of empty voxels then we

c'

Figure 7: Construction of an Atlas-based UV-map, for the ‘birdie’
model. A: voxels and zones (color coding as Fig. 4); B: consequent
grid of potential cuts; C: the flood-filling algorithms sweeps the
mesh, leaving only a few actual cuts, and producing a single self
overlapping chart (C’); D: the final phase splits this chart into non-
overlapping charts, reintroducing a few cuts (arrows), then packs
them in the final atlas (D’).

iteratively assign to each empty voxel the averaged normal of all
neighbors); finally we project the uv values stored at integer lo-
cations of P to the unassigned locations following this volumetric
normal field. This might generate foldovers far away from S, where
it is inconsequential.

The image of f must fit into texture space Q& = [0,1] x [0,1]. A
global rescale and translation is therefore applied to all uv values
stored in PP, remapping the 2D bounding square encompassing all
uw values into the unity square.

4.2 Construction of global UV-maps

For maps which embed cuts, a zone size k (Sec. 3.2) is selected as
an extra parameter, usually ranging from 2 to 8. Just like resolu-
tion selection, this parameter represents trade-off between quality
and occupancy; again, the construction can even fail (and needs be
repeated) for inadequate choices. These cases are detected already
in the first iterations.

Depending on the selection on k, we get a grid of potential cut faces
(Fig. 7-B). Many of them are to be “deactivated”, by enforcing four
equality constraints between pairs of uv values stored in P at their
corners (see Sec. 3.2); the rest are (actual) cut faces.

To pick a proper set of equality constraints, we adopt a flood-fill
based heuristic; its objective is to leave enough cuts to “unfold” the
mesh into a single chart (Fig. 7-C). Next, the global system is re-
solved, as in Sec. 4.1, with sets of constrained uv values represented
by unique variables in the system. The resulting single chart often
presents global overlaps (Fig. 7, C’). If so, in a following phase, it
is divided in non-overlapping sub-charts (reintroducing previously

XL
ST
114

Figure 8: Volume-encoded UV-map (birdie dataset), shown with
an example artist-painted texture (top-left). Top-right: uv lines.

deactivated cuts) and packed in €2, thus obtaining an Atlas based
volume-encoded UV-map (Fig. 7, D+D’). The rest of this section
details every stage of this process.

Flood filling. We seed the procedure from an arbitrary non-empty
voxel of L and process that voxel. To process a voxel v in L means
to solve a small sub-system (as in Sec. 4.1), which has, as variables,
only the uwv values associated to the eight corners of P associated to
v; this requires accounting for only the energy terms associated to
the samples falling in voxels of L which are affected by any of these
corners (up to 27 voxels around and including v, and sometimes
fewer on the borders of zones). Any wwv value which was already
assigned in a previous step is considered a constant.

At every step, we pick a non-processed, non-empty voxel v; ad-
jacent to an already processed voxel v;. If v; and v; belong to
different zones, then the potential cut-face separating them is “de-
activated”, by prescribing four new equality constraints between all
four pairs of corners in P corresponding to the traversed face. Then
v; is processed. The system is repeated until all non-empty voxels
are reached (if S is composed of several disconnected components,
this can require to re-seed the system multiple times).

After processing a voxel, each newly computed uv value at a posi-
tion ¢ € P on the border of a zone is compared to any uv value
already found at a location ¢’ € P such that ¢’ and ¢” correspond
to the same location in L (there are from O to 7 such locations). If
the difference is smaller than a given threshold (we used value 0.2),
a new equality constraint is added between the uwv values at ¢’ and
q". At the end of the process, we discard superfluous equality con-
straints, 1.e. ones not contributing to the “deactivation” of at least
one potential cut face. To achieve better results, every 10 steps we
perform a global optimization for all uv values determined so far.

Cuts placement. The ordering of traversal of the flood-filling pro-
cedure affects the choice of cuts. The traversed voxel-faces are al-
ways “deactivated”, so we prioritize traversal of voxel-faces where
we prefer cuts not to appear.

Any face which is not a potential cut face is always prioritized over
ones which are, because we are unable to create a cut there. Other
than that, we prefer smooth areas of S to be free from cuts. Also,
we want the cut-position to remain close to constant, in uv space,
for small displacements from S. Consequently, f must be close to
constant for displacements over a cut face yr, which are orthogonal
to the cut-line vz, N S. Since we also want f to be orthogonal to S,
this means that we favor cut faces which are orthogonal to S in L.

We pick the face with the smallest “cut-value”: a voxel face a, with
normal 7i,, and separating two voxels vy and v; having average
normal 7o and 721, (with 7i(o41) being the average of these two
normals), has a cut-value of:

[(Fo41) - Ta)| — (Fo - 1) 1)

The first term favors cuts in parts of S which are orthogonal, in log-
ical space, to the cut-face. The second term discourages cuts over
smooth parts of S. Other user defined requisites for cut placement,
e.g. concealment, could be easily embedded in (11).

Overlaps removal and packing. Possible global overlaps in €2 are
dealt with by partitioning the single chart produced so far into a set
of non-intersecting charts c; . .. ¢,. Charts are separated by means
of re-activation of a few deactivated potential cuts face, as follows.

First, non empty voxels of L are grouped into chunks each being
a set of adjacent non-empty voxels belonging to a single zone of
L (two voxels are adjacent if they share a corner; multiple chunks
can coexist inside a zone if they share no corner). A graph is con-
structed where each node is one chunk. An arch is added between
any two neighboring chunks separated by at least one deactivated
potential cut-face, and its strength value is assigned as the summed
cut-values (11) of all such cut-faces. Each connected component of
this graph represents a chart. Initially the graph is connected and
there is only one chart.

If any single chunk self-overlaps in €2, nothing can be done to pre-
vent self-intersections, short of changing parameter k or resolution
of the volume-encoded UV-map. Otherwise, we iteratively detect
a pair of overlapping chunks belonging to the same chart. We per-
form a graph-cut to separate them, by removing a set of arches with
the maximal cumulative strength (any method can be employed to
address this sub-problem, we used [Ford and Fulkerson 1962]). The
process ends when no more intra-chart overlaps are detected.

In the last phase, the separated charts are packed into €2 (see Fig. 7).
It is an analogous procedure to the one carried out with conven-
tional Atlas-based per-vertex UV-maps, e.g. [Zhou et al. 2004]. We
are free to employ any packing heuristic, because each chart ¢; can
consistently undergo arbitrary roto-translations [3; (or, indeed, any
2D affine transformation): it is sufficient to apply 3; to all uv val-
ues associated to a chart <. This is sound, because function 7 (equa-
tion (2)) is linear with the uv values stored in P.

5 Using volume-encoded UV-map

5.1 Filling the final texture

A wealth of techniques and authoring tools exist to support the
creation of a 2D texture 7" for a standard, per-vertex UV-mapped
model. For example, 7" can be produced by manual painting (either
directly over T', or over S in 3D, storing paint strokes in T°), by re-
sampling registered pictures (if .S models a real world artifact), by
sampling details from an higher resolution model, by baking (e.g.
global) lighting, by resampling an existing texture, by texture syn-
thesis, etc (see Figures 14, 13, and others).

Figure 9: Volume-encoded UV-mapped Bunny model. Top-left: di-
visions of S in voxels/blocks. Bottom: wv iso-lines, shown on a
closeup around a texture seam (in the nose region), and on two ad-
ditional views. Top: textured results (1" shown in Fig. 2).

To allow direct use of any of these tools, a volume-encoded UV-
map can be temporarily converted into a per-vertex UV-map, only
for the purpose of building the texture, as follows. First, each tri-
angle spanning more than one logical voxel is split into one sub-
polygon per voxel. Then, the uv attribute f(p,) is assigned to each
vertex with position p,, (taking care to resolve f correctly at seams).
Even if they match at all vertex positions, the two maps are still
not strictly equal, as the uv values of the volume-encoded one are
tri-linearly interpolated in 3D space, whereas the values in the per-
vertex one are linearly interpolated in the triangle plane. The differ-
ence can be made arbitrarily small, by refining the mesh before per
vertex uv assignment. The T built for the per-vertex UV-mapped
model can be used by the volume-encoded UV-mapped model.

5.2 Accessing the final texture

The many widely used mechanisms of standard UV-maps are di-
rectly applicable with our new representation.

Bilinear interpolation. Importantly, a volume-encoded UV-map
allows for native bilinear interpolation in the final access to the tex-
ture 7, just as much as a standard UV-map schema featuring cuts.
As common, texels replication around cuts is needed in 7" to avoid
color bleeding artifacts: texels on one side of a cut must be repli-
cated next to the other side.

MIP-mapping. isotropic MIP-mapping is also trivially supported.
This requires, as usual, replication of texels values at cuts in all
MIP-map levels. The only difference with standard UV-maps is
that the MIP-map level for a fragment at world position p must be
computed with the screen space derivatives of its logical position
o(p) € L, instead of its uv position f(p). Instead, anisotropic
MIP-mapping requires tangent directions (see next page) in order
to compute the screen space rate of change of w and v.

Replicated textures. Even if our construction targets injective
maps, our representation can freely express UV-maps where one
part of 7" is mapped over several parts of the model (a practice com-
mon in games to save memory e.g. exploiting symmetries).

Tangent-Space Normal-Maps. Our representation is compatible
with Normal-Maps stored in Tangent space, because tangent direc-
tions are defined everywhere in the volume (and therefore on the
surface) and can be recovered quickly. In the traditional case, (ap-
proximated) tangent and “bi-tangent” directions are precomputed
and stored at vertices, and then interpolated inside faces; in our
case, we precomputed them at 3D texels and store them in volu-
metric texture sized like P, then trilinearly interpolate them at ren-
dering time. This is analogous to the case of uv positions, leading
to a similar, potentially convenient, spatial tradeoff (see Table. 1,
second-last column). In our setup, approximated 3D tangent direc-
tions pre-computation is particularly straightforward: each coordi-
nate is found by finite difference of u values (v for bi-tangent) of the
two 2 neighboring elements in the respective direction. See Fig. 15.
Technical details are found in the Appendix (additional materials).

Animated meshes. Although the uv values are accessed using the
3D object positions, our schema can be directly applied to common
animated models, e.g. Blend-Shapes or skinned models with Skele-
tal Animations (see Fig. 16), simply feeding to f the rest position
(which is needed anyway by the shader).

6 Results

We tested volume-encoded UV-maps on several datasets, shown in
the figures of this papers, plus more in the demo. To allow a visual
assessment the quality of the maps, we show uv isolines over every
model, in the images through the paper. All our final mappings are
fully injective, with the noted exception.

Table 1 summarizes numeric measurements of the maps. We re-
port achieved distortions with two measures: the L? Stretch energy
[Sander et al. 2001] of the restriced map, which reflect area and
angle distortion, and our own energy (10), which, as discussed, ad-
ditionally reflects orthogonality. To compute the former, we first
converted the maps to a per-vertex representation, after adequately
refining the triangle meshing (see 5.1). Stretch energy, as well as
visual uv isolines inspection, confirms that the quality of the maps
is fully adequate for texturing applications.

Our construction heuristic is reasonably fast, usually taking within
a minute of computation time on commodity hardware.

To foster further research and direct applications, we release a
demo (in the additional materials), which allows inspection of the
volume-encoded UV-mapped models shown in this paper and oth-
ers. It illustrates the case of an end-application. Full shader pro-
grams are revealed by the touch of a button.

Space efficiency comparisons. in addition to the other qualita-
tive (and more significant) considerations, our representation com-
pares favorably as for space occupancy with Perfect Spatial Hash-
ing [Lefebvre and Hoppe 2006] and TileTrees [Lefebvre and Dachs-
bacher 2007] (which in turn are more compact than [Benson and
Davis 2002; Lefebvre et al. 2005]). To store 562K distinct rgb sam-
ples for the Armadillo dataset, [Lefebvre and Hoppe 2006] stores
833 blocks of 3% rgb values, plus a 91 KB offset table, for a total
of 45.3 MBytes. For the same example and the same number of
distinct samples, [Lefebvre and Dachsbacher 2007] reports a total
occupancy of 11.3 MBytes. With a 128 x 128 x 64 P (two 16 bits
channels, 4 MBytes) and a 10242 T (one 7gb per texel, 3 MBytes)
with 60.4% packing ratio, we are able to store more, and much
better distributed, distinct rgb samples for a significantly smaller
total memory cost: 7 MBytes. Ours scales better too: increasing
the number of samples affects only 7. Note that, for many other
datasets, the cost for our representation can be drastically smaller
than for this case (see table 1).

Figure 10: A volume-encoded UV-mapped set of 5 registered
range-images (top). Despite the typical inconsistencies of this kind
of data-sets, like severe incompleteness, noise, overlaps, and lack
of a consistent global connectivity (see inset, middle), a volume-
encoded UV-map could be both easily constructed and directly used
to apply an artist painted texture (bottom). Bottom-left: spatial par-
tition in voxels and zones, and uv isolines.

7 Discussion

Compared to the standard, per-vertex alternative, volume-encoded
UV-maps can impact existing asset creation and usage pipelines in
several ways.

End-user perspective. The most important advantage for the fi-
nal application is the gained ability to reuse both the UV-map and
the texture among different representations of the same object (e.g.
LoD levels of a game), in stark contrast with the common situation
where neither can be shared. Also, 3D meshes are freed from the
need of vertex-duplications at seams. Lastly, the overall memory
consumption can be (but is not always) strongly reduced, depend-
ing on the primitive count and the shape complexity of the model.
The price, in terms of computation overhead, is very small, amount-
ing to one single, cache-coherent extra indirection per fragment (in
stark contrast with alternatives previously presented in literature).
For the rest, an volume-encoded UV-map can be used exactly a
standard one (see Sec. 5.2).

UV-mapper perspective. In the industry, the task of producing
good UV-maps, e.g. by artists, is often computer-assisted rather
than fully automatic. While single-chart “unfolding” (distortion
minimization) is delegated to automatic algorithms, two other sub-
tasks, cut-line identification and final packing of charts, usually re-
quire some user intervention, despite the research in these areas;
partly, this is because the artists require control to exploit potential
symmetries, place cuts according to semantics, and for other spe-
cific goals. This situation is substantially replicated with our new

Polycube Maps

Volume-encoded UV-map Tile Trees

Figure 11: Left: the armadillo dataset (textured model, UV-lines, and 2D texture). Right: a visual comparison of 2D texture layouts with two
similarly purposed representations: PolycubeMaps [Tarini et al. 2004] and TileTrees [Lefebvre and Dachsbacher 2007] (images courtesy of
the respective authors). In spite of being much cheaper to decode, our representation is capable of expressing quality maps whose overall
characteristics (in terms of cuts and distortions) resembles the per-vertex UV-maps commonly used in the industry.

Table 1: Data on the example of volume-encoded UV-maps shown through this paper. For each dataset, we report: the used 3D resolution
of the UV-map and block size k (see Sec. 3.2); the quality of the map, as our energy, eq. (10), (which accounts for both isometry and
orthogonality), and, where applicable, the L* Stretch energy [Sander et al. 2001] of the restricted mapping (which accounts for isometry
only); the percentage of unique final texel samples used on the total in 2D texture; whether or not the result is free from overlaps; and the total
size required to store the map in GPU memory. To help put the latter in context, in the last two columns it is presented as: the percentage of
the memory occupancy that would be required by any conventional per-vertex representation of the UV-map for the same model (disregarding
the vertex duplications which would be required); and, the overhead with respect to a standard hi-res 2D texture T of 2048 x 2048.

Dataset Volume-encoded UV-map

Parameters Quality measures Memory occupancy
see physical zone | our energy Stretch eng. used 2D fully | RAM as % of as % of
Name Size Figure res size | (0 = best) (1 = best) texels inj.? | (bytes) per-vertex 2D texture
3, left 2x2x4 - 0.784 1.536 70.1% yes 64 0.09% < 0.01%
beetle 34K A\ 3,center 4x4x8 - 0.186 1.115 61.0% yes 512 0.71% < 0.01%
3,right 8x8x16 - 0.108 1.068 52.1% yes 4K 5.72% <0.1%
sphere 1280 A 5,13 8x8x8 4 0.055 1.032 59.5% yes 2K 79.8% < 0.1%
gargoyle 258K pts 10 16 x16x 16 7 0.346 — 389% yes 16K 1.5% < 0.1%
piglet 74K A 6,left 16x16x 16 7 0.134 1.110 41.9% yes 16K 17.3% <0.1%
6,right 16x16x 16 7 0.157 22061 454% yes 16K 17.3% <0.1%
birdie 97.7K A 7,8, 13 32x32x32 3 0.107 1.134 50.8% yes 128K 67.0% < 1%
bimba 100K A (demo) 32x32x32 3 0.146 1.280 61.9% yes 128K 32.8% <1%
warrior 500K pts 12 32x64x 32 4 0.193 — 50.9% yes 256K 13.1% 2%
bunny 694K A 1,9,15 64 x 64 x 64 5 0.061 1.090 53.1% yes M 753% 6%
fertility 100K A 14 128 x 64 x 32 2 0.050 1.033 56.9% yes 256K 65.5% 6%
orc 30KA 16 64 x64x 16 6 0.050 1.028 52.4% yes 256K 65.0% 2%
armadillo 330K A 11 128 x 128 x 64 3 0.119 1.106 63.0% yes 4M 638% 25%
dragon 871K A 17 64 %64 x 32 2 0.239 1.614f 62.0% no 512K 30% 3%

1 Note that L2 Stretch energy ignores the user-specified target area ratios. § Computed over non folded faces only.

structure: in Sec. 4.1 we provided an automatic single-chart dis-
tortions minimization procedure, fit to replace its counterparts for
standard maps, and in Sec. 4.2 we showed that heuristics address-
ing the two mentioned sub-tasks have their close equivalent in our
schema (the one we propose represent one possible solution, but
manually designed volume-encoded UV-maps would probably fea-
ture superior quality). The only additional task that we require is
the selection of resolution and patch size selection, which is easy
due to the small space of choices. In addition, the adoption of our
scheme unlocks new possibilities. The map can be constructed over
surface representations other than meshes, thanks to its volumetric
nature — for example, in a range-scanning pipeline, UV-mapping
can precede, rather than follow, mesh fusion; even for a standard
mesh, the construction is more robust, not requiring a clean, two-
manifold input, and is intrinsically easier, because fewer variables
are typically involved; the result is directly reusable when the mesh
tessellation changes — this can be crucial in the movie and game in-
dustry, where, traditionally, hi-res and low-poly versions of a model
have to be UV-mapped separately.

Texture artist perceptive. Any existing technique currently used
to author a texture for a given model can be directly adopted, thanks
to the ability to temporarily convert our maps (see Sec. 5.1). As a
matter of fact, the textures shown in this work and in the attached
demo are authored by five texture artists who directly employed
existing texture authoring tools, covering each one of standard ap-
proaches listed in Sec 5.1. One key factor here is that our repre-
sentation can express maps which are qualitatively similar to the
traditional ones, in terms of cut density and distortions (much more
so than alternatives, as illustrated in Fig. 11).

Conclusions. In all cases where it is applicable, adoption of the
proposed representation unlocks crucial, unprecedented advantages
over the per-vertex alternative which is currently ubiquitous, e.g.,
in games, so we consider it to have a big potential impact.

7.1 Limitations

Generality. The biggest limitation concerns generality. When
S presents tiny geometric features, then a fully injective volume-
encoded UV-map can require too expensive a volumetric resolution;
otherwise, construction can fail, for either one of two reasons: too
complex details falling in one voxel, or insufficient potential cuts
to cut open S. An example of a failure case is shown in Fig 17. In
other words, our approach is directly usable over a class of models
only. The class is wide, as indicated by our experiments on real
world data (see Table 1), and includes numerous non-trivial cases
of practical utility. One reason is that trilinear interpolation of grid
values turns out to be surprisingly expressive: consider for exam-
ple how the entire model in Fig. 3, can be accommodated in as few
as 1 x 1 x 3 voxels, still featuring acceptable distortions and zero
overlaps, notwithstanding that the model features elements facing
opposite directions inside a voxel. Yet, there are no guarantees.

Inherited issues. Our new representation completely removes a
few of the long standing hindrances of the conventional, and ubig-
uitously used, per-vertex maps, but leaves others unaffected, which
are, instead, specifically targeted by alternative routes. The main
ones are: first, that the map construction is still, overall, a laborious
task, involving choices which are difficult to be completely auto-
mated (this is bypassed, for example, by approaches like [Chris-
tensen and Batali 2004; Lefebvre and Dachsbacher 2007; Yuksel
etal. 2010; Burley and Lacewell 2008]); moreover, the parametriza-
tion is global so the task is to be repeated if the model undergoes
substantial changes (in contrast to the quick local refreshes possi-
ble, for example, in [Garcia et al. 2011]). Second, that cuts may be
visible on close-ups, due to inconsistent filtering on the two sides

Figure 12: A volume-encoded UV-mapped dense point cloud. Top
right: a close-up of the head, revealing the nature of the dataset.
Renderings are done by means of simple point splatting.

(if barely: e.g. see Fig. 9); this issue is addressed, or bypassed,
in approaches like [Ray et al. 2010; Purnomo et al. 2004; Tarini
et al. 2004; Burley and Lacewell 2008; Tarini 2012]; note that the
common countermeasure consisting in placing the cuts in less vis-
ible parts of S can, in principle, be applied to our representation
too. Third, the atlas packing necessarily leaves some unused tex-
ture space (unlike, e.g., [Lefebvre and Hoppe 2006; Yuksel et al.
2010; Burley and Lacewell 2008; Tarini 2012; Tarini et al. 2004]).

7.2 Future work

About map construction. Alternative algorithms (and interactive
tools) to construct volume-encoded UV-maps can be designed, also
seeking new objectives. For example our representation is poten-
tially capable of expressing grid-preserving UV-maps, which, as
shown in [Ray et al. 2010], can be useful to conceal cuts, espe-
cially with low resolution 2D textures; in order to construct a grid-
preserving volume-encoded UV-map, additional constraints need
be imposed between mismatching uv positions stored at cuz-faces.
Another approach is the “conversion” of a existing per-vertex UV-
map into a volume-encoded representation: the input map could be
used to guide the construction of a new volume-encoded one.

About map representation. A natural candidate to extend the
generality is to resort to some hierarchical volumetric structure, but
this would defy the central aspect of our solution, crucial for its
practical usability: the negligible rendering-time overhead, costing
a single indirection. Instead, a hybrid approach could be studied
in the future, where the 3D “logical” position p’ € L is stored
as a vertex attribute (chosen independently from its object-space
coordinates p) and, per-fragment, the interpolated value of p’ is fed
to function f instead of p. Values of p’ would have to be designed,
in preprocessing, so to morph S and “inflate” thin features. The
resulting schema would have characteristics in between per-vertex
and volume-encoded UV-maps.

Figure 13: Some color textures filled for volume-encoded UV-
mapped models, using standard texture filling tools: resampling
from projected calibrated pictures (birdie model, top), and resam-
pling from an existing texture (sphere model, below).

Acknowledgments. We are grateful to artists who authored many
of the 2D textures used as examples: Marco Callieri (Birdie), Gaia
Pavoni (Dragon, all bumpmaps), Romain Rouffet (Armadillo, Logo
Bunny), Urban Schrott (Orc). We thank the anonymous reviewers.

References

BENSON, D., AND DAvVIs, J. 2002. Octree textures. ACM Trans.
Graph. 21, 3, 785-790.

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-face texture
mapping for production rendering. In Eurographics Symp. on
Rendering, EGSR’08, 1155-1164.

CHRISTENSEN, P. H., AND BATALI, D. 2004. An irradiance atlas
for global illumination in complex production scenes. In Proc.
of EG Conf. on Rendering Techniques, EGSR’04, 133-141.

CHUANG, M., Luo, L., BROWN, B. J., RUSINKIEWICZ, S., AND
KAZHDAN, M. 2009. Estimating the Laplace-Beltrami operator
by restricting 3D functions. Symp. on Geom. Proc., 1475-1484.

CIGNONI, P., RANZUGLIA, G., CALLIERI, M., CORSINI, M.,
GANOVELLI, F., PIETRONI, N., AND TARINI, M., 2011. Mesh-
lab. http://www.meshlab.org/.

DACHSBACHER, C., AND LEFEBVRE, S. 2008. Efficient and Prac-
tical TileTrees (in Shader X6). Shader X6. Charles River Media.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic
parameterizations of surface meshes. Comput. Graph. Forum
21, 3,209-218.

FORD, L., AND FULKERSON, D. 1962. Flows in networks. Prince-
ton U. Press.

GARCiA, 1., LEFEBVRE, S., HORNUS, S., AND LASRAM, A.
2011. Coherent parallel hashing. ACM Trans. Graph. 30, 6.

Gu, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. ACM Trans. Graph. 21 (3) (21/07/2002), 355-361.

HE, Y., WANG, H., Fu, C., AND QIN, H. 2009. A divide-
and-conquer approach for automatic polycube map construction.
Computers & Graphics 33, 3, 369-380.

HORMANN, K., LEVY, B., AND SHEFFER, A. 2007. Mesh param-

Figure 14: Volume-encoded UV-mapped Fertility model, with an
artist painted texture (top-left).

eterization: Theory and practice. SIGGRAPH Course Notes.

JAKOB, W., TARINI, M., PANOZzZO, D., AND SORKINE-
HORNUNG, O. 2015. Instant field-aligned meshes. ACM Trans.
Graph. 34, 6.

LEFEBVRE, S., AND DACHSBACHER, C. 2007. Tiletrees. In Proc.
of the Symp. on Interact. 3D Graph. and Games, ACM, 25-31.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing. In
ACM Trans. Graph., vol. 25, ACM, 579-588.

LEFEBVRE, S., HORNUS, S., NEYRET, F., ET AL. 2005. Octree
textures on the gpu. GPU gems 2, 595-613.

LEVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. ACM Trans. Graph. 21, 3, 362-371.

MITRA, N. J., NGUYEN, A., AND GUIBAS, L. 2004. Estimating
surface normals in noisy point cloud data. In spec. issue of Inter.
Jour. of Comp. Geom. and Appl., vol. 14, 261-276.

PANETTA, J., KAZHDAN, M., AND ZORIN, D. 2012. Volumetric
basis reduction for global seamless parameterization of meshes.
Tech. rep., New York University.

PIETRONI, N., TARINI, M., AND CIGNONI, P. 2010. Almost iso-
metric mesh parameterization through abstract domains. [EEE
Trans. on Vis. and Comp. Graph. 16, 4, 621-635.

PIETRONI, N., TARINI, M., SORKINE, O., AND ZORIN, D. 2011.
Global parametrization of range image sets. ACM Trans. Graph.,
149:1-149:10.

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless
texture atlases. In Proc. of Symp. on Geom. Proc., ACM, 65-74.

RAY, N., NIVOLIERS, V., LEFEBVRE, S., AND LEVY, B. 2010.
Invisible Seams. Comput. Graph. Forum.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H.
2001. Texture mapping progressive meshes. In Proc. of SIG-
GRAPH ’01, ACM, New York, NY, USA, 409-416.

SANDER, P. V., WoOD, Z. J., GORTLER, S. J., SNYDER, J., AND
HoPPE, H., 2003. Multi-chart geometry images, 23/06/2003.

SHEFFER, A., PRAUN, E., AND ROSE, K. 2006. Mesh param-
eterization methods and their applications. Foundations and

Figure 15: Because we are able to quickly recover 3D tangent di-
rections at rendering time (see Additional Materials), our UV-map
representation can be used with Tangent Space normal maps, which
are the commonest form in e.g. games, and which can be tiled. The
used normal map (left), the normal-map mapped over the volume-
encoded UV-mapped model, and the dynamically relighted result
(right). Top: texture tiled 8 X 8 times (so the pattern breaks at
cuts). Bottom: a non tiled, artist painted example.

Trends®) in Computer Graphics and Vision 2,2, 105-171.

TARINI, M., HORMANN, K., CIGNONI, P., AND MONTANI, C.
2004. Polycube-maps. ACM Trans. Graph. 23, 853-860.

TARINI, M., PurpO, E., PANOzZO, D., PIETRONI, N., AND
CIGNONI, P. 2011. Simple quad domains for field aligned mesh
parametrization. ACM Trans. Graph. 30, 6.

TARINI, M. 2012. Cylindrical and toroidal parameterizations with-
out vertex seams. Journal of Graphics Tools 16, 3, 144-150.

XIA, J., GARCIA, 1., HE, Y., XIN, S., AND PATOW, G. 2011.
Editable polycube map for gpu-based subdivision surfaces. In
Symp. on interactive 3D graphics and games, ACM, 151-158.

YUKSEL, C., KEYSER, J., AND HOUSE, D. H. 2010. Mesh colors.
ACM Trans. Grap. 29,2, 15:1-15:11.

ZHANG, L., Liu, L., GorsMAN, C., AND HUANG, H. 2010.
Mesh reconstruction by meshless denoising and parameteriza-
tion. Computers & Graphics 34, 3, 198-208.

ZHOU, K., SYNDER, J., GUO, B., AND SHUM, H.-Y. 2004. Iso-

charts: stretch-driven mesh parameterization using spectral anal-
ysis. In Proc. of Symp. on Geom. Proc., ACM, SGP’04, 45-54.

Figure 16: A volume-encoded UV-mapped animated model with
linear blend skinning. Top-left: its artist-painted texture. The volu-
metric function (u,v) = f(p) is evaluated on the rest pose position,
before the skinning transformation is computed by the GPU shader.

Figure 17: A failure case. This “dragon” model is not a good can-
didate for our UV-map representation: the thin parts, e.g. in the
mouth, cannot be parametrized without loss of injectivity. The re-
sulting UV-map has four cases of partially self-overlapping charts,
producing local artifacts when the artist-painted texture is mapped
on the mesh (e.g. see inset, lower right—and the attached demo).

