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ABSTRACT
Relightable images have demonstrated to be a valuable tool for the
study and the analysis of coins, bas-relief, paintings, and epigra-
phy in the Cultural Heritage (CH) field. Reflection Transformation
Imaging (RTI) are the most diffuse type of relightable images. An
RTI image consists in a per-pixel function which encodes the reflec-
tion behavior, estimated from a set of digital photographs acquired
from a fixed view. Even if web visualization tools for RTI images
are available, high fidelity of the relighted images still requires
a high amount of data to be transmitted. To overcome this limit,
we propose a web-friendly compact representation for RTI images
which allows very high quality of the rendered images with a rela-
tively small amount of data required (in the order of 6-9 standard
JPEG color images). The proposed approach is based on a joint
interpolation-compression scheme that combines a PCA-based data
reductionwith a Gaussian Radial Basis Function (RBF) interpolation.
We will see that the proposed approach can be adapted also to other
data interpolation schemes, and it is not limited to Gaussian RBF.
The proposed approach has been compared with several techniques,
demonstrating its superior performance in terms of quality/size
ratio. Additionally, the rendering part is simple to implement and
very efficient in terms of computational cost. This allows real-time
rendering also on low-end devices.
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1 INTRODUCTION
Reflection Transformation Images (RTI) are a special type of images
where the user can interactively relight the image subject, thus sim-
ulating the classical interactive inspection action of modifying the
lighting to better appreciate the shape details. This type of images
is increasingly used in the Cultural Heritage (CH) field because the
way the light interacts with the object of interest allows disclosing
important information on the surface conservation status or the
constituent materials. The reflectance behavior of the materials
and the perception of the fine details are very important for the
study of bas-relief [Hammer et al. 2002], coins [Mudge et al. 2005;
Palma et al. 2012], paintings [Giachetti et al. 2017, 2015; Padfield
et al. 2005], or epigraphy [Lamé 2015].

RTI images do not encode a color for each pixel, but a function
that allows computing the specific color associated to each pixel
given the light direction. Therefore, the RTI encodes an approx-
imation of the reflectance behavior of the sampled surface, and
each pixel is relighted in real-time according to the light direction
sets dynamically by the user. Typically, a RTI image is generated
through a digital acquisition process that captures a set of images of
the subject, all of them shot from the same fixed viewpoint, under
varying lighting conditions. Then, these data are used to generate
the per-pixel reflectance function just mentioned.

The alternative way to conduct similar visual inspections is to
acquire a high-fidelity 3D model of the geometry of the object of
interest and map on this 3D model the sampled and reconstructed
reflectance (BRDF) of the surface. However, acquiring the geometry
and estimating the reflectance properties at a very fine scale is
difficult and time-consuming. This is why the use of RTI is becoming
quite common in the CH domain: RTI technologies are cheaper and
more effective than 3D scanning for some applications.

Recently, the RTI approaches have been extended to enable multi-
spectral analysis of the acquired data [Giachetti et al. 2017] under
different lighting conditions. In this recent work, the per-pixel func-
tion fitting is replaced by an interpolation approach. This allows
achieving higher quality of the relighted images produced in real
time, since the reproduction is much closer to the original data ac-
quired. The main disadvantage of this interpolation-based approach
is a much larger quantity of data required to generate each relighted
image. This prevents to offer thismethod on aweb-based RTI viewer,
such as the ones based on standard RTI formats [Palma et al. 2012].
To overcome this limit, we propose a joint interpolation-compression
scheme, which enables interpolation-based RTI visualization on the
Web, thus requiring a reasonable amount of data to be transmitted.
To achieve this goal we apply Principal Component Analysis (PCA)
to reduce the amount of data required for the interpolation. This
data reduction approach is similar to the PCA-based methods em-
ployed for the compression of high-resolution Bidirectional Texture
Functions (BTF) [Müller et al. 2003; Sattler et al. 2003].
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In the following, we will demonstrate that the basis generated
for the reflection function can easily integrate the PCA compres-
sion and the Gaussian Radial Basis Function (RBF) interpolation,
taking the advantages of the two approaches. This final compact
representation is transmitted through the Web as a set of JPEG
images. Additionally, the final interactive rendering consists in a
simple weighted linear summation of coefficients that can be easily
implemented in a pixel shader. The proposed approach has been
validated on a set of test cases, presented in the Results Section,
showing great benefits w.r.t other standard techniques.

2 RELATEDWORK
Different approaches can be used to produce relightable images.
Image relighting can be obtained if the surface normals and the
BRDF of the object/scene to relight are known. Nevertheless, es-
timating a 4D BRDF is a complex task, especially in the case of
complex multi-material surfaces or degraded artworks. Describ-
ing in detail the state of the art of BRDF acquisition is outside the
scope of this work; interested readers can refer to [Dorsey et al.
2008]. Another way to acquire a photo-realistic reflectance field
of a material can be achieved reconstructing a Bidirectional Tex-
ture Function (BTF). BTF consists in acquiring a small sample of
material in different lighting and viewing conditions. In particular,
for each light direction and for each viewpoint a small piece of
material is acquired and a normalized texture is generated and used
for successive photorealistic rendering [Schwartz et al. 2013].

An effective trade-off between full sampling of the reflectance
and acquisition/rendering complexity is to limit the acquisition
to a fixed viewpoint. These methods start from the selection of a
specific view of interest and store the reflectance field as a per-pixel
function. A pioneer work of this type is Polynomial Texture Maps
(PTM) [Malzbender et al. 2001]. PTM can be seen as a particular case
of BTF, where the single view of an entire scene/object is acquired
under different lighting conditions.

In the last years, many variants of the PTM have been proposed
to overcome the limitation of approximating the reflectance func-
tion with a simple bi-quadratic polynomial. Consequently, the more
general denomination of Reflectance Transformation Imaging (RTI)
emerged. More sophisticated basis functions have been studied to
better represent the reflectance, like spherical (SH) and hemispher-
ical harmonics (HSH) [Mudge et al. 2008]. Eigen hemispherical
harmonic (EHSH) have been proposed as a better basis of SH in
terms of controllability of the final coefficients [Lam et al. 2012]. In
order to better represent certain materials, more physical represen-
tations, that separate the diffusive and the high-frequency specular
components of the reflection, have been proposed [Pintus et al.
2017; Zhang and S Drew 2014]. For example, the work by Zhang
and Drew et al. [Zhang and S Drew 2014] used a PTM to represent
the matte part of the material and approximate the residuals of the
high-frequency part using radial basis functions (RBF).

Recently, Multi-Spectral Reflectance Imaging (MS-RTI) has been
proposed by Giachetti et al. [Giachetti et al. 2017]. In MS-RTI, five
frequency bands (IR, UV and visible spectrum) are acquired under
different lighting conditions. Those densely acquired data are stored
directly in the data structure and interpolated using Gaussian RBF
at rendering time. This approach allows a more accurate analysis

of the reflectance data acquired over the artifact. Unfortunately,
this approach is not efficient in a web-based visualization context,
because we need all the input data (50-100 full resolution images)
to compute the interpolation requested by the user in real-time.

A lot of work about the compression of reflectance data has been
done in the scope of Bidirectional Texture Function (BTF) due to the
large size of the data involved. The proposed solutions can be cate-
gorized in two classes [Filip and Haindl 2009]; the pixelwise BRDF
methods and the linear factorization methods. The first methods
aim to find a compact representation of the apparent BRDF (BRDF
including self-shadowing effects) for each pixel. Some solutions
for BTF with fixed view approximate the reflectance function with
pixelwise Lafortune lobes [Meseth et al. 2003], generalization of
the one-lobe Lafortune lobe [Filip and Haindl 2004] and its polyno-
mial extension [Filip and Haindl 2004, 2005]. Linear factorization
methods decompose the acquired data using a linear basis. Typi-
cally SH or Principal Component Analysis (PCA) are used for this
purpose. Koudelka et al. [Koudelka et al. 2003] proposed to arrange
each image as a vector and form a matrix factorized with SVD. Re-
flectance Field Factorization [Sattler et al. 2003] used no more than
n PCA components to facilitate the rendering and achieved good
compression ratio. Müller et al. [Müller et al. 2003] partitioned the
BTF space in clusters and applied PCA to each cluster, the so-called
local PCA. This allows high compression ratio and high quality
rendering. Ho et al. [Ho et al. 2005] exploit blockwise PCA in the
YCbCr color space.

From our knowledge, the only two works specific for RTI com-
pression are the work by Schuster et al.[Schuster et al. 2014] and the
one by Schwartz et al. [Schwartz et al. 2013]. Schuster et al.[Schuster
et al. 2014] proposed a method to send RTI images to mobile devices
by transmitting the luminance and the chrominance planes of each
PTM compressed as JPEG (or JPEG2000) images. The idea is to use
different quality for the luminance and for the chrominance. This
simple approach is effective in reducing the bit rate while maintain-
ing a good overall quality of the rendered image w.r.t the original
PTM. Schwartz et al. [Schwartz et al. 2013] used Decorrelated Full
Matrix Factorization (DFMF) for the efficient streaming of BTF on
the Web. Many design choices of this algorithm are targeted to the
BTF, for example the components are properly ordered to receive
before the most important visual components.

Our approach follows the approach of some of the just mentioned
PCA-based methods for BTF, [Sattler et al. 2003] and [Müller et al.
2003], in particular. In our case we do not treat a single material
sample but an entire scene under fixed viewpoint. To preserve as
much as possible the appearance of the acquired data, we combine
the PCA with an RBF interpolation scheme, demonstrating that it
is possible to integrate these two operations into a simple weighted
linear sum. This guarantees, at the same time, a moderate compu-
tational burden in the pre-processing step, high quality/size ratio
with respect to standard RTI techniques, such as PTM or HSH, and
simple and efficient implementation of the visualization client.
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3 EXISTING RTI REPRESENTATIONS
As previously stated, an RTI image is often represented as a per-
pixel linear basis. We would like to introduce here some formu-
lations that will help to better clarify our jointly compression-
interpolation scheme. In the most general case we have:

©­«
R(x ,y)
G(x ,y)
B(x ,y)

ª®¬ = ©­«
fR (x ,y, l)
fG (x ,y, l)
fB (x ,y, l)

ª®¬ (1)

where (R(x ,y),G(x ,y),B(x ,y)) is the final color of the image pixel
(x ,y) and l = (lu , lv ) is the light direction vector (normalized)
projected on the image plane. The function f assumes the form of
a linear weighted summation:

f (x ,y, l) =
∑
k

ak (x ,y)wk (l) (2)

where the weights depend on the light direction, that is assumed
fixed for each pixel, and the coefficients ak describe the reflectance
behavior at pixel level.

In the case of Polynomial Texture Maps (PTM) [Malzbender et al.
2001], we have two cases, LRGB PTM and RGB PTM. In the last
case, we have
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+ cR3 (x ,y)lulv + c
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R(x ,y) = fR (l ,x ,y)
G(x ,y) = fG (l ,x ,y) (6)
B(x ,y) = fB (l ,x ,y)

so that the light-dependent base isw(l) = {1, lu , lv , lulv , l2u , l2v } and
the per-pixel coefficients are the coefficients of the bi-quadratic
polynomial ak = ck . Since the luminance exhibits a great variation
under lighting changes with respect to the chrominance, a variant
called LRGB PTM with less coefficients has been proposed:

L(x ,y, l) = co (x ,y) + c1(x ,y)lu + c2(x ,y)lv +
+ c3(x ,y)lulv + c4(x ,y)l2u + c5(x ,y)l2v (7)

R(x ,y) = L(l ,x ,y)RB (x ,y) (8)
G(x ,y) = L(l ,x ,y)GB (x ,y)
B(x ,y) = L(l ,x ,y)BB (x ,y)

In this case the “luminance”L(.)modulates a basic color (RB ,GB ,BB )
calculated during the coefficients estimation. Note that the L(.) term
is not a real luminance, because it includes also self-shadowing ef-
fects. Hence, a RGB PTM is characterized by 18 coefficients per pixel
(6 for each color channel) while the LRGB PTM by 9 coefficients
per pixel (6 for the L(.) function and 3 for the base color).

If Spherical Harmonics (SH) are used to represent the lighting-
dependent weights in Eq. (2) become:

wk (θ ,ϕ) =


√
2Km

l cos(mϕ)Pml cosθ m > 0√
2Km

l sin(mϕ)Pml cosθ m < 0
K0
l P

0
l cosθ m = 0

(9)

The light direction l is represented using the azimuth (ϕ ∈ [0, 2π ])
and elevation (θ ∈ [0,π ]) angles. Pml are the associated Legendre
Polynomial of degree l (−l ≤ m ≤ l ) and Km

l are the corresponding
normalization factors. Hemi-Spherical Harmonics (HSH) are more
used than SH, since in general the reflective phenomena happen
in the upper hemisphere. They have a slightly different definitions
and employ shifted Legendre polynomial [Zhang and S Drew 2014].

In other approaches, interpolation is used instead of linear de-
composition. This is the case of the recent multi-spectral RTI repre-
sentation proposed by Giachetti et al. [Giachetti et al. 2017]. The
final image is reconstructed by finding the light directions closest l
and interpolate them using a set of Radial Basis Function (RBF). In
case of Gaussian RBF we have:

I (x ,y) =
n∑
i=1

ak exp

(
∥l − li ∥22

σ 2

)
(10)

where the I (x ,y) is the 5-components pixel of the multi-spectral
bands acquired (IR, UV and three for the visible spectrum). In this
case the light-dependent weights do not depend directly on l but
depend on the closest lights direction, i.e.wk (д(l)). The implemen-
tation presented in [Giachetti et al. 2017] interpolates the 5 closest
light directions.

Our formulation, described in the next section, integrates inter-
polation (similar to the one proposed by Giachetti et al. []) with
PCA-based linear decomposition to reduce the amount of data re-
quired.

4 PROPOSED REPRESENTATION
The adoption of Radial Basis Functions (RBF) for the interpolation
of the N images acquired in different lighting conditions has been
demonstrated [Giachetti et al. 2017; Zhang and S Drew 2014] to pro-
duce better visualization of materials and shape details. As shown
in Eq. (10), the final color of a pixel for a given light direction l
is given as a weighted sum of Gaussians centered on l . Indicating
with ρ = (R,G,B) the final color of a pixel, Eq. (10) can be rewritten
as:

ρ(x ,y, l) =
N∑
i=1

ρi (x ,y) exp
(
∥l − li ∥22

σ 2

)
=

N∑
i=1

ρi (x ,y)ϕi (l) (11)

The parameters σ is the Gaussian dispersion. It controls the amount
of smoothing between samples and needs to be adjusted to the
density of the lighting sampling (for this purpose, the optimization
method described in [Drew et al. 2012] can be used). In our proposal,
we consider all the samples such that their contribution is not
negligible. Obviously, this number depends on the value of σ .

In general, this approach is not suitable for a web-based visualiza-
tion due to the size of the dataset (50-100 images) to be transmitted.
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Our idea is to reduce the amount of data to be interpolated, us-
ing Principal Component Analysis (PCA), following an approach
similar to the ones proposed for BTF compression.

Considering all the acquired N images together, each pixel can
be expressed as a vector p with 3N components. By applying PCA
we obtain a mean µ and a basis B ofM < N vectors such that:

p(x ,y) ≃ µ +
M∑
j=1

ak (x ,y)Bk (12)

where the basis B is formed by the k eigenvectors with the highest
eigenvalues of the correlation matrix ppT and ak (x ,y) are the coef-
ficients to represent the vector on this basis. If we indicate with ρi
the three color components of the i-th image, we can combine this
approximation with the RBF representation (Eq. (11)):

ρ(x ,y, l) ≃
N∑
i=1

ϕi (l)
(
µi +

M∑
k=1

ai,k (x ,y)Bi,k

)
≃

N∑
i=1

ϕi (l)µi +
M∑
k=1

ai,k (x ,y)
N∑
i=1

ϕi (l)Bi,k (13)

The summations over i is constant for the every pixel so it can be
precomputed into (w0, . . . ,wk ) coefficients where eachwk stores
three color components:

ρ(x ,y, l) = w0(l) +
M∑
k=1

ak (x ,y)wk (l) (14)

that is the general formulation of Eq. (2) just discussed. Concluding,
in our formulation the light-dependent weights are:

w0(l) =

N∑
i=1

ϕi (l)µi

wk (l) =

N∑
i=1

ϕi (l)Bi,k (15)

4.1 Luminance-chrominance decoupling
Since PCA minimizes the global reconstruction error in a least
square sense, and luminance has usually a much larger variation
than chrominance, in general the luminance is better reconstructed
than chrominance.

It is possible to control the luminance vs chrominance error in-
troduced by the compression operation, by choosing a suitable color
space and applying the compression differently for each component.
In particular, we propose to use YCbCr color space and to apply the
previous algorithm using a different number of coefficients for the

Figure 1: Basis for the BILINEAR encoding of the dif-
ferent datasets. From top to bottom: tag12783, goldcoin,
bronzecoin, horse, and panel. The weights encode chromi-
nance and luminance at the same time. The first column
corresponds to the average pattern. The second column en-
codes great part of the luminance variation. Column 2 and 3
roughly accounts for the surface orientation. Note that the
reflectance behaviour of the horse dataset (last row), that is
a flat surface characterized by great chrominance variations,
is well captured.

luminance and for the chrominance component:

ρY (x ,y) ≃ µY +

MY∑
k=1

ak (x ,y)BY ,k

ρCb (x ,y) ≃ µCb +

MCb∑
k=1

ak (x ,y)BCb,k (16)

ρCr (x ,y) ≃ µCr +

MCr∑
k=1

ak (x ,y)BCr,k

(17)

This approach is similar to [Schuster et al. 2014] but in their case
only one coefficient is used for the chroma.

4.2 Bilinear sampling
The light-dependentweights in (15) can be precomputed only if both
the N light directions per pixel and the light direction l are constant
along the whole image. The first assumption could be exploited by
picking a fixed set of N ′ , N directions and generating a set of
re-sampled weights (for example, using again RBF).

Follow this reasoning, we propose a variant of the previous
approach, that consists in replacing the gaussian RBF interpolation
with a simpler bilinear interpolation. Using the concentric projection,
where the hemisphere is projected on a pyramid which is then
flattened on the square base, we can pickN ′ light directions in a grid
pattern. Then, this pattern is bilinearly interpolated at rendering
time to obtain the light-dependent weight wk (l). An example of
the first 10 basis obtained with a 9 × 9 grid for different datasets
(see Results section for a description of the datasets) is shown in
Figure 1.

Formally, the resampling is obtained in the following way. Given
the original ρ values (R, G, B) at a given pixel we are looking for
an array η corresponding to the N ′ directions. ρ ′ = Aη where A is
the matrix performing the bilinear interpolation and we want to
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minimize ∥ρ−ρ ′∥2. Generalized Tikhonov regularization [Tikhonov
et al. 1995] can be used to find a solution closest to a valid one, and
to improve the numerical stability:

min ∥Aη − ρ∥2 + τ ∥η − η0∥2 (18)

The regularization parameter τ was empirically set to 0.1. The
initial solution η0 = Rρ corresponds to the one obtained using the
RBF interpolation. The closed form solution of this minimization
problem can be expressed in matrix form as:

η = η0 + (ATA + τ I )−1(AT (ρ −Ax0))
= Rρ + (ATA + kI )−1(AT (ρ −ARρ))

=
(
R + (ATA + τ I )−1AT (I −AR)

)
ρ (19)

The same procedure could be applied to different interpolation
schemes, to better model the distribution of the light directions.

5 IMPLEMENTATION
We describe here the implementation of the proposed approaches
and of the other algorithms implemented for comparison purposes
(see the Results section). Since the methods considered shares the
general formulation described, most of the code can be easily re-
used for the different implementations.

The RTI methods can use different basis, such as hemispherical
harmonics, bi-quadratic polynomials, etc., and to treat the color
components in different ways. For example, a given method can
be applied on each color component separately or to all compo-
nents modulating a base color. Additionally, different color spaces
can be considered (e.g. RGB or YCbCr). To limit the combinato-
rial explosion of these alternative implementations, we restricted
us to implement only the most interesting ones. In particular, the
following methods have been implemented:

• Polynomial texturemaps (LPTMand PTMversion as in [Malzben-
der et al. 2001]).

• Hemi-Spherical harmonics (HSH) ([Zhang and S Drew 2014]).
• Our proposed RBF interpolation plus PCA-based compres-
sion method (indicated with RBF in the following).

• Our proposed bilinear interpolation plus PCA-based com-
pression method (indicated with BILINEAR in the following).

• The αβ-JPEG compression method proposed by Schuster
al.[Schuster et al. 2014] (denoted with YHSH).

The number of coefficients used is appended to the end of the
method name. Hence, RBF18 stands for our proposed RBF+PCA
method with 18 coefficients. The same for our BILINEAR method.
The other methods implemented have a fixed number of coefficients:
9 for LPTM, 18 for PTM, 27 for HSH and 11 for YHSH.

In order to better control the luminance vs chrominance error,
as described in Section 4.1, we implemented also a YCCxyy method,
which works in YCbCr color space. YCCxyy means that we apply
the proposed RBF+PCA approach with x coefficients for the Y com-
ponent, and with y coefficients for the Cb and the Cr components,
respectively.

Concerning the standard LPTM, we evaluate the base color in
the following way: For each pixel, luminance is computed Y =
0.2126R + 0.7152G + 0.0722B, then a scaling is applied so that the
brightest value is set to 1.0. Finally, a least square minimization is
performed to pick the chroma values that result in the minimum

global error. In YHSH, following the original paper, the chroma
computation is defined as the “average across all the SH coefficients”
after a conversion into the YCbCr color space.

For all the methods, the following processing steps are per-
formed:

• Collect all pixels of all images.
• BILINEAR only: for each pixel the light directions are resam-
pled in a 9 × 9 grid.

• For RBFx, BILINEARx and YCCxyy: perform PCA and com-
pute the basis.

• For LPTM, PTM, HSH, LHSH: compute the coefficients with
a matrix multiplication

• Coefficients normalization and quantization.
• Each groups of 3 coefficients is packed into an image.

The coefficients are normalized cnorm = c/scale +bias where scale
is the difference between the maximum and the minimum value of
the coefficients and bias is set to −minimum/scale .

The PCA basis is stored as 3Nk (8 bits) values in a binary un-
compressed file. The final size is few kilobytes. All the parameters,
such as the light directions, the number of PCA components, scale,
bias, etc. are saved in JSON format, again for a few kB. A direct
consequence of this approach is that the format is independent of
the algorithm used for the basis computation.

The real-time rendering algorithm is basically the same for all the
methods: the light dependent weights are computed in Javascript
and then setup in the rendering shader. The rendering shader (a
pixel shader) simply performs the weighted sum of Eq. (2). Also the
color space conversion, if required, is implemented in the shader.
Online rendering benefits also from the progressive character of
PCA. As the coefficient images are received, the quality increase.
Multi-resolution approaches can be taken into account to further
improve the performace.

6 RESULTS
The proposed approach and the other algorithms implemented have
been tested on five datasets (see Figure 2):

• one gold (named goldcoin) and one bronze coin (named
bronzecoin), from the coins’ collection of Palazzo Blu, Pisa,
http://vcg.isti.cnr.it/PalazzoBlu;

• a lead tag (named tag12783) with commercial inscriptions
used in Roman laundry (I-III sec.), part of the Tesserarum
Sisciae Sylloge, Zagreb https://tss.amz.hr;

• an oil painting by Giovanni Fattori (named horse);
• a bronze panel made by Lorenzo Ghiberti (named panel) for
the Paradise Door of the Baptistery in Florence.

The first three datasets (goldcoin, bronzecoin and tag12783)
have been captured using a dome with 116 light directions [Palma
et al. 2012], while the painting and the panel have been captured
using an hand-held light and 50 lighting directions [Giachetti et al.
2017]. The temporary project web page, with all the experiments
and the source code, is available at http://vcg.isti.cnr.it/relight.

The images for the test have been cropped to 512 × 512 pixels
in order to better appreciate the details (while bronzecoin was
resized), and all the methods (PTM, HSH, RBF, BILINEAR, YCC)
have been processed using the same JPEG parameters: quality 95,
no chroma subsampling. Browser compatibility limits the format

http://vcg.isti.cnr.it/PalazzoBlu
https://tss.amz.hr
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Figure 2: Datasets used for the experimental results (one exemplar for each dataset). From right to left: goldcoin, bronzecoin,
tag12783, panel, horse.
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Figure 3: Image quality (PSNR,RMSE) vs size (kB) for different representations and different datasets. For the YCC methods
the number X.Y reported in the graphs, indicate the number of luminance and chroma coefficients, respectively.

choice to JPEG and PNG, and the first was preferred in term of
compression ratio, for online usage. The standard libJPEG library
is used for this purpose.

Chroma subsampling can improve the performance for some
approaches, but for consistency we did not applied it. Some tests in
this direction give us similar qualitative results. For all the meth-
ods, the same quantization of the coefficients has been applied, as

described in Section 5. Processing a single dataset is in the range of
a few seconds, on a consumer PC, for all the methods.

We assess the image quality by comparing the original pho-
tographs acquired with the rendering produced under the same
light directions. Results are reported in Figure 3 and 4 using Peak
Signal-to-Noise Ratio (PSNR) as well as the Structural Similarity
Index (SSIM) Wang2004 metrics. We obtain a very good decrease in
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Figure 4: Image quality (SSIM) vs size (kB) for different representations and different dataset. For the YCCmethods the number
X.Y reported in the graphs, indicate the number of luminance and chroma coefficients, respectively.

size (30-50%) for the same error (or much higher fidelity, also +3-4
dB, for the same size).

For the datasets horse and panel, the BILINEAR method pro-
vided a better reconstruction than RBF. This is due to the number
of light directions (50) which is actually smaller than the number of
samples used in the bilinear method (81). Additionally, the uneven
spacing of the lights forced the σ parameter in the RBF interpolation
to be 0.2, higher than the 0.125 value used for the other datasets.
This results in a poor interpolation. In general, the resolution of
the 9 × 9 grid used in the BILINEAR method could be increased to
slightly improve PSNR with a minimal increase in total size.

Another example of the high quality of the results obtained
is shown for the horse RTI image, in particular when the light
direction is perpendicular (lx = ly = 0) (see Figure 5). As it is
possible to note, YCC711 obtain a visual quality greater than HSH
and still requires 40-50% of the disk space.

LPTM and YHSH, allows to trade quality for smaller size. Note
that, in some cases (e.g. tag12783), it can happen that they per-
form worse than PTM and HSH, both in term of size and PSNR.
This depends on how the JPEG images encode the chromatic and
luminance content of the object.

In some cases the average reconstruction error is good but some
chromatic visual artifacts remain. For instance, in Figure 6, we
marked by red arrows regions where RBF and BILINEAR methods
fail to accurately reconstruct the light maroon spot even when
faithfully display the reflective property of the gold. As explained
in Section 4.1, the reason is that PCA works on luminance and
chroma at the same time, but luminance impact prevails in terms of
reconstruction error. The final results is that chromatic variations
of the same regions can be lost. Luminance and chrominance are
treated separately in YCC1233 (in the same figure); it results in
a lower PSNR, but accurate chroma reproduction. In the other
datasets this problem has not been encountered in the RBF and
BILINEAR methods when 27 coefficients (as many as in HSH) are
used.

In summary, all the variants of the proposed approach reach
a quality/size ratio substantially higher than standard techniques
such as PTM or HSH. In general, RBFx ones have the highest qual-
ity/size ratio. BILINEAR interpolation is better suited for datasets
with a smaller number of lights directions. The use of YCCxyy adds
a degree of freedom other than the number of coefficient planes:
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Figure 5: Rows from top to bottom: original images, BILIN-
EAR27, RBF27, YCC711, HSH. The original images shown
are the number 0 (column 1), 17 (column 2) and 18 (column
3) of the dataset. Note that the image number 0 has a very
strong specular highlight. YCC711 is able to catch this be-
havior better than the HSH, even if its size is about 50% of
the HSH.

the number of coefficients devoted to chrominace vs luminance.
This permits to obtain a better chroma fidelity when necessary.

For an in depth visual comparison of the different methods im-
plemented, we remind to the project web page:
http://vcg.isti.cnr.it/relight.

7 CONCLUSIONS
In this paper we have proposed a compact and efficient web-friendly
representation for the RTI images. We have demonstrated that an
ad-hoc RTI basis generation, through PCA, allows for low recon-
struction error and good compression ratio without increasing the
rendering computational cost. The proposed framework allows
great control in terms of quality vs size, chromatic fidelity, and
high fidelity of the relighted images as the recent interpolation RTI
methods. We demonstrated also that the proposed bilinear inter-
polation variant is a valid alternative to Gaussian RBF, with the

advantage of providing good results when the light directions are
sampled non-uniformly. It is also possible to extend it to support
per-pixel lighting, even if we have not explored this feature in this
paper. The code is available as an open source library plus the corre-
sponding tools at the following address: https://github.com/cnr-
isti-vclab/relight and supports common multiresolution formats
such as zoomify and deepzoom.

Some preliminary work to improve the performance by segment-
ing the images into different materials and applying local PCA has
given promising results. Finally, different error metrics for basis
creation can be easily explored, taking advantage of the fact that
the format and the rendering algorithm needs to specify the basis
only.
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