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Abstract

Capturing surface appearance precisely is paramount for modeling realistic materials. Nevertheless, the spatially varying nature of
most materials is difficult to measure. State-of-the-art methods often rely on complex apparatus and controlled environments, and
even if they are able to acquire reliable SVBRDFs, the whole process usually takes a long time and generates a large amount of
data, that is often redundant.
In this work we propose a method for fast and assisted acquisition of material properties on-site. The system has a simple setup,
requiring only a generic camera and a light source. Consequently, it is also very portable and appropriate for a broad range of object
sizes and scenarios. The system guides the acquisition process, allowing for a fast capture session while at the same time producing
high-quality per vertex diffuse colors. To help in achieving a complete coverage it suggests missing light directions, reducing the
amount of necessary input images and the acquisition time. The system is designed to work in situ, therefore the whole acquisition
process works with immediate feedback and interactive integration of new data.
We show results for a variety of objects differing in size and materials.
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1. Introduction1

The fast improvement of depth cameras and scanning de-2

vices allowed for faster geometric acquisition of objects and3

environments. Nevertheless, the issue of color quality of the4

objects has been only partially taken into account, and real-time5

(or near real-time) material acquisition has not received the ade-6

quate attention. A method that is robust and efficient enough for7

in situ acquisition, and that, at the same time, can handle a broad8

variety of materials and geometries, is still a great challenge in9

the field. In this work, we propose an acquisition method to10

narrow this gap.11

Capturing the material appearance requires extra care with illu-12

mination conditions. Unfortunately, state-of-the-art acquisition13

methods rely on complex setups or impose severe ambient or14

geometric limitations in order to have a controllable light en-15

vironment. Additionally, to achieve high quality results, often16

a massive amount of input data is acquired, and the result can17

only be properly visualized after a long post-processing step.18

To aggravate these issues, it is not uncommon during real ac-19

quisition sessions to notice only afterward that the input data is20

incomplete. Since no immediate feedback is usually available,21

there is no straightforward way to check coverage and com-22

pleteness before arriving at the end of the process. In certain23

campaigns this may be a major problem, since another trip to24

the site may not be viable.25

Another issue is the size of the produced dataset itself, that26

creates problems for distribution, operation, and storage of the27

data, specially when the goal is to digitize a collection of ob-28

jects. Thus, compact and easy-to-use representations are more29

than desirable in this field.30

In this work, we describe a general method for appearance31

acquisition that works with off-the-shelf equipments, and tack-32

les the aforementioned issues. To use our system it is only nec-33

essary a camera, a portable light source, and the 3D geometric34

model of the object in question. Our assumptions are that the35

light source is predominant, and that the material is isotropic.36

Briefly, the method works as follows. An initial camera po-37

sition is chosen and calibrated in respect to the object (image to38

geometry alignment). Then, keeping the camera fixed, photos39

are acquired while placing the light source at different positions40

around the object. For each photo, the light direction is esti-41

mated and reflectance samples are stored per vertex. After the42

first few photos the system is able to suggest new light posi-43

tions in order to achieve a complete coverage of the reflectance44

function per vertex in an efficient manner. When enough sam-45

ples have been acquired for a viewpoint, the camera is moved or46

the object is rotated, recalibrated, and the process is repeated.47

At any given time it is possible to compute a fast polynomial48

approximation of the reflectance function per channel for each49

vertex, allowing for an immediate feedback about the overall50

acquisition progress. The main contributions and strong points51

of our method are:52
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Figure 1: Three datasets with different materials captured with our method.

The appearance acquisition process is simple and requires no53

special gear or setup.. This is important since many prior meth-54

ods are not compatible with in situ digitization campaigns (such55

as large domes [1]). Methods that can work with off-the-shelf56

low cost equipments can also reach a broader audience, spe-57

cially in contexts such as Cultural Heritage.58

It is able to work with sparse data (only a few samples per ver-59

tex). Because the light is manually positioned, minimizing re-60

dundancy by acquiring the least amount of photos is important61

to reduce acquisition time.62

It requires no previous knowledge about the target material.63

Fitting more complex BRDFs usually requires some knowledge64

of the target material, and often it is necessary to adjust at least65

a few parameters to achieve good results. A more generic, even66

though not as accurate, reflectance function that requires no pre-67

vious knowledge or parameter setting offers an attractive advan-68

tage, specially for non-expert users. Furthermore, many BRDF69

models, in particularly those that model specular effects such70

as Fresnel, require a large amount of samples, which would go71

against our sparse data assumption. Some previous work, such72

as Lensch et al. [2] and Palma et al. [3], cluster BRDFs in or-73

der to handle this issue, but by doing so, lose the small intrinsic74

variations of more complex materials and significantly increase75

computational time.76

Results are compact and can be visualized with very simple ren-77

dering shaders. Apart from a few extra per vertex parameters78

to represent the polynomial function per channel, no extra data79

is produced (such as textures). Compact representations are im-80

portant in order to easily store, disseminate and share 3D mod-81

els.82

Immediate feedback during acquisition.. Most digitization cam-83

paigns are in situ and not in a lab environment. Immediate84

feedback is a very important feature since it allows the user to85

quickly evaluate the acquired data and take action where nec-86

essary, for example acquiring photos from a new view point or87

adding images with new light directions. Methods that rely on88

BRDF fitting usually require long processing times. For exam-89

ple, Lensch et al. [2] reported times in the scale of hours, while90

our polynomial fitting takes at the maximum a few seconds even91

for dense meshes.92

93

We acquired the appearance of a variety of objects com-94

posed of different materials to show the robustness of the method.95

We believe the ensemble of the above points are unique and ren-96

ders our method very useful for a broad audience of users that97

are not experts in appearance modeling and acquisition, that98

cannot afford expensive systems, that can greatly benefit from99

having immediate feedback of the acquisition process during100

the digitization campaign without long post-processing compu-101

tations, and that must work in scenarios where the use of large102

apparatus may not be possible due to access restrictions.103

The rest of the paper is organized in the following way. In104

Section 2 we present the works that inspired and that are most105

related to ours. In Section 3 we explain the required setup and106

give a brief overview to illustrate a typical acquisition session107

using our approach. Section 4 describes the main points of our108

method that allow us to achieve the mentioned contributions:109

a per vertex polynomial fit of the reflection function; and a110

guided acquisition approach that indicates optimal light posi-111

tions to cover as many and as best as possible the vertices. To112

illustrate the robustness of our approach, we show and analyze113

results for a variety of different materials in Section 5, followed114

by some validations. Finally, we discuss the method’s limita-115

tions in Section 6 and present our conclusions in Section 7.116

2. Related work117

The estimation of SVBRDFs and material properties in gen-118

eral became a topic of interest as soon as active acquisition de-119

vices (i.e. 3D scanners) started to reach a mature level. A com-120

plete overview of the literature in this field goes well beyond the121

scope of the paper. We mainly focus on approaches that share122

features with our proposed work. Please refer to [4] or [5] for123
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an overview on acquisition and digital modeling of appearance.124

One of the first generic approaches was proposed by Lensch125

et al. [6]. They implemented a fitting process of the Lafortune126

BRDF model using only a professional digital camera, a reflect-127

ing sphere and a dark room. Instead of having a BRDF model128

per vertex, they segmented the mesh into clusters of BRDFs.129

Due to the clusterization, however, some areas may not be well130

represented. The authors extended the previous work by chang-131

ing the calibration of the light source position and estimating132

normal maps in order to refine the geometric details [2]. The133

approach obtains accurate results, but the specificities of the134

setup and the amount of input needed make it impractical for a135

wide use. Therefore, especially for on-site acquisition, several136

efforts toward more applicable solutions have been made.137

Simplifying the description. A first direction of research was138

the creation of simplified models to represent materials. Among139

them, the work of Malzbender et al. [7] allows for a much sim-140

pler and faster acquisition procedure. It fits a Polynomial Tex-141

ture Map (PTM) by solving a linear system for N given im-142

ages using singular value decomposition. They also show that143

it is possible to apply filter behaviors on the PTM and some144

lighting models such as anisotropic surfaces and Fresnel effects.145

Nevertheless, this approach was intended to acquire data from146

a single point of view in order to produce texture maps that147

can change their appearance with respect to the light direction.148

In a similar fashion, Goldman et al. [8] propose an approach149

based on photometric stereo to recover at the same time ge-150

ometry and spatially-varying BRDFs using the isotropic Ward151

shading model. In the same line, the work of Alldrin et al. [9]152

acquires shape and BRDF simultaneously. The material is ob-153

tained from a bi-variate approximation of measured isotropic154

BRDFs, and the authors argue that it can represent a broader155

number of materials. These methods do achieve good results156

but rely on a very accurate acquisition, and are not trivially ex-157

tensible to larger objects.158

Controlling the acquisition. Another possible direction of work159

is to build ad-hoc devices to automatically acquire the massive160

amount of data needed for appearance properties estimation.161

Holroyd et al. [10] designed a complex coaxial optical scanner162

capable of synchronously acquiring shape and spatially varying163

reflectance using the Cook-Torrance model. Their device con-164

sists of a pair of assemblies, each containing a coaxial camera165

and a light source. Schwartz et al. [1] created a dome con-166

sisting of 151 DSLR cameras taking HDR sequences and one167

LED-Projector mounted on a tripod placed at five to eight dif-168

ferent positions, projecting 38 different patterns. Instead of fit-169

ting BRDFs, it produces a Bidirectional Texture Function for170

the mesh. With a similar setup, the dome proposed by Nöll171

and colleagues [11] is also able to acquire the bottom side of172

objects since they are posed on a transparent surface. CultLab173

3D [12] proposes an automatic modular digitization pipeline,174

which is able to acquire geometry and appearance at the same175

time. All the devices above present limitations due to their re-176

stricted portability and, more importantly, to the size of the ob-177

ject that they are able to handle (not more than a few tens cm).178

Simplifying the acquisition. Given these limitation, research179

efforts have been placed in the direction of limiting the com-180

plexity of the acquisition setup and the amount of input data181

needed. Material properties can be inferred even from a sin-182

gle image, trying to classify the properties of types of mate-183

rials [13], or by analyzing a single image with known geom-184

etry [14], but are limited to a single BRDF. Focusing on the185

acquisition of real objects, some recent works propose the ac-186

quisition of the SVBRDF of real object with very simple pro-187

cedures, requiring only the light of mobile devices [15, 16] or188

even the screen of a laptop [17]. While they obtain very inter-189

esting results, these methods are limited to smaller and nearly190

planar objects.191

The acquisition of larger and more demanding objects usually192

imply in slightly more complex acquisition setup and data. Palma193

et al. [3] propose a statistical method for estimating Spatially194

Varying BRDFs. The approach is based on video sequences195

with fixed but general lighting conditions. A user assisted clus-196

tering process is also performed, since in the video some re-197

gions may not have been appropriately specularly sampled. Some198

limitations are presented in this work due to the input data and199

the employed Phong model, and it may also present blur effects200

in some cases. In addition, the clustering step may sometimes201

require a significant amount of manual intervention. The work202

presented by Dong et al. [18] also tackles the unknown lighting203

conditions using a video, but in this case the object is rotated204

around its axis. As BRDF model they chose the isotropic mi-205

crofacet model. The greatest limitation of their work is that206

it only handles convex geometry, and thus is not applicable to207

most real objects.208

Ren et al. [19] proposed a portable acquisition setup that in-209

cludes a BRDF chart to recover the object materials in a similar210

fashion as with color charts. Treuille et al. [20] extended the211

idea by using references of known BRDFs to reconstruct the212

object using multi-view stereo. These two methods depend and213

are limited, however, on the amount and quality of the reference214

BRDFs used.215

Recently Wu et al. [21] presented AppFusion, an interactive216

material acquisition system that uses the Kinect to estimate the217

lighting environment and the material of the target object. The218

system also takes advantage of the infrared data provided by the219

Kinect device. While our proposed method follows a similar di-220

rection by aiming at a fast acquisition system with immediate221

feedback, AppFusion is unfortunately limited by the quality of222

the acquired data by the Kinect (especially the image resolu-223

tion). The results shown are on small objects, composed by a224

single material.225

Reducing the amount of input. A last and final interesting di-226

rection of research is to reduce the amount of input data needed227

to fit existing material models. The work by Ruiters et al. [22]228

proposes an initial effort to deal with SVBRDFs, but requires229

a very long processing time. In a more recent work, Nielsen et230

al. [23] analyze several examples of BRDFs and show that most231

of them can be acquired starting from a small number of sam-232

ples (from five to twenty). This is a promising result, but has233

yet to be extended to the SVBRDF case. Our proposed work234

goes in the direction of acquiring an accurate material repre-235

sentation by minimizing the number of acquired samples. We236

also employ a more general model, instead of choosing a sin-237
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gle BRDF as done by many of the related works. To the best238

of our knowledge, there is no other system that is as general as239

ours, i.e., does not impose severe restrictions to object’s size,240

location and shape, and does not make assumptions about the241

material. In addition we provide immediate feedback that aids242

in reducing the acquisition time and avoids redundant data.243

244

3. System setup and example of usage245

The system setup, shown in Figure 2 is quite simple, and246

similar to the one used for the acquisition of RTI images. The247

camera is fixed, preferably using a tripod, in front of the ob-248

ject and the reflecting sphere. Regarding the illumination, the249

assumption is that the light must be ”directional” (same light di-250

rection for the whole object). To better approximate this effect,251

the light source used must cover a significant larger volume than252

the one occupied by the object.253

Once the setup is ready, calibration is performed using a single254

image, in two steps. First, since the light direction has to be255

estimated, the position of the reflecting sphere is automatically256

extracted from the image, using the standard method from RTI257

acquisition [24]. Then, the image is aligned to the 3D model258

by estimating the camera parameters using Corsini et al. [25]259

Mutual Information method. The amount of user interaction260

is limited to an initial rough alignment of the model, and usu-261

ally does not require more than a few seconds. Optionally, a262

color chart can also be used for color calibration. Even though263

it is not mandatory, it may help to improve the final result and264

achieve more natural and faithful colors. The color chart pro-265

cess consists merely in detecting the squares with respective266

colors in the image, and applying a linear regression for each267

color channel to calibrate the photos.268

Once the image is aligned with the 3D model, and the sphere269

has been identified, a set of photos is acquired by displacing the270

light source. For each photo, the light direction is automatically271

detected, and the pixel colors are directly mapped onto the 3D272

vertices.273

Figure 2: An illustration of the system setup, containing the camera, a light
source, a reflective sphere and the object.

After the first few photos have been acquired, the system274

is able to suggest new light directions to optimize the process.275

Figure 3 illustrates some steps of the acquisition process, and276

how the suggested lights improve the fitting after each new277

photo. Note that a vertex may be well represented from one278

light direction, but lacks samples from other angular ranges.279

For example, the second row in Figure 3 shows an improvement280

on the lions breast using an approximately frontal light direc-281

tion. However, the same vertices appear with arbitrary colors282

(due to lack of samples) when illuminated from the side, so a283

new light is suggested to better cover these angles, as shown in284

the last row of the figure.285

New photos are acquired using the suggested light direc-286

tions, until a good coverage is achieved. This is mainly evalu-287

ated visually by the user after fitting the polynomials. Never-288

theless, this evaluation is straightforward since poorly sampled289

vertices are rendered with arbitrary colors and can be easily290

spotted, as shown on the top rows of Figure 3. At this point,291

a new viewpoint is manually chosen by displacing the object292

or the camera, and the process is restarted taking into account293

the data acquired from the precedent view directions. Conse-294

quently, a lower number of light directions is usually needed to295

cover the new view point.296

4. Method297

Our approach aims at guaranteeing that at least the mini-298

mum amount of information per vertex has been acquired in299

order to reproduce its diffuse color and an approximate specu-300

lar component for each color channel. Note that our goal is not301

to have a minimum number of samples per vertex but a good302

angular coverage for each one.303

For each vertex we store all projected pixels from the acquired304

photos. Other than the pixel intensity per color channel, we also305

store the product (R · E) for each pixel sample, that is, the dot306

product between the reflected light direction, and the eye vec-307

tor. Even though we only use the product (R · E), it implicitly308

contains information about the normal N and the light direction309

L.310

The next sections explain the model fitting, the mechanism311

to suggest new light directions, and the neighbor expansion to312

assign a material model to vertices that lack enough samples.313

4.1. Model fitting314

We chose a very simple, yet efficient, model: a cubic poly-315

nomial for each color channel. This generates 12 parameters316

per vertex, i.e., 4 coefficients for each channel. See Figure 4 for317

some exemplary fitted curves.318

The motivation for the cubic polynomial comes from our319

established goals of visualizing objects during digitization cam-320

paigns. Sometimes acquisition time may be short, and conse-321

quently there may be a low amount of data available. For that322

reason, we need a material appearance model that can be ob-323

tained efficiently, does not require previous knowledge about324

the reflectance function and does not need an initial solution.325

More traditional BRDF models could be used, but they usually326

require dense sampling and a nonlinear optimization, which327

falls on the pit of a good initial solution and slower execution328

times. Our fitting, on the other hand, takes only a few seconds329

using our GPU implementation even for meshes on the order330

of a million vertices. Since polynomials are good models for331
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Figure 3: Top row: two input images projected directly onto the model before
fitting the reflectance function. Bottom three rows: fitting the data before (left)
and after (middle) a new photo is acquired from the suggested angle. Note how
for each step the coverage improves significantly. Vertices with arbitrary colors
do not yet have enough data, so their polynomial curve is unable to approximate
the function well. The light direction is depicted on the right column, where the
top row shows the five manually chosen light directions, and the bottom rows
show the first three suggested light direction. The white spot is the current
direction, the green spots are previously acquired directions.

low-frequency data [26], it suits our goal to guarantee a good332

diffuse color. As aforementioned, we are, however, restricted to333

isotropic materials.334

An important point is that we do not divide our function335

into two components, such as diffuse and specular. Typically, a336

straightforward approach would be to plot each sample’s inten-337

sity against two different products: (L · N) for the diffuse part338

and (R · E) for the specular part. However, as also noticed by339

Palma [3], specular information is particularly difficult to ac-340

quire. Only a small amount of photos cover a vertex in a specu-341

lar manner since this behavior is usually concentrated around a342

small angular range. Fitting any interesting function with very343

scarce data is troublesome. Another option is to acquire more344

data until enough specular samples per vertex is obtained, but345

this would go against one of our main goals, which is to avoid346

an acquisition process that is excessively long. Thus, we treat347

all our input data equally, and try to make the most out of it in348

our fitting process.349

Figure 4: Exemplary fitted cubic polynomials from four different vertices of
the Nana dataset. The vertical axis shows intensity, and the horizontal axis the
product (R · E).

The fitting procedure is based on a simple Least-Squares350

polynomial fit [27], and can be applied at any time during the351

acquisition process, but usually at least five photos are needed352

to achieve any meaningful result. This can be very useful in353

understanding the amount and quality of coverage at any given354

moment during the acquisition session. If more data is needed,355

more photos can be acquired accordingly.356

4.2. Suggesting new light directions357

We try to reach the right balance between the amount of data358

gathered and the quality of the results. Hence, after acquiring359

the first few photos, the system suggests new light directions360

in order to optimize the vertex coverage. This initial number361

of photos is arbitrary, in the sense that during the acquisition362

process one can ask for a suggestion whenever needed. But363

in our tests we found that only around 3-5 initial photos are364

necessary. Furthermore, one can choose to mix the suggestions365

with a self-guided acquisition procedure in some cases.366

4.2.1. Vertex coverage367

To compute a vertex’s coverage, we look at the distribution368

of its acquired samples, and analyze angular regions that are369

sub-sampled. As we do not know beforehand the true distri-370

bution of the function, we aim at sampling the domain as uni-371

formly as possible. Thus, vertices with good coverage should372

have small maximum distance between two samples.373

Note also that for each light direction, we check if the vertex374

is visible from the light source and discard samples that are in375

shadows.376
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Figure 5: The maximum possible angle between L and E happens when R and
N are perpendicular.

4.2.2. Optimal light direction377

To suggest a new light direction, vertices cast weighted votes378

on their preferred direction according to their current coverage.379

For each vertex, we search for the largest interval between two380

samples. First the samples are ordered by the value (R · E). We381

further include the two extremes anglemin = 0 and anglemax as382

anchor points. anglemax is the maximum angle between a possi-383

ble light vector and the eye vector while still being visible from384

the light source: ∠EN + π/4, as illustrated in Figure 5.385

Once the samples are ordered, we define the optimal an-386

gle α of the vertex as the medium point of the largest gap, i.e.,387

where it most lacks samples. This process is depicted in Fig-388

ure 6. Finally, to compute the actual light direction that would389

generate a sample at that position, the eye vector is rotated by α,390

and reflected back about the normal, as illustrated in Figure 7.391

The vertex votes on this direction with weight equal to half the392

length of this largest interval.393

After all vertices have voted, we proceed to select the best394

global direction. The directions are clustered using regular an-395

gular bins. For our tests we used 362 bins. For each bin the396

weights of its contributing directions are accumulated. For the397

ten bins with highest total weights, we analyze their contribu-398

tion to all visible vertices in the following manner. For each399

bin the average of the contributing light directions is used as400

its representative direction. The scene is rendered from the ten401

representative directions, and for each one, we sum the contri-402

bution of all visible vertices. Each vertex contribution is the403

distance from the product (R · E) using the representative di-404

rection, and the closest stored sample so far, as illustrated in405

Figure 8. Finally, the bin with the highest contribution is the406

suggested next optimal light direction.407

4.3. Sample propagation408

The coverage of the whole surface of a real object may be409

a difficult task, since it may be hard to frame all the portions of410

the surface due to self occlusions. Moreover, for some cases, it411

may not be possible to obtain light directions to cover the whole412

hemisphere around the object. Therefore, based on the assump-413

tion that the material properties are locally coherent, samples414

are shared between neighboring vertices in order to improve415

the coverage of those that lack samples.416

Given a vertex, we use two metrics to spread the informa-417

tion around neighbors: ratio of covered photos, i.e., how many418

photos from the total set cover this vertex, and the standard419

deviation of the vertex’s samples. The motivation for the first420

metric is very straightforward, if a vertex is covered by a small421

1

0

0

Figure 6: For each vertex we search for the largest interval between its acquired
samples (red points). The green point represents the desired new optimal angle
between R and E for this vertex. The blue points are anchor samples to create
the first and last interval. The vertex weight to the containing bin is dmax/2.

Figure 7: Once we find the candidate angle α for a vertex, we reflect back the
R vector to get the corresponding optimal light direction L∗.

number of photos it requires more samples in order to achieve422

a good reflectance approximation. The second metric comes423

from the fact that, since we have no previous knowledge about424

the function, our best guess is to aim for a uniform distribu-425

tion on the angle domain. Sparse sampling usually has a high426

standard deviation, therefore, we try to increase the standard427

deviation of each vertex with low ratio.428

To propagate the samples to neighbors that lack information,429

the following steps are performed: for each photo that does not430

cover a vertex, we check if one or more neighbors are covered.431

If so, we choose the neighbor that most increases the standard432

deviation. The process is repeated until all vertices have been433

covered or convergence is achieved. We restrict the propagation434

to neighbors that have similar normals. In our tests we used a435

threshold of 30o for the angle between normals, and 0.5 for436

the ratio metric. Figure 9 illustrates the result of the described437

propagation procedure.438

0

weight for
optimal direction

contribution for given
light direction

Figure 8: The sampling distribution of a given vertex. The vertex’s optimal
angle is depicted as the green point, which also defines its weighted contribution
to the bin it falls into. The yellow point represents another bin’s representative
light direction, and in this case it will only add a small contribution to this
vertex, since it already has a sample close to this direction.
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Figure 9: The Pulcinella before (left) and after (right) the neighbor sample
propagation process. Note how difficult to reach vertices inside the cloth folds
had their coverage significantly improved.

5. Results and Discussions439

We tested our approach on a variety of objects composed440

of different materials. In this section, we present our rendering441

system to illustrate the results, and briefly describe and com-442

ment each test case. We also provide some visual error valida-443

tion method, and a limited comparison with existing methods,444

since only a few made their data available upon request.445

5.1. Rendering446

The resulting datasets were stored in the Stanford PLY for-447

mat with normal and polynomial coefficients per vertex. No448

extra texture or color information is necessary. In comparison449

to a dataset with RGB diffuse and specular coefficients, plus a450

shininess exponent, that typically stores 6 extra floats per ver-451

tex, we store 12 extra floats but achieve a much more precise452

and general approximation of the reflectance function. More-453

over, during our initial experiments, we noted (as expected)454

that fitting the Phong model using cosine functions generated455

an unsatisfactory fit for most datasets, specially regarding the456

specular component.457

The figures in this paper were produced using a simple cus-458

tom real-time viewer using OpenGL and GLSL shaders. Given459

light and view directions, for each vertex the product (R · E)460

is computed and the resulting value is used as the parameter461

for the three cubic polynomials. A simple shadow mapping462

algorithm was also incorporated only to convey a little more463

depth information, but apart from this, no extra effects were464

employed, i.e., no extra material description, global or local il-465

lumination effects, or shading functions. The wooden table that466

serves as a placeholder for the objects was digitized and its re-467

flectance information was also acquired using our method. Note468

that we rescaled the table to better fit under each dataset, so it469

does not serve as a size comparison between the objects. The470

accompanying video was produced exclusively with this simple471

renderer.472

5.2. Results473

The geometry of the test models were acquired using dif-474

ferent laser scanners. We also used different cameras during475

our tests, such as a Nikon D80 and a D5200. Simple and inex-476

pensive spotlights were used to simulate the directional light.477

During an acquisition session the camera remains connected478

to a laptop, so the acquired photos are directly passed to our479

system and immediate feedback is provided. Apart from the re-480

flection sphere and the color chart, no other extra apparatus was481

required.482

During our tests we have simulated in the best way possible483

a common acquisition session, that is, we have acquired each484

dataset within a reasonable time, without aiming at a perfect485

vertex coverage, but at achieving a good trade-off between ac-486

quisition time, acquired data, and resulting dataset. Note that487

we could take an arbitrary large number of photos to achieve488

a near perfect acquisition for each model, but this would go489

against our main goals, as previously described. It would also490

mask our limitations that are discussed in the next section. As491

can be noted in the accompanying video some datasets have492

small holes or missing data in some regions, either due to lack493

of pixel samples or due to holes in the geometry. This may494

cause color artifacts or flickering in some cases, specially when495

the light hits the surface at grazing angles. These artifacts could496

actually be removed with some post-processing, but would show497

results that were not achieved solely during the online acquisi-498

tion method, so we decided to leave them for a more fair illus-499

tration of the method capabilities and limitations.500

Our method runs mostly in GPU with OpenGL shaders.501

Consequently, it has restrictions regarding the use of memory502

and processing time, especially in order to avoid GPU timeouts.503

Therefore, we try to balance the model size and the number of504

photos to avoid running into any hardware limitation. For the505

denser models, our limit was around 130 photos. Nevertheless,506

it did not severely impact the results.507

Buddha. The Buddha is a small plastic statue composed of a508

highly specular golden paint representing the skin, and a less509

shiny, but still moderately specular surface composing its robe.510

The robe is painted in a dark red color, but there are a few511

physical painting artifacts, suggesting that it was actually hand512

painted. The hair is composed of a mostly dark diffuse sur-513

face with some golden spots. This is a particularly challenging514

scenario for appearance acquisition methods due to the highly515

specular materials. A few vertices were not sufficiently sam-516

pled, such as near the chin and its left foot. At these locations517

some artifacts can be noted, specially at grazing angles. Fig-518

ure 10 shows some exemplary renders of the Buddha dataset.519

Even though the golden painting is a rather hard material520

due to its intense shininess, our model was able to reliably repli-521

cate the location and general shape of the specular highlight.522

There is, however, a difference in specular intensity mainly due523

to the lack of highlight samples compared to diffuse ones, and524

due to the color saturation on the photos.525

Book. Hardcover books usually have highly specular surfaces,526

as is the case with the dataset analyzed here. Furthermore, due527

to its predominantly flat geometry, aligning the model precisely528

is very challenging. In fact, due to some misalignments it is529

possible to note some degree of blurring in the results. On530
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Figure 10: Two renders of the Buddha plastic statue, painted with a challenging
reflective material. Note that the red stain on its shoulder is present on the real
object.

the positive side, it shows that the fitting is somewhat robust531

to small misalignments. Renders are shown in Figure 11.532

Figure 11: A book cover made from a highly reflective material. Even with
noticeable geometry-image misalignments responsible for ghosting artifacts,
the reflectance functions are well approximated.

Cloth. Cloth is a challenging material to acquire properly. This533

small statue is basically made from cloth with small red stones534

attached, a black rigid mask and a dark wooden base. The main535

problem was covering small holes due to the cloth folds. Align-536

ment with non-rigid objects is also challenging for obvious rea-537

sons. The scanners were not able to generate a very precise538

geometry for this case, aggravating the problem. An illustra-539

tive render is shown in Figure 12. Albeit these challenges, we540

were able to produce a very compelling appearance model for541

the Pulcinella statue. In this case, the information propagation542

was crucial to cover vertices that are hidden from most combi-543

nations of view and light directions.544

Vase. This vase has a simple geometry with some carved motif.545

The challenging part however, is the coat of specular paint, that546

is an issue for many color acquisition methods. An illustrative547

rendering can be seen in Figure 12.548

Boomerang. The boomerang is a very simple object, basically549

a painted flat wood surface. Only a few photos are necessary to550

achieve a good approximation of the surfaces reflection func-551

tion. Figure 12 illustrates the resulting dataset.552

Thai Lion. This small souvenir Thai statue is made of some553

kind of composite material. Apart for some unreached vertices,554

specially between the front legs, the surface appearance was555

well captured (Figure 13).556

Nana. The Nana is a small statue composed of a very specu-557

lar head and a more predominantly diffuse body. Furthermore,558

groups of similar colors, such as the green belly, present high559

local color variation, i.e., many close points reflect different560

shades of green, which renders our per-vertex approach specif-561

ically appropriate. The result can be seen in Figure 12.562

In order to demonstrate the efficiency of our light suggestion563

algorithm, we did not acquire this dataset using our method,564

but used a dataset fabricated with a mini-dome, containing 114565

light directions from a fixed view direction. We let our system566

automatically pick 40 photos from this set to produce the poly-567

nomial per-vertex fitting. For each suggested light direction the568

method selected the photo with closest light direction. We also569

produced a result with the full dataset. Figure 14 shows that our570

algorithm is able to faithfully capture the appearance using only571

approximately one third of the whole mini-dome dataset. We572

expect this disparity to increase even more if more viewpoints573

were available, as our method would profit from the sequential574

information.575

Bas relief. To further show the versatility of our method, we576

also demonstrate how it behaves when dealing with data from a577

Reflectance Transformation Imaging (RTI) acquisition, plus the578

geometric model. This wall panel has dimensions 80x50cm,579

and is a typical case where RTI works well, since it is pre-580

dominantly flat. We show how our method enhances the RTI581

paradigm by producing real 3D data. A rendering of the panel582

can be seen in Figure 12.583

In Table 1 we list a few more details about each dataset,584

such as number of photos and views. The timing in the fourth585

column is relative to the last performed fitting, that is, with all586

acquired photos. Note that the first fitting procedures usually587

take much less time.588

We did not time precisely the whole acquisition session,589

since it depends on the experience of the user and the time spent590

on making decision about the coverage, among other factors.591

For the largest datasets, such as the Thai Lion, it took around592

one hour. Datasets with less view points and photos took con-593

siderably lower times. Note however, that most of the time is594

spent moving the light source around and calibrating new view-595

points.596

5.3. Validation597

One way to verify the quality of the reflectance approxima-598

tion is by not using some acquired photos, and comparing the599

result against these control group. Figures 15 and 16 show this600

analysis with a color-coded difference between the photo and601

the render, where the scale goes from light green (low error) to602

red (high error). As it can be observed, most of the surface is603
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Figure 12: From left to right: the Pulcinella miniature offers two significant challenges, the dark mask and the cloth, that is particularly difficult to cover entirely
(note that the small black holes are due to missing geometry); a terracotta vase with a coat of shiny paint that makes it specifically challenging; a painted wood
boomerang acquired with a reduced number of photos; the small Nana statue composed of different surface appearances; and a marble wall panel, produced from
an originally RTI dataset.

Figure 13: The Thai lion statue from two view points.

Object # photos # views time(s) # vertices
Buddha 110 6 25.91 1.440M
Thai Lion 120 12 12.08 386K
Vase 114 6 11.19 758K
Nana 114 1 9.30 1M
Book 47 4 4.46 1M
Boomerang 22 2 1.58 442K
Cloth 50 3 2.27 789K
Bas relief 105 1 2.85 400k

Table 1: Description of the acquired data. The fourth column refers to the fitting
time for all views combined.

well represented. Higher error can be noticed mainly on high-604

light regions, as expected, and near shadows, though this can be605

due to inconsistencies in the shadow map, since our light model606

is very approximative.607

The low error on the diffuse color support our claim that we608

can reproduce a good base color with a reasonable specular609

approximation. This is expected since polynomials are good610

models for low-frequency data, such as diffuse color and some611

wide specular lobes. Note that since our method consists of a612

model per vertex, even with high-frequency materials, such as613

the golden painting, our system can approximately replicate the614

Figure 14: The result with 40 photos (left) and 114 photos (middle) from the
Nana dataset. The color difference image (right) confirms that our light sugges-
tion approach efficiently produced practically the same result as with a more
dense uniform distribution of the light directions.

specular shape on the object, but not the intensity.615

Figure 15: From left to right: original image, render, color-coded difference
between the image and the render. We can notice how in general the error is
very low, except on some highlight regions and near shadows. The color scale
for the error is depicted below the image, where red represents a high error, and
light green a low error.

We also provide a visual comparison with Palma’s method [3].616

Figure 17 shows a render from both methods and a real image617

at approximately the same position. As it is noticeable, our618

method better approximates the real image, since it is able to fit619

a per-vertex function independently, while Palma’s method re-620

lies on clustering and thus tends to blur the result. Their method621

also uses the Phong model to approximate the BRDF, which in622

many cases does not fit well to the real data.623

We have also used an available dataset acquired with the624
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Figure 16: The same pattern of error can be noted on the vase. In general the
error is very low, except at the center of some highlight regions.

Figure 17: A comparison between our method (left), the real photo (middle),
and Palma’s method, at approximately the same camera and light configuration.

Bonn Dome [1] to further evaluate our method. Since it is very625

densely sampled - 151 cameras with 151 light directions for626

each one - we have chosen a subset of the photos for our com-627

parison. For each suggested direction by our method, we pick628

the closest light direction from the dataset. For this test we have629

picked three viewpoints facing the front of the statue, and let the630

system choose the best 50 photos for each one, that is, a total631

of 150 photos. Figure 18 shows a comparison of a photo from632

the original dataset and the resulting model from our method633

rendered from the same viewpoint and with the same light di-634

rection. Even though our method is not able to reproduce all635

the fine specular details, the overall reflectance behavior is well636

captured with just a small fraction of the original dataset.637

As a visual comparison, we have taken a frame from the638

BTF renderer demonstration video of Schwartz et al. [1] method.639

Figure 19 shows that even with a much simpler acquisition640

Figure 18: Result using a dataset acquired with the Bonn Dome. We compare
a photo (left) that was not used to produce the result using our system (center),
and show the color scale difference (right). There is a more significant error
around the neck due to a small variation on the rendered shadow.

methodology we can achieve comparable results, since not even641

very dense sampling can capture all the fine specular details that642

can be seen in the original image.643

Figure 19: Comparison between: (left) a frame from Schwartz et al. [1] demon-
stration video; (middle) rendering with the model produced with our method
using a reduced dataset; (right) one of the original photos from the dataset with
approximately same viewpoint and light direction.

6. Limitations644

Our method still depends on a reasonably fine and accurate645

geometric representation of the model, and it is somewhat sen-646

sitive to the camera alignment. In some cases, such as the book,647

the misalignment is noticeable, even though it did not greatly648

affect the appearance result. Nevertheless, if necessary, this is-649

sue can be corrected in a post-processing stage, followed by a650

simple refitting of the data.651

Another issue comes from the fact that small regions not652

covered by enough light direction may not be included during653

the light directions suggestion. Nevertheless, these vertices can654

be spotted by visual inspection in most cases, and a new light655

direction can be intuitively set to complete the data. This is656

one of the great advantages of having a system with immediate657

feedback.658

Our current implementation is very GPU intensive, and as-659

sumes that all data can fit in GPU memory. It thus restrains the660

maximum number of photos that can be used simultaneously.661

This restriction can be removed by using a multi-pass strategy662

to fit the data, where each pass would process a limited number663

of vertices.664

The polynomial fit has its advantages, but it’s probably not665

the best choice to model all materials. We cannot treat complex666

specular behaviors such as Fresnel effects, the main reason for667

this is the lack of high sampling density and the inability of668

the model to fit data with high variance. We are also limited669

to isotropic materials. Nevertheless, it is important to stress670

that the data acquired during the photographic session may be671

used, in a second stage, to fit other material models, possibly672

by clustering the main materials of the objects (like in Palma et673

al. [3]), or by taking advantage of the recent studies on BRDF674

sampling [28].675

Finally, even though there is no hard restriction about the676

size and geometry, the object has to be illuminated by a pre-677

dominant light source for the method to work properly. The678

manual placement of the light source may also not fit exactly679
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with the proposed direction by the system, but we noted that680

this was not an issue during the acquisitions, that is, the method681

is able to work with a close enough direction. Occasionally the682

system would suggest a new light direction very close to the683

previous when the manually placement was too far off, but this684

did not impose any significant overhead to the acquisition time.685

7. Conclusion and Future Works686

In this work we have presented a system for interactively687

acquiring the material properties of an object using only a cam-688

era and a light source. Apart from having a simple setup, the689

method guides the acquisition by suggesting new light direc-690

tions to minimize the capture effort, and avoid long acquisi-691

tion sessions. Moreover, also due to the suggestion system the692

model achieves overall better per vertex coverage, and the sam-693

ple distribution can faithfully approximate the reflection func-694

tion. We have shown results for a variety of materials, such695

as plastic, plaster, ceramic, cloth, clay, marble and wood, and696

different geometric complexities.697

Even without a very sophisticated model, we are able to698

achieve a good per vertex approximation of the reflectance func-699

tion by fitting a third degree polynomial to each color channel.700

With an efficient implementation we provide immediate feed-701

back, which is crucial for in situ digitization campaigns. We702

believe that our method can considerably ease the burden of703

quality reflectance function acquisition while keeping the ac-704

quisition system simple and portable.705

In order to have immediate feedback we have also avoided706

costly computational processes, such as clustering as proposed707

by Lensch et al. [2], or more complex BRDFs non-linear fits.708

Recent methods such as Nielsen et al. [23] only requires a few709

samples to properly fit a reflectance function. Nevertheless,710

their method works well for acquisition of homogeneous mate-711

rials since it requires sampling the surface from specific angles.712

This is incompatible with the acquisition of complex spatially-713

varying BRDFs for heterogeneous materials, where we have to714

deal with thousands of vertices simultaneously.715

As future work, we would like to improve a few points of716

the system, that are not all directly related to the fitting method.717

The alignment, for example, could be further refined using ap-718

proaches such as Dellepiane et al’s [29] to avoid blurring arti-719

facts in the final results, even if, as previously explained, this720

can also be corrected in a post-processing stage. Another direc-721

tion is to try to reduce even more the system setup, and allow for722

acquisitions using a webcam for example, but our initial tests723

show that it produces very unreliable colors, making a precise724

fit an ever greater challenge.725

We would also like to improve the acquisition itself by in-726

troducing more sophisticated calibrations, such as modeling the727

light source, and new ways to improve the vertex coverage. We728

have also not addressed the view point selection, which is a task729

left to the user in our system. Even though selecting view points730

to cover the object is much more intuitive than selecting light731

directions, an optimized set of view points would probably re-732

duce even more acquisition times. Finally, we would like to733

test our system against other types of materials and its scalabil-734

ity with larger objects.735
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