Semi-automated Cleaning of Laser Scanning Campaigns
with Machine Learning

PATRICK MARAIS, University of Cape Town, South Africa
MATTEO DELLEPIANE, PAOLO CIGNONI, and ROBERTO SCOPIGNO, CNR-ISTI, Italy

Terrestrial laser scanning campaigns provide an important means to document the 3D structure of historical sites. Unfortu-
nately, the process of converting the 3D point clouds acquired by the laser scanner into a coherent and accurate 3D model has
many stages and is not generally automated. In particular, the initial cleaning stage of the pipeline—in which undesired scene
points are deleted—remains largely manual and is usually labour intensive. In this article, we introduce a semi-automated
cleaning approach that incrementally trains a random forest (RF) classifier on an initial keep/discard point labelling gener-
ated by the user when cleaning the first scan(s). The classifier is then used to predict the labelling of the next scan in the
sequence. Before this classification is presented to the user, a denoising post-process, based on the 2D range map repre-
sentation of the laser scan, is applied. This significantly reduces small isolated point clusters that the user would otherwise
have to fix. The user then selects the remaining incorrectly labelled points and these are weighted, based on a confidence
estimate, and fed back into the classifier to retrain it for the next scan. Our experiments, across 8 scanning campaigns, show
that when the scan campaign is coherent, i.e., it does not contain widely disparate or contradictory data, the classifier yields
a keep/discard labelling that typically ranges between 95% and 99%. This is somewhat surprising, given that the data in each
class can represent many object types, such as a tree, person, wall, and so on, and that no further effort beyond the point
labeling of keep/discard is required of the user. We conducted an informal timing experiment over a 15-scan campaign, which
compared the processing time required by our software, without user interaction (point label correction) time, against the
time taken by an expert user to completely clean all scans. The expert user required 95mins to complete all cleaning. The
average time required by the expert to clean a single scan was 6.3mins. Even with current unoptimized code, our system was
able to generate keep/discard labels for all scans, with 98% (average) accuracy, in 75mins. This leaves as much as 20mins for
the user input required to relabel the 2% of mispredicted points across the set of scans before the full system time would
match the expert’s cleaning time.

CCS Concepts: « Computing methodologies — Machine learning; - Applied computing — Archaeology;
Additional Key Words and Phrases: Heritage data, laser scan, point clouds, full dome scan, cleaning, machine learning

ACM Reference format:

Patrick Marais, Matteo Dellepiane, Paolo Cignoni, and Roberto Scopigno. 2019. Semi-automated Cleaning of Laser Scanning
Campaigns with Machine Learning. ACM J. Comput. Cult. Herit. 12, 3, Article 16 (June 2019), 29 pages.
https://doi.org/10.1145/3292027

This work was partially carried out in the framework of the SCIADRO project, co-funded by the Tuscany Region (Italy) under the Regional
Implementation Programme for Underutilized Areas Fund (PAR FAS 2007-2013) and the Research Facilitation Fund (FAR) of the Ministry of
Education, University and Research (MIUR). Patrick Marais also received funding from the National Research Foundation (NRF) in South
Africa to support this research collaboration.

Authors’ addresses: P. Marais, Dept. of Computer Science, University of Cape Town, Rondebosch 7701, South Africa; email: patrick@
cs.uct.ac.za; M. Dellepiane, P. Cignoni, and R. Scopigno, Visual Computing Group, CNR-ISTI, Via G. Moruzzi 1, 56124 Pisa, Italy; emails:
{matteo.dellepiane, paolo.cignoni, roberto.scopigno}@isti.cnr.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

© 2019 Association for Computing Machinery.

1556-4673/2019/06-ART16 $15.00

https://doi.org/10.1145/3292027

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

https://doi.org/10.1145/3292027
mailto:permissions@acm.org
https://doi.org/10.1145/3292027

16:2 « P. Marais et al.

1 INTRODUCTION

The use of laser scanning equipment to capture 3D surface data from cultural heritage sites has become fairly
routine. This data is typically acquired using a laser scanner that produces a full-dome scan of the structures
surrounding the device. Due to the regular grid scanning pattern that the laser scanner employs, the collected
range data can be represented as a panoramic depth map in which each pixel encodes the distance along a ray
from the scanner origin through that pixel to the intersected environmental surface point. This data can easily be
turned into a collection of 3D point coordinates—often with associated colour—usually known as a point cloud.

Unfortunately the data that the scanner returns cannot immediately be used to construct a 3D model of the
scanned buildings or environment. Unwanted points arise due to noise in the scanning process (for example,
the laser may scatter off certain materials) as well as objects that are inadvertently captured. The latter category
is particularly common, with people, animals, and objects such as telephone poles often superimposed on the
background heritage structure. The process of manually removing these unwanted points is called cleaning,
and for large complex single scans it may take up to two hours [24] by a skilled user. The cleaning process is
exacerbated by the large number of scans that may be required to cover a site. A computerized system that could
help to reduce overall cleaning time would be beneficial in such a work-flow. However, this cleaning step is
difficult to generalize: the exact set of points to be removed often depends on the specifications of the campaign,
making it difficult to fully automate the process.

This article introduces a semi-automated system and work-flow to help reduce the user workload of the clean-
ing process for individual laser scans. The system uses machine learning and exploits the grid structure of the
range scans by applying a number of image processing algorithms to counter some of the noisiness in the clas-
sifier predictions. Motivated by the observations in Reference [20], we do not try to learn a general classifier
that will work on any scene type, but rather incrementally train a classifier tailored to the characteristics of the
current scanning campaign. We consider geometric information only—colour per point may be available, but this
is not guaranteed for all cultural heritage scans, and poor quality image-to-model registration and differences
arising from scene lighting can cause the colour information to be unreliable.

The approach outlined in this article is intended to be exploratory, probing the extent to which machine
learning can be used in the ill-defined task of point-cloud cleaning. To support this approach, the evaluation
considers a diverse set of cultural heritage scanning campaigns that clearly illustrate the challenges inherent in
this application.

The framework is based on a random forest classifier that seeks to classify each point in a sequence of scans
as either “keep” or “discard,” starting from one or more manually cleaned scans. The classifier is trained by
generating a set of geometric features for each point and then recording which points the user elects to discard
as they clean the scan. The framework has been designed so as not to impose any additional workload to the
standard cleaning process: the user starts to clean the scans as in a standard system, and the classifier incremen-
tally learns what has to be discarded in the subsequent scans. In such an approach, there is no explicit, usually
onerous, training step where labels and classes are assigned to scene parts. To the best of our knowledge, this is
the first attempt to use machine learning in the context of point-cloud cleaning using only the two intuitive class
labels noted above.

The classifier is retrained as cleaning proceeds from one scan to the next, allowing it to become more accurate
as more data are generated throughout the cleaning phase. To accommodate additional data, we have developed
a re-weighting scheme that adds misclassified points to the initial training data as each scan is cleaned. The
re-weighting employs the natural sample weighting mechanism of random forests and allows us to nudge the
classifier towards better predicting such points. The candidate points are easily identified, since during cleaning
the user will have to select/deselect points that were mislabelled, and these points (and their features) are stored
until the classifier needs them.

As an additional aid to help cleaning, we have also developed an image-based post-process that uses the
classification confidence to guide a point-cloud denoising process. The aim of this phase is to avoid a “messy”

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:3

classification, which results in many isolated error components scattered through the point cloud, whilst match-
ing or exceeding the original predictor classification accuracy. Fewer error components/points should allow the
user to spend less time moving about the point cloud locating and correcting classification errors. To accomplish
this, we return to the gridded point-cloud representation and apply a sequence of denoising and depth-aware re-
gion growing on the 2D range image that promotes coherence of the classification. The region growing is seeded
with regions for which the classification confidence is very high; this helps to reduce propagating low-confidence
point classifications through the cloud.

These techniques support a work-flow that fits naturally within the process of point-cloud cleaning and which
is particularly well suited to the ill-defined requirements of cleaning a large number of related scans.

The remainder of this article is laid out as follows: Section 2 introduces background concepts and discusses
related work. Section 3 motivates the cleaning framework. Results are presented and discussed in Section 4.
Section 5 concludes the article and presents some areas for future work and improvements.

2 BACKGROUND AND RELATED WORK

Acquiring 3D structure—in the form of a “point cloud”—through laser scanning is well-established technology
and comes in a multitude of forms. Acquisitions can be aerial (for example, a UAV or aircraft), mobile (such as
Google Maps’ urban scanning vehicles), or terrestrial [15].

Our work is intended to reduce the workload in the point processing pipeline relevant to a set of terrestrial
laser scans acquired from multiple, full-dome (360 degrees about the scanner origin) view points [24]. The back-
end of the pipeline addresses issues such as meshing and modelling; our concern is with the preparation for this
stage: cleaning. The purpose of the cleaning stage is to remove unwanted points from a collection of point clouds.
These are typically points arising from scanner acquisition noise/errors, including scattering effects, as well as
valid points that are not wanted in the final model input. Typically, the latter category is very general, often
depends on campaign specification, and includes people and animals, trees and foliage, vehicles, telephone poles
and so on. Previous approaches for automatic cleaning mainly focus on only one category, such as vegetation
[9, 17]. In general, cleaning is context-dependent; in some applications, we wish to include a structure such as
column, in another we may consider it inappropriate and flag it for removal. This lack of consistency is a major
factor that complicates the wish to learn some more general cleaning model through machine learning.

Point-cloud cleaning in cultural heritage (CH) preservation, the goal of this work, is typically more challenging
than cleaning point clouds acquired in urban/industrial settings. CH scenes vary dramatically: encompassing
relatively well-preserved and regular structures in urban/rural settings to overgrown crumbling ruins in a rain
forest. There is little consistency across different scanning campaigns, but within a campaign, we expect that
there is some measure of consistency in the organization of the points in 3D. This is the central premise of our
approach. In other application fields, such as, for example, industrial premises or landslide monitoring, there is
generally more consistency in the types of data to be kept and removed. In these cases, ad hoc solutions, such as
pipe extraction or vegetation removal, can lead to good results. Nevertheless, the applicability of such methods
to the CH context is limited; hence, the aim of this work to deal with data sets where previous information on
which points to discard is low.

Previous work using machine learning in this context, for example Reference [20], has focused on learning a
label for each point that splits the point cloud into classes such as trees, ground cover, walls, and so on. This ap-
proach is influenced heavily by the traditional machine-learning approaches used to segment shapes/structures
from 2D and 3D data sets [21, 22, 26]. For most image/scene segmentation tasks, the goal is to recover pixels/
points that belong to a small subset of object classes. This requires labelled training data that contains examples
of each possible object class and all its likely variations.

Unfortunately, given the enormous variety of background and foreground object types encountered during
general cleaning, acquiring an extensive set of truly representative object labels is implausible. Instead, we retain

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:4 « P. Marais et al.

the existing cleaning work-flow and augment it with a more focused machine-learning system. More specifically,
we note that the problem is not a general object labelling problem, but rather a binary labelling problem in which
we seek to label each point as either keep or discard, with no care about which objects those points belong to. This
is a very different view of the data from the more traditional object-centric approaches. Furthermore, because the
scheme is intended to augment manual cleaning, compute time is important and the machine learning approach
used cannot take hours to learn/classify a scan in the campaign.

Machine learning (ML) is often portrayed as a black box that can solve any problem, given enough training
data. Unfortunately, this is a simplification, since the type and quantity of data, the kinds of algorithms utilized,
and the context all play a significant role in determining whether a machine-learning approach can be used to
automate (or semi-automate) some process. Machine learning generally requires labelled data. For some problems
this is readily available, or it can be harvested from the Internet. In many cases, however, data is not readily
available, so methods that can learn from smaller data sets are thus preferable. Deep-learning methods, such
as Convolutional Neural Networks (CNNs), attempt to discover abstract representations of the data that can
be used to better solve classification or regression problems [19]. While they have been successfully used in
many image/voxel-based classification problems [14], they require a great deal of data. While it is possible to
use unlabelled data in some cases, and have the ML method discover correlations/structure within the data, the
volume of data required does not diminish and training times remain high. This is problematic for our application
domain, where there is no sensible repository to learn from and where the possible types of cleaning targets are
effectively unlimited. Recent work on deep learning for point clouds [23] attempts to directly address semantic
point classification of variable density structures without enforcing a regular re-sampling of the input, as required
by a CNN. Unfortunately, this approach still requires a large amount of training data and is specifically designed
to learn and classify a pre-determined set of man-made objects.

In addition to neural network architectures, graphical models [3] have also become very popular as a means
of learning local relationships between pixels/points. The simplest graphical models are based on the Markov
Random Field (MRF), which describes relationships between a point and its immediate neighbours. Graph-based
image segmentation has been around for many years, mostly based on MRFs with carefully modelled potentials
that exploit prior information about image edges, neighbourhood intensity consistency, and so on [4, 31]. A
more sophisticated Conditional Random Field (CRF) can be used to describe long-distance relationships, which
is useful for many image segmentation tasks [3]. The DeepLab [6] system is an example of an approach that
combines a CRF with multiple CNN layers to generate semantic labels for each image pixel. Again, however, the
inclusion of deep learning makes this an expensive approach.

Recently there has been much interest in semantic labelling of RGB-D (colour + depth) images, which are often
acquired from short-range scanning systems such as Microsoft Kinect [12]. Several graphical model approaches
[13, 16, 18, 30] use CRFs to label RGB-D images, which are essentially point clouds. A more powerful variation
of the MREF, the associative MRF, has also been used for a similar purpose [21, 27]. These techniques seek to
solve a similar problem to our own and would thus appear to be viable classification solutions. However, they
require a pre-defined set of class/category labels, and they generally try to decompose the scene points into
“consistent” groups of pixels/points. While we have only two class labels, the underlying classes are so broad that
they cannot be encapsulated in a learned model that applies to all possible heritage environments. Furthermore,
simple geometric or depth image consistency is not enough to reliably map points to the keep and discard classes.

The above observations suggest a more conservative approach: rather than attempting to learn a general
model, learn a contextually relevant model from the current campaign you are processing. We have access to an
expanding set of labelled training data, generated by the cleaner as they work, that can be used to refine the clas-
sifier. The core requirements of our approach are (a) the user should not have to do substantially more work, and
(b) the time required to run the machine learning should not be longer than the time to manually clean the scans.

We have noted that deep-learning schemes are problematic due to the volume of data required as well as the
compute power needed for fast training. In our approach, we require that the user fully clean the first scan only,

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:5

as they would normally do. This simple binary labelling is then used to bootstrap the classifier for the following
scans in the campaign. Later user input should be limited to correcting the (hopefully small) mis-classifications
produced by the ML component.

A widely used ML scheme that performs well in many contexts and does not require a very large amount of
training data is the random forest (RF) [5]. This creates a set of decision trees, built from permuted versions of
the input training data, and aggregates their predictions to arrive at a single outcome. Random forest can be
parallelised, has been widely used in many domains, and has been a popular method for general point-cloud
classifications for some years [29]. A great deal of work has been done on modifying the core RF technique to
improve performance under different assumptions. One variant we considered is the on-line random forest (ORF)
[25]. This assumes the underlying distribution the classifier is modelling changes over time, as new data arrives,
and tests only a single random feature value per node during tree construction. The RF model only updates
itself when enough new data has been seen, and the update does not require rebuilding the entire tree. While
incremental retraining is computationally desirable, our tests showed that the method requires many more deep
trees to approximate the probability distribution to the same accuracy level as the base (“offline”) RF method and
was generally less accurate. A variant of this approach, streaming random forests, was introduced in the Semantic
Paint system [28]. While the performance of this method is significantly better than OREF, at least for the problem
examined in this article, it is not clear how performance compares to an offline random forest.

A scheme that attempts to combine deep learning with the lower resource requirements of RF has recently
been developed [33]. While this scheme does offer better training times than many other deep schemes, its
principal benefit is that it requires much less data to obtain good results. Unfortunately, since it uses a collection
of random forest classifiers, the training times are still significantly slower than our system, which uses only a
single random forest.

Finally, while voxel-based CNNs are now providing good results [10] for point classification, the caveats we
noted earlier still hold, and we do not consider these a good match for our specific problem. For these reasons,
we decided to base our scheme on a random forest, more specifically the approach proposed by Reference [11],
which utilises a fast multi-resolution feature vector.

3 POINT-CLOUD CLEANING FRAMEWORK

Cultural heritage preservation deals with structures that are often very old and in a state of decay: parts are
missing or crumbling and eroded and there is often a great deal of vegetation cover that occludes structures. The
variety of structure types is also high: ranging from well-maintained modern-era buildings to crumbling ruins
that are barely recognizable. Using machine learning to classify such point data thus needs careful consideration.
Attempting to learn a general model for such data would not be practical; instead, we have opted for a model
that is tailored to a given scanning campaign. One might be tempted to choose a small set of scans and learn a
model to apply to the rest of the scan set. Unfortunately, this is problematic, since the set we choose may not
cater for the variability in the campaign, which may still be substantial, and the choice of the training subset
will have a dramatic effect on later performance. Instead, we propose that the learning process is ongoing and
incorporates new information from misclassified points as new scans are processed and cleaned.

The point training/prediction procedure of the framework is presented in Algorithm 1. The main components
of the system are incremental learning (which is strongly affected by data balancing and feature calculation
choices) and post-processing the classification obtained by the point classifier. These components are presented
in detail in Sections 3.1 and 3.2.

3.1 Incremental Learning

As noted above, rather than choosing a small set of campaign scans and training a fixed classifier, we allow
for an initial training phase followed by periodic incremental training. In this context, incremental refers to the

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:6 « P. Marais et al.

addition of training data to the starting training data set, as each scan is processed. While the choice of the
starting training example(s) will initially affect the accuracy of the classifier, even with a poor starting choice
the addition of more training samples as the cleaning proceeds will allow the classifier to generalize.

After running the predict step to assign a label to each point, the user cleans the data by labeling points as
either “discard” or “keep.” We can compare the predicted class for a point with the label assigned by the user
(using, for example, a paintbrush or lasso tool to make a selection). We thus know which points have not been
correctly predicted by the classifier and can use this information to refine the classifier. To do this, we use the
confidence estimate attached to each incorrect prediction to weight the sample and resubmit it to the classifier
on a retraining pass. More specifically, a misclassified point P; is assigned a weight:

w(P;) = max(1, int(x C(P;)), (1)

where k > 1is a scalar factor and C(P;) is the confidence assigned to the (incorrect) classification by the classifier.
The correct label is attached to this point, and along with the newly calculated sample weight and the point
feature vector, the sample is added to the set of samples to be included on the next retraining cycle. The weighting
function ensures that points that were misclassified with high confidence will receive the correct label and a high
sample weight during retraining: this should nudge the classifier away from repeating such a mistake. Other
weighting functions could be adopted, but it is worth noting that a simple linear function is sufficient for our
purposes.

The retraining criteria we have experimented with are (1) a specified number of scans have been processed or
(2) the prediction accuracy has fallen below some specified level.

3.1.1 Data Balancing. Classifiers can be very badly affected by the number of training examples available for
each class [1]. Schemes to balance data often use either downsampling (choosing a subset of input samples for
each class) or upsampling (through repetition or interpolation). Furthermore, many classifiers allow one to attach
sample or class weights that bias the classifier towards a given sample/class. While class and sample weights are
supported by random forests, their uses as a balancing mechanism is ill-advised. Each tree in a random forest
is built using a “bootstrap sample”: a new training sample is constructed by randomly re-sampling the original
input set (feature vectors and labels) with replacement. If the minority class has few samples, even if these are
associated with very large class or sample weights, then the random resampling may not include any instances
of that class and the tree will not be able to reliably predict this class. Adding more trees can help, but for very
small classes, a great many trees would be required, the results are likely to remain poor, and the training time
increases linearly with the number of trees.

To balance the data, we choose to generate a new initial training set that is a resampled version of the original
training data ensuring that equal numbers of each class are available. For the initial training phase, the majority
class is found and the resampling target is set to 20% of this to reduce initial training time. The larger class
is randomly down-sampled while the minority class consists of the original minority data plus an additional
number of randomly repeated samples, such that the size of the two class training sets coincides. This was
done primarily to reduce training time on the initial pass: one could simply up-sample the minority class to
the majority class size, but that will increase classifier training times significantly. Under no circumstances is
interpolation used: only original feature vectors and labels are used. Note that sample weighting is still used—
but only to emphasize the role of misclassified samples; it is not used to balance data but serves a different
role.

To balance the classifier as we proceed with incremental training, we do up-sample the minority label class
to the majority. In this case, we expect that the classifier will not generate a great many misclassifications,
particularly later in the scan processing, and thus the computational burden will be less. Because we always add
the same number of samples per class at each phase, the entire data set remains balanced. We do not use samples
from the previously accumulated training data when upsampling the minority class: if the minority class in a

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:7

ALGORITHM 1: Point label prediction

// Input scan set, S
S —{s1,...,8n}
// Choose a set of scans for manual cleaning
M « UserSelectScans(S)
// Compile training data: feature vectors (F), labels (£), weights (=1)
TD « 0
for each point p in M do
TD « TDU (F(p),£(p), 1)
end for
TD « BalanceTrainingData(TD)
C « TrainClassifier(T D)
SaveClassifier(C)
SaveTrainingData(TD)
TP <0
for each scan s in S \ M do
// run the classifier to get per point prediction labels
L « PredictPointLabels(s, C)
// user input: select incorrectly predicted points
Q « UserInput(s, L)
// compute sample weights w(q) and add training data to pool, TP
for each point q in Q do
TP « TP U (F(q).£(q). w(q))
end for
if retrain criterion reached then
TP « BalanceTrainingData(SP)
// retrain classifier with accumulated training data and weights
TD «LoadTrainingData()
TD «TDUTP
C « TrainClassifier(TD)
// save new classifier and training data (feature vectors, labels, weights)
SaveClassifier(C)
SaveTrainingData(T D)
TP < 0
TD « 0
end if
end for

new scan exhibits a previously unseen point distribution and there are few samples, then using samples from
earlier scans to up-sample the minority class will likely overwhelm this new information.

3.1.2 Density Mitigation and Feature Calculation. For a stationary full-dome laser scanner, the point density
across a surface can vary dramatically, depending on the distance of the surface from the scanner origin as well
as the orientation of the surface with respect to the scanner. To regularize the density, we follow the approach of
Reference [20] and overlay the entire scan volume with a grid of cubic cells of fixed size. The points in each occu-
pied cell are then averaged to “homogenize” the point cloud: the large point cloud is reduced to a much smaller,
more regularly sampled point cloud.! This cloud is then used for all subsequent processing; most importantly,

10ne could also compute the medioid of the points in a cell, but this is computationally more expensive.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:8 « P. Marais et al.

Table 1. Point Features Used by Classifier

Name S/'M Definition Notes

Height S Pz The z value returned by the scanner in
the scanner coordinate frame

Distance Ipl Distance from scanner (depth)

Curvature 1 -
Principal curvatures at p

S
S
Curvature 2 S K2
Cylinder 1 M Zmax — Zmin
Cylinder 2 M Pz — Zmin Cylindrical neighbourhood features
Cylinder 3 M Zmax — Pz
Anisotropy M ’11/1_1 A
Planarity M 12/1_1 A
- s
SOr;}llzlir\lf(:;i};nce x éjm Features computed from eigen-
) . L values/vectors of the structure tensor
Linearity M ‘/1—12
Surface variation M #}13
Eigen entropy M| =2 Ailog A
Verticality M 1-(0,0,1) e e;3
Density M (k + l)/%ﬂri for k nearest neighbours

the classifier learns and classifies this down-sampled cloud. This speeds up the whole pipeline significantly, at
the cost of some loss of prediction accuracy. To propagate the labels to the full resolution variable-density cloud,
a map is stored per cell that records which input points were originally down-sampled to that cell. To implement
the downsampling, we insert all the points into an octree and augment the tree with the maps. A simple traversal
of all leaf nodes allows us to aggregate all the points in a cell and set up the appropriate maps. It is worth noting
that octree cells close to the laser scanner origin will contain many more points, so misclassifications for such
points at the “cell” level will be much more noticeable.

The features we use consider only geometric (point) data, since these are always available and, for much CH
data, more reliable than colour features. We also conducted a variable importance analysis for the RF feature
variable set that showed that the laser return intensity was a very weak feature; we thus decided to discard
it. Neighbourhood features are computed using either a fixed radius, R, or the k nearest neighbours. Both of
these parameters are fixed for all experiments—see the testing section for more information. A feature vector is
computed for each point in the down-sampled cloud, as shown in Table 1.

Some features are computed at the highest resolution level (denoted as “S” in the table) and others over multi-
ple resolution levels (“M”). In particular, the principal curvatures, x; and k,, are computed over a single spherical
neighbourhood per point, at the highest resolution level, for a fixed R; computing this feature over multiple
scales would push up feature computation time quite significantly. Furthermore, some of this information (e.g.,
planarity) is encapsulated in the structure tensor features, which are multi-scale. The features based on a cylin-
drical neighbourhood are computed for a given 3D point p over a vertical cylinder with radius R. For a given
cylindrical neighbourhood, Zy,,x and Zy,;, represent, respectively, the largest and smallest z coordinates for all
points p in the cylinder. To compute the structure tensor features, the k nearest neighbours to p are found and
the eigen values, {4;}, and corresponding eigen vectors, {e;}, of the structure tensor are computed [29]. The eigen
values/vectors are arranged in decreasing order, so A; > A, > A3 > 0. For the density feature, r¢ is the smallest
radius that encloses all k neighbours.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:9

For multi-resolution (MR) features, we utilise 6 levels [29]. More specifically, for each MR feature level, we
sub-sample the point cloud by doubling the aggregation cell size and compute the features using the points
from this sparser sampling. The original aggregation level is considered to be the first level of the combined MR
feature vector. To compute an individual MR feature, we take a point p in the dense level sampling and extract its
neighbours, using the appropriate neighbourhood, in the dense cloud as well as each of the the coarser MR clouds.
The feature vector for each neighbourhood is then calculated, and all these feature vectors are concatenated to
form the final MR feature vector for the point. The single resolution features are appended to this to generate
the final composite point feature. Note that for features computed using a k nearest neighbourhood, for fixed k,
the coarsening of the point clouds introduces a natural smoothing effect in the composite MR features[11].

The total number of features in our point feature vector, assuming 6 MR levels, is 76. These values are all
represented as single precision floating point values.

We could add other geometric features, as well as image-based features, but our intention was not to exhaus-
tively explore the best feature set for cleaning, but rather to develop a framework in which additional features
can be added as desired.

We do not normalize the feature vectors—this is not necessary for random forest [5].

3.2 Post-processing the Classification

The core stages of classification pipeline we have adopted are shown in Figure 1. Each 3D point is initially
assigned a predicted label, based on the current random forest classifier. The representation then switches to a 2D
depth map panorama with each pixel representing a 3D point, and low-confidence points are subject to further
pixel-based processing that seeks to smooth the initial predictions by carefully interpolating high confidence
labels.

The point classifier often produces a noisy labelling with incorrectly classified clusters of points surrounded
by larger regions of correctly predicted points. This makes the cleaning process harder, since the user has to
spend more time correcting these errors. In many cases, the point clusters correspond to regions where the
classifier has lower confidence in its labelling, so we would like to force these regions to match the surrounding
high confidence predictions. However, one can’t simply assign low-confidence points to the dominant label in a
neighbourhood, since this ignores depth discontinuities and there may be no local neighbours. Our overall goal
is to reduce the number of small isolated components while not impacting too greatly the initial classification
result.

We use the range image (2D) domain for this processing, since the neighbourhood relationship between points
is often more clearly defined in this representation. For example, if one looks at a 3D point cloud (even when
down-sampled) there are many regions where we have thin, irregular strips of surface samples that seem uncor-
related, but can be clearly seen as neighbours in the depth image.

The data we work with has additional characteristics that complicate the label propagation task:

e We do not have RGB-D data, but geometry (or D) only. This removes a large source of neighbourhood
and region correlation that is exploited by popular MRF/CRF methods;

e Isolated points or point clusters are often not noise points, but valid data such as parts of wall separated by
scanner acquisition problems around edges. It would thus be wrong to make the simplifying assumption
that small structures such as these are noise.

e The depth maps we process generally have large depth changes across the image and steep depth gradi-
ents. This issue is not typically encountered when processing image data from short-range depth cameras
like those used in Microsoft’s Kinect, which are widely used in the classification literature.

o Pixels that are part of a single structure in 3D may be separated by gaps consisting of no-response samples
produced by scanner artifacts. In this case requiring that adjacent pixels, or even pixels that are further
away, be consistent in depth may not be enough to reconnect these structures. This problem is exacerbated

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:10 « P. Marais et al.

(a) (b)

(©) (d)

(e) (f)

© (h)

Fig. 1. Point classification through range map. (a) view of point cloud, close to scanner origin; (b) laser return intensity;
(c) ground-truth labels—green is keep, blue is discard, other colours are classification errors; (d) initial classification with
no post-processing; (€) confidence map—values below confidence threshold are red, no-return points are light blue, and the
grey/white values represent points above the threshold; (f) grey values represent points for which values need to be filled
(after morphological filtering); (g) the final depth aware filled image—any remaining grey points are filled by the graph fill
stage; (h) the final post-process classification image, which is mapped 1-1 back to the points.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:11

when there are strong depth gradients across the region, which mean that the depth change can be very
large between adjacent samples.

The use of MRF/CRF that generally enforce neighbourhood consistency of pixels in this more complex scenario
would require careful design of the potential terms, and it is not clear how this should be done, or whether this
approach is ultimately a good one for our (depth only) data. Instead, we have developed a more heuristic label
propagation approach that uses a series of processing phases that attempt to directly address these issues. We deal
with the easier cases first and defer harder label assignment choices until later. The phases are: (1) Thresholding
and morphological filtering; (2) Depth-aware region filling; and (3) Label assignment for isolated components.

The first phase selects all low-confidence depth samples, which are set as “unlabelled” and then removes small
component clusters from these for later processing. This creates unclassified “holes”; however, these holes are
not missing geometry or depth, and thus conventional techniques for depth/geometric hole-filling, such as [8,
32], are not considered.

In the second phase, good label information is incrementally propagated into unlabelled regions, in a way that
respects depth continuity and is somewhat robust to high depth gradients.

The final phase deals with the more complex cases. First, we attempt to connect structures broken by no-
response samples and those removed in phase 1, even in the presence of strong depth gradients. To do this,
we start from components with reliable labels, either from the initial labelling or from label propagation, and
then determine whether we can connect unlabelled components to these in a way that minimizes the depth
discontinuity at any point along their boundaries. This assigns labels to all reasonably well-behaved unlabelled
components. The remaining pathological cases are then assigned the closest label in the 2D image plane. These
steps are explained in more details below.

We refer to the per-point (pixel) classification labels attached to the range image representation as the classi-
fication image.

Phase 1—Thresholding and morphological filtering: To filter out the low-confidence regions, we use a
simple confidence threshold, and all pixels that fall below this threshold are set to unclassified. We then construct
a binary image in which valid pixels are assigned 1 (foreground) and all other pixels are set to 0 (background).
A morphological opening with a 3 X 3 disc is applied to this image, which removes small and thin foreground
structures. All the foreground pixels that are removed (small clusters of labelled points mostly) are also set to
unclassified in the classification image. All unlabelled pixels will be assigned a valid class label by the next two
phases.

Phase 2—Depth-aware region filling: Next, we apply a depth-aware region growing operation to fill the
holes created by phase 1. We perform a number of passes across the image buffer, processing all current pixels
deemed to be boundary pixels, and attempt to label them. We visit each pixel in scan-line order, skipping pixels
until we find an unclassified boundary pixel—an unclassified pixel with at least some neighbours that have a
label type other than “unclassified” (labels discard, keep, and no-return). A b x b block of pixels, centred on
the unclassified boundary point, is extracted and for all pixels except no-return pixels, we compute the depth
dissimilarity:

5(i) = [D(i) = D(0)]

between the pixel i and the depth at the unclassified pixel, D(0). We then sort these values in ascending order and
compute the derivative (forward difference) across the 1D array. Note that the first dissimilarity array entry will
always be 0 and will correspond to the boundary pixel we are processing. A large derivative will indicate that at
least some neighbouring pixels are located across a strong depth discontinuity. We then inspect the derivative
array and the labels attached to the corresponding samples. We use a small set of rules to determine how to
assign a label based on the size and location of the derivative maximum. If the derivative maximum is weak or
badly behaved, then we delay making the label assignment and leave this for a later pass, since more information
may be added as we complete each image pass.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:12 « P. Marais et al.

o L 11|

M ciasso
[] unclassified

I I
majority class [1,2] = Class 1
I Class 1

["] No-return

Fig. 2. Example label assignment. The center unlabelled pixel requires a label. The numbers in the pixel array are the
depth values, which generate the dissimilarity array and (forward difference) derivative array on the right. In this example,
the closest depth value to the centre, with a valid class label, is the pixel with depth 9. Formally, we assign the majority class
label in the range [1, i], where i is the array index of the derivative maximum.

In the simplest case, we scan the derivative array from index 0, looking for the position i of the largest max-
imum value. We then assign the unclassified pixel the majority label (ignoring no-returns) based on the labels
attached to array samples in [1, i]—see Figure 2. For well-behaved neighbourhoods, this works well. However,
we also have failure cases that need to be dealt with immediately or deferred until the next pass. We apply the
following sets of rules in the order indicated:

Rule 1: isolated points. If a point has no neighbours (except for no-return values), then it is labelled “discard.”
If the only neighbours are unlabelled, then it is skipped and the decision is deferred to the next pass.

Rule 2: weak discontinuity. As we scan for the largest derivative jump, we apply a threshold, %Smax. Values
below the threshold are ignored. S,y is the largest value in the dissimilarity array. If all the values fail the
test, then the entire set of samples is assumed to lie on a noisy surface patch with no noteworthy depth
discontinuities, and we simply take the majority class label (discard/keep) as the assigned label. However,
if the threshold test is passed, then we proceed to Rules 3 and 4.

Rule 3: max at origin. If the largest jump in the derivative array occurs at sample 0 (large jump from sample
0 to sample 1), then we have limited information to make a decision. If the next sample, at index 1, is
classified, then we assume the jump is due to noise and assign this class label, which is closest in depth.
Otherwise, we cannot say where or if a real discontinuity exists (for example, there can be steep non-linear
depth gradients on sloping surfaces, in addition to noise, which make it hard to identify a large jump), so
we inspect all samples in the array and assign the majority class to the pixel.

Rule 4: regular maximum. If the maximum index, i, is not 0, then we inspect all ordered samples in [1, i]
and assign the majority class to the unlabelled pixel. If the majority class label is unlabelled, then we defer
a decision until the next iteration.

Each boundary pixel is processed independently during an image pass: a new classification image is updated
with newly assigned labels. Existing valid class labels (discard/keep) and no-returns are immediately written
through into the new image; at no time are updated values written back into the classification image we are
reading from. If an unclassified pixel cannot be assigned a class label at this point, then it is written into the
new image as an unclassified pixel and will be resolved in the next pass. At the end of the current pass, the new
classification image becomes the source classification image and the next pass begins. The iteration terminates
when there is no further decrease in the number of unclassified pixels. This indicates that no further filling is

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:13

possible without violating depth continuity or that only isolated unlabelled points remain. The final classification
image is then passed into Phase 3. We used 3 X 3 blocks for all our tests; larger blocks require more sorting passes,
although they do provide more context.

Phase 3—Label assignment for isolated components: We need to assign labels to the remaining unlabelled
components that are isolated by depth discontinuities or invalid (no response) pixels. We do not simply label an
entire component with the closest valid pixel in the classification image, since this ignores depth differences and
pixel proximity in the image.

Instead, we set up a graph problem in which the (labelled and unlabelled) pixel cluster components are vertices
and the edges that connect them are carefully chosen to avoid associating distant components. As explained
later, the undirected graph edges are weighted with a measure of depth disparity between linked components.
Once the graph is built, each unlabelled component performs two independent shortest-path searches: each
search aims to find the shortest path from the unlabelled component to the “closest” labelled component of the
appropriate class. This may require a number or searches for each class, but they are extremely fast (of the
order of milliseconds). By minimizing depth changes as we move through the graph, we can find a compromise
labelled component and copy its label to all pixels in the unclassified component we are considering. Note that
each component labelling search happens independently, so the entire labelling operation could be parallelised
if desired. This independence allows us to avoid order dependencies and limits the propagation of bad labelling
decisions.

To build the graph, we first run a connected components analysis on the classification image generated by the
first two phases. This allows us to label all the pixels belonging to connected blobs with a unique identifier. To
simplify processing, we utilize three connected component images: one for each class label (keep and discard)
and one for unlabelled pixels. In these images, the pixel class (one of keep, discard, or unlabelled, as appropriate)
is considered foreground and everything else is background (no-returns and all other label pixels). To accelerate
graph construction and queries, we filter out small unlabelled components; these are removed based on a fixed
threshold and are essentially invisible to the graph algorithms. They will have a class assigned at the end of this
phase.

Next, we extract the boundary pixels for each blob and write these into another image: identifying a boundary
pixel simply requires checking the 3 x 3 neighbourhood for a candidate to see if there are any background sam-
ples. Extracting the boundary will reduce the calculation required in later steps. Having computed these separate
images, we then merge all the component images to form a single multi-label component image and do the same
to merge all boundary images into one boundary image. We are able to identify the class of any boundary or
component in these images by storing some simple map that associates component indices to class type.

For each component (graph node), we wish to connect it to the components that are “nearby” in the component
image. A common approach is to build a k-nearest neighbour graph [2], but this can lead to very dense graphs
(even for small k) and allows very distant components to be linked. Instead, we define a small region around each
component boundary point within which components may link to others and use ray-casting to decide which
neighbours to connect to. More specifically, for a given component boundary point, we cast a ray to all other
boundary samples in the region (hence the need for our boundary extraction—to avoid testing interior points).
We compute the absolute depth difference between these points and keep a map that associates to each pair of
components the smallest depth distance encountered so far. This map is constantly updated as the ray-casting
proceeds. Once components have been processed in this way, we inspect the map and extract the linkage infor-
mation for components as well as the weight—which is simply the minimum depth delta between components,
measured along their connectable boundary. The intuition behind this is that one can “path” through a compo-
nent and emerge anywhere on its boundary to find the shortest (depth) hop to another neighbouring component.
The ray-casting is very fast (it uses 2D Bresenham and terminates early if there is a non-boundary intersection).
Effectively, the approach explained above ensures that only components that have boundaries that are “visible”
to one another and in close image proximity can be linked. These ideas are illustrated in Figure 3.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:14 < P. Marais et al.

w(l,2) = min {..,9[0],...,d[1], ..., 8[2], ... }

Fig. 3. Connecting components into the graph. The figure shows several components that need to be connected into the
graph. On the left, a boundary pixel has cast a number of rays within the indicated square neighbourhood. Dashed lines are
discarded due to self-intersection. Only two rays are shown to intersect the boundary of component 1, although in practice
all boundary pixels on 1 that are visible to the point on 3 will be considered. Weights are then computed for valid rays. On
the right, several representative ray casts connecting components 1 and 2 are shown: the weight assigned to the edge (1,2)
is the minimum of all the ray cast weights from 1to 2 (and 2 to 1).

Finally, we assign labels to the small set of unclassified points that remain. These are points that were excluded
from the graph processing. At this stage, we have no further information to work with, so we simply assign the
closest labelled neighbour in the classification image.

It is worth pointing out that if the classifier gives consistently poor predictions, then the post-processing will
not smooth out the data in a useful way. The underlying assumption is that most high-confidence predictions
are correct.

3.3 Applying the Labelling to the Model

Once all the unclassified pixels in the classification image have been labelled, the labels are copied to the cor-
responding “down-sampled” 3D points. Then all the points that mapped to a given octree cell are assigned the
same label. As noted earlier, if a cell contains a large number of points, and the proxy point was misclassified,
then this will result in a seemingly large classification error. Nonetheless, the down-sampling process is essential
for performance, and as the classifier improves, this effect becomes less noticeable.

4 RESULTS AND DISCUSSION

Here, we present the hardware and software we used for our tests, the parameters we chose, and provide details
on our test data. We then discuss our results.

4.1 Test Data and System

Tests were run on a PC with 16GB of memory and a quad-core Intel Core i7 CPU clocked at 3.4GHz, running
Ubuntu 16.04 (64-bit).

The framework is implemented in C++ 11 and uses OpenCV v3.3, Point Cloud Library (PCL v1.8) and the
Boost library. More specifically, PCL is used to manage point clouds and to compute 3D point features, OpenCV
is used for machine learning, and Boost is used for tasks such as command line parsing and graph operations.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:15
Table 2. Data Sets Used in Testing
Model Resolution | # points | # scans Description Discarded data
Structures around the
Songo Mnara 5.056 X 2,019 10.2M 10 Ruined buildings With area of ?nterest,. .
many trees and foliage vegetation also inside
the area of interest
Mayan ruin with trees Structures around the
Ball Court 4,096 x 1,736 7.1M 10 . area of interest,
and foliage .
vegetation
Montelupo 4790 X 2,154 10.3M P Old church site With lots Vegetat.ion around the
of clutter and foliage area of interest
9,580 X 4,307 41.2M 2
Structures around the
Bagni di Nerone | 3,828 X 1,723 6.5M 15 Ancient Roman bath site | area of interest,
vegetation, railings
Mainly railings and
Church 1,910 X 862 1.7M 15 Underground church grates, outside
environment
Monument 1,911 x 1,723 3.3M 14 Statue in courtyard Everything but the
monument
Mainly people and
Signoria 3,822 %X 1,723 6.6M 15 Busy Piazza in Florence vehicles, scattered data
due to window glass
Stairs 2,390 X 1,076 2. 6M 1 Int‘erior steps with WOO('ien doo’rs,
adjacent chambers non-interesting rooms

The data set consists of eight small scanning campaigns, spanning a range of external and internal cultural
heritage environments. The scans are stored as PTX files,” since this format provides a simple and direct repre-
sentation of raster format produced by the scanner. This is not a space-efficient format, since the data is stored
as text and contains redundant vector entries for no-return points—if space is an issue, then these files could be
parsed into a more efficient raster-preserving format.

Information on each of the data sets we use is shown in Table 2.

4.2 Parameter Selection

The classifier is built on the random forest implementation provided by OpenCV 3. Unfortunately, support for RF
parallelism was unexpectedly removed in this version; classifier performance was thus significantly lower than
we expected, compared to OpenCV 2. RF is embarrassingly parallel and should scale linearly with the number
of CPU cores.

RF has a number of parameters that control the growth of the forest and classification accuracy. Since we
are not trying to learn a single general classifier, it would not make sense to fine-tune parameters through,
for example, a grid-search with n-fold cross-validation. Instead, we performed a small number of test runs to
determine a set of plausible parameters and then used these for all our tests:

2See http://paulbourke.net/dataformats/ptx/ for description.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

http://paulbourke.net/dataformats/ptx/ for description

16:16 « P. Marais et al.

Table 3. Parameters Used for Testing

Param. Detail Value
Gy resolution of sub-sampling grid 0.02m
R, cylinder feature radius 0.1m
R, curvature calc. radius 0.2m
K RF re-weighting multiplier 10

L Multi-resolution levels 6

Sr feature sub-sample percentage for the first scan 20%

k nearest neighbour number for feature calc. 10
PP post-process: min. component size for graph node | 10
PP, post-process: confidence level threshold 0.8
PP, post-process: pixel radius for graph linkage 15

e For the number of node split trials, we used +/Nr, where Nr is the number of elements in the feature
vector. This is the recommended value for classification with random forest [5]. Increasing the value will
lead to better classification, but at higher computational cost. Informal testing showed that a higher value
was better, but since our RF implementation is serial, we kept the default.

e We limited the tree depth to 32 and the maximum number of trees to 32. We forced all trees to be grown
by setting the target out-of-bag error to 0; more trees generally equate to better performance but greater
training and classification times.

e The minimum number of points in a node for a split to occur was set at 20. This means trees cannot grow
to any depth and are thus less likely to over-fit. This, in turn, means we should be able to use fewer trees.

In addition to the RF parameters, Table 3 lists the defaults used across all experiments.

4.3 Prediction Performance Metrics

Since we have ground-truth segmentations from cleaned scanning campaigns, we are able to directly measure
predictor performance. We have chosen to measure the usual classifier metrics, true/false positives (TP/FP),
and true/false negatives (TN/FN) for each class, as well as the pre- and post-process component distribution.
However, we do not report precision and recall—which are based on TP/FP/TN/FN rates—since these measures
are asymmetric and depend on which class is taken to be the positive class. Instead, we report the accuracy, A,
which is simply

3 TP + FP 5

~ TP+FP+TN+FN’ @

This is a symmetric measure and reports what users are most interested in: whether the predictor is predicting
points correctly.

The post-process treats the initial prediction as a range image with classification labels instead of depth as
each pixel value. To get a sense of how well the post-process does at reducing small isolated error components,
we generate size distribution histograms and also record the total number of error components produced. These
measure the distribution of components sizes of incorrectly labelled pixel clusters left behind after the post-
process has been completed. Note that we only record incorrectly labelled components; it is quite possible to
have small correctly labelled components, as noted earlier. To compute the histograms, we perform a connected
component analysis on the error image. This is a binary image that sets all incorrectly labelled class pixels,
relative to the ground-truth classification image, to 1. This image will include components that the classifier
labelled incorrectly with high confidence.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning - 16:17

Table 4. How «x Affects Training Set Samples Added, x1000 (Montelupo Data Set)

#1 #2 #3 #4 | #5 #6 | #7 #8 Total
k=1 422 | 188 73 26 161 43 21 10 944
K=5 422 | 189 74 32 138 44 23 10 932
Kk =10 422 | 190 68 33 131 41 23 11 919
K = 10* 422 | 190 61 35 150 43 25 11 937
K =20 422 | 191 57 35 139 46 24 9 923

4.4 Training Set Size and the x Parameter

Since we do not constrain the work-flow of the cleaner, they are free to clean the scans in any order they wish. If
the current classifier is a good approximation of the underlying distribution, then the number of mispredictions
falls sharply with each new scan and the classifier needn’t be updated after each scan. However, when a scan
with previously unseen geometric characteristics is processed, the number of bad predictions increases. This, in
turn, means that the number of mispredicted samples that are added to the current set of training samples for
the next RF retraining phase increases.

The x parameter is used to weight new training samples, and the choice of this parameter impacts on the
accuracy of the classifier at each step. Generally, a high value will mean that misclassified samples are heavily
emphasized so if similar data is encountered in the next point cloud, then the classifier will do well and fewer
new training samples will be added to the growing pool of training data. For low values of k, the classifier does
well if the following point clouds are similar, but if a new point distribution is encountered, then the classifier
performs badly, and many more training samples are added as a consequence. Table 4 shows the approximate
number (in 1000s) of new training samples added as each new scan is encountered, as well as the total number
of training samples in the final classifier in the sequence.

The initial scans are similar to scan #1; however, scan #5 is very different, with the scanner right next to a wall.
This causes a high prediction error (across the adjacent wall), and many new training samples are added to the
pool to capture this new point distribution. The value ¥ = 10 responded best in this example, providing a good
compromise between general prediction accuracy and quick response to new kinds of point distributions. An
obvious question is whether the probability is needed in the weighting scheme. The table entry for k = 10* shows
what happens when probability is removed for the x = 10 case—the classifier performs more poorly, and more
training samples need to be added in general, most notably after a large correction. We expect such corrections
to occur frequently for scanning campaigns, so the ability to respond quickly and to reduce the number of
subsequent training samples required is important.

4.5 Discussion

Both quantitative and qualitative results are presented here. Quantitative results present measures of system
performance, while qualitative results consist of a discussion around the classification images produced for each
scan campaign. Classification images are used rather than the structured point cloud, since it is easier to see
where classification errors are clustered. The role of the x parameter was explored in Section 4.4, so we will not
discuss this further.

4.5.1 Quantitative Results. The summary results for classification performance are presented in Tables 5 (ac-
curacy) and 6 (timing). Detailed per-scan results for accuracy (Tables A.1, A.2, and A.3) and timing (Tables A.4,
A5, and A.6) can be found in the Supplementary material.

Examining Table 5, we observe that the average classification performance, when measured using accuracy
(Equation (2)), is generally good. However, the accuracy varies depending on which view one takes of the data.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:18 < P. Marais et al.

Table 5. Overall per Campaign Classification Accuracy, for k = 10

Avg. Avg. Avg. | Min. | Max. | STDDEV. || Comp.

Geom || No-Post | Post | Post | Post Post Reduce
Campaign % % % % % % Factor
Montelupo 94.6 93.3 93.7 | 64.8 | 99.1 11.8 x9.3
Songo Mnara | 96.2 96.4 97.3 | 94.7 | 98.9 1.2 x5.4
Ball Court 80.3 69.8 71.9 | 56.6 | 97.4 13.6 x4.1
Bagni 95.3 97.2 98.1 | 92.7 | 99.8 2.2 x10.3
Monument 98.9 97.1 97.6 | 84.8 | 99.8 4.0 x7.3
Church 98.3 99.1 99.1 | 941 | 99.9 1.5 x2.4
Signoria 95.5 97.0 979 | 965 | 99.3 0.9 x4.1
Stairs 84.7 83.9 84.3 | 37.5 | 99.0 18.6 x10.7

It is important to emphasize that the classifier is trained on (and classifies) point data, not image data. Fur-
thermore, the data that is trained/classified is down-sampled point data—the point set produced by the initial
homogenization/re-sampling step. The table entry for “Acc. (geom.)” measures this error. The down-sampled data
has to be up-sampled back to the original grid resolution, and this is where differences arise. The up-sampling
step simply labels all the points that mapped into a sampling grid voxel with the same predicted label. Naturally,
this means that any error in the down-sampled prediction will be magnified significantly in the high-resolution
point cloud. The effect is particularly damaging for misclassified points close to the scanner origin: in this region
the point density is highest and many points are averaged in each sampling voxel. For this reason, some of the
data sets show results where a scan has high accuracy on the down-sampled cloud but very much lower accu-
racy on the up-sampled cloud. The “Acc. (no post)” entry refers to the directly up-sampled classification, with
no post-processing stage. This is a more accurate measure of actual classification performance for our approach.
The entry “Acc. (post)” reports the final high-resolution mesh classification accuracy when post-processing is
used. We would like this number to be better, or at least no worse, than the unprocessed classification while
significantly reducing the number of error components. Note that for some scans the predictor produces bad
classification values and marks most of the scan as “unknown.” For such scans, the post-process will produce
poor results—worse than simply up-sampling the direct point prediction, regardless of prediction confidence—
since it has to produce values for most of the points and is seeded with incorrect data. This is clear from the
“Min. Post” column in the table. The Stairs campaign produces one such case, which is expanded on in more
detail later.

In an attempt to quantify the quality of the classification, we report the error component sizes based on
the classification image, as noted in Section 4.3. Table 5 provides condensed per-campaign information, while
Tables A.1to A.3 (in the Supplementary material) report the number of error components for each class (0 = keep,
1 = discard) with and without post-processing, for each scan. In these tables, the column labelled with <5 lists
total component numbers when only components of size 1-4 pixels are considered. We also present a summary
component size histogram for the Church campaign—see Figure 4. The full set of histograms—Figures A.2 to
A.5—are listed in the Appendix. For all histograms, the last bin contains the count for all components of size >50
pixels/points.

It is clear that for all data sets, post-processing reduces the number of components, in some cases by a factor
of 10. Table 5 (last column) lists the error component reduction factor for each campaign as a result of post-
processing. While post-processing tends to grow larger components, on average, there are less of them and
classification accuracy is the same or better than using the unprocessed classification. Fewer, more visible clusters
should translate into less work to clean the scan after the initial classification. Also note that many of the very

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning - 16:19

Church
8000
7000

W post-process

6000 M no post

4000

Count

3000
2000

1000

) |‘ || I| b) il
1 .

1 16 21 2 31 36 a1 46

Component size

Fig. 4. Connected component histogram. The graph shows the result of building a histogram of connected component
sizes—with and without post-processing—across the Church campaign. As intended, the post-process reduces the number
of isolated components significantly.

Table 6. Overall Processing Times (in seconds) for Each Campaign, k = 10

train: classify:

load + feature feature | classify: Avg. | Avg.
Campaign #scans | MR gen. | compute | train: RF | compute run post: post | total
Montelupo 8 269 340 1,810 999 75 386 48 485
Songo 10 184 50 1,481 798 143 209 21 286
Mnara
Ball Court 10 111 65 7,264 522 120 145 15 823
Bagni 15 158 93 2,076 1,431 168 178 12 273
Monument 14 86 61 852 878 69 75 5 144
Church 15 47 29 436 299 50 23 2 59
Signoria 15 198 179 14,047 2,802 446 236 16 1,193
Stairs 11 56 73 3,497 512 56 84 8 389

Each column shows the processing time for that component of the pipeline.

small clusters arise from hard-to-see errors in the ground-truth labels, as noted above, so the error component
numbers are an over-estimation. Finally, the small error components tend to be scattered along or close to depth
boundaries. It is likely that the registration and meshing procedures used to build a final model are robust to
such small errors and the cleaner would not have deal with them.

Table 6 shows that the post-processing phase generally requires a small part of the total scan processing time.
The time increases significantly when the classifier produces low-confidence predictions and a large fraction of
the classification image pixels need to be filled. If the point set is very large, then the computational burden will
be very high. Fortunately, the average post-process time is still low when compared to overall scan processing
times. The depth-aware fill is the slowest part of the post-process due to the large number of sort operations
required. We did not invest time in optimizing this stage, since it seemed fast enough, in relation to training and
feature computation, but this could be an area for future work.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:20 « P. Marais et al.

(b) (@)

Fig. 5. Monument examples. Images (a) and (c) show the laser return intensity, while (b) and (d) show the post-processed
predictions.

Feature computation for most of our examples was below 2mins per scan. The feature compute time depends
on both the number of points in the scan and the point distribution in space. Thus, it can be hard to predict what
the compute cost will be. We observed that the cylindrical neighbourhood queries are very costly, accounting
for perhaps 50% of the total feature computation time. We used a simple approach of projecting all points to
the ground plane and then performed a (2D kd-tree) R-radius neighbour query for every point; at fine resolution
levels this is time-consuming and returns many points, even on the down-sampled input cloud. Since this feature
has high importance (it is used often during RF tree construction), we would not want to discard it. However,
the fine resolution levels of the feature are less important, so one option would be to simply avoid calculating
the cylinder Z features on these fine levels (probably the first two levels).

Classification per scan is fast: less than 30s, on average, for all our examples. In general, the largest fraction of
the run-time is taken up by training. We expect this to increase slowly over time, as more data is added to refine
the classifier for the current campaign. If the scans are more consistent, then less data will be added as each new
scan arrives and training time will taper off. The Signoria campaign had a particularly high training time: 3.9h
across 15 scans. Due to the inconsistent labelling and the complexity of the discard/keep classes, the classifier
was unable to reach any kind of equilibrium, and a large number of re-weighted training samples were added
at each new scan, greatly inflating training times (which scale with the size of the training set). Although this
example is extremely challenging and would take a long time to clean manually, it does highlight a weakness in
the scalability of the approach that would need to be addressed for large campaigns. However, as noted earlier,
the RF implementation is not parallel, so one could reduce the training and classification times dramatically by
implementing a correctly parallelised RF. Each tree can be built independently, and each node trial (determining
a kd-tree split plane from the the feature variable set) can be done in parallel.

4.5.2 Qualitative Results. Each scan campaign is discussed below. To reduce the number of figures, only two
scans from each campaign are presented: one with low prediction accuracy and one with high prediction accu-
racy. This is sufficient to highlight any important issues encountered in the relevant campaign. The full data sets
are presented in the Supplementary material; these supplementary figures/tables are referred to in the following
discussions and have an “A” attached to the reference. The Ball court campaign is discussed in detail, since it
exhibits a number of important characteristics that intrinsically limit classification accuracy. In all the classifica-
tion results, green represents “keep,” blue represents “discard,” yellow corresponds to points incorrectly labelled
as “keep,” and magenta to points incorrectly labelled as “discard.”

Monument: This campaign captures a single statue in an enclosed courtyard—see Figure 5. (The full set of
scans can be found in Figures A.15 and A.16.) In this campaign, the majority of points are discarded and contain
a complex array of objects, such as beams, plants, and so on. The low prediction accuracy shown in the figure is a
result of a sudden viewpoint change—the scanner moves close to the statue, and this causes the point distribution

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:21

Fig. 6. Example classifications by campaign. Each row shows two examples from a campaign. Row 1: Church; Row 2:
Signoria; Row 3: Stairs

and density to change suddenly. However, the predictor recovers on the next scan. The high-prediction image
shows a scan after the predictor has corrected itself.

Church: In this campaign, the interior and exterior of a partially buried church are scanned—Figure 6, Row 1.
This data set is challenging, since the cleaning target in the interior consists of pipework and thin bars located at
varying distances from the scanner. The exterior is also very different, so when the first exterior scan is processed,
the predictor does poorly. However, it recovers on the next scan. These scans are shown in the sample. The full
set of scans, Figures A.17 and A.18, show the interior cases. While the overall accuracy is high, the points to
be removed are located on thin structures and not well recovered in general. This is caused by several factors:
(1) the initial scan down-sampling further erodes thin structures, (2) the features used are not well suited to
detecting thin structures, and (3) the training data is overwhelmingly drawn from the “keep” class. This latter
point is important and affects all scans where there is a very large imbalance between the input training set sizes.
Although we balance the data for each class, there is simply a great deal more geometric variability to sample in
the very large class, while the minority class has very little.

Signoria: This campaign covers the Piazza della Signoria in Florence—Figure 6, Row 2. This is a busy square
with a large number of tourists in motion and many buildings of all shapes and sizes. The scanner also captures
points that are very distant and thus come from areas of the point cloud with very low density. To further
complicate matters, the choice of which distant structures to keep is somewhat arbitrary, as is the decision to
keep or discard vegetation, vehicles, and shop facades along the boundary of the square. As the figure shows, the

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:22 « P. Marais et al.

Fig. 7. Example classifications by campaign. Each row shows two examples from a campaign. Row 1: Songo Mnara;
Row 2: Montelupo; Row 3: Bagni di Nerone.

classifier struggles with the inconsistency, although it is able to produce some reasonable classification outputs.
As noted in the performance results, the large classifier training time is due to the very high variability of
keep/discard in the data set, which means that a lot of new training data is added for each new scan. The full set
of scans is presented in Figures A.19 and A.20.

Stairs: the scans come from a staircase inside a building and also include adjacent chambers—Figure 6, Row 3.
The keep and discard points sets have a great deal of overlap, and the scanner also acquires points below the
horizontal plane (descending steps). The full scan set—Figures A.21 and A.22—shows the effect of introducing a
new scan type (stairs to chambers). The classification of the first predicted scan in all campaigns is generally poor,
since the predictor will only have seen one scan at that point. However, in the Stairs campaign, the first predicted
scan (Figure A.21, second image on top row) produces a result that is essentially random. In this case, the second
scan is completely different from the first. The classifier thus has low confidence for almost all scene points,
and the seed points chosen for the post-process are not reliable. The post-process thus propagates bad labels
across large depth-consistent surfaces, and this results in the poorest result across all scans, in all campaigns.
This highlights the need to have at least some consistency within a campaign. In this campaign, having the user
clean the first two (very different) scans would introduce enough training-set variability to avoid having such a
poor classification result later in the scan sequence.

Songo Mnara: This campaign covers a ruined site with crumbling walls, trees, and plants—Figure 7, Row 1.
This campaign is generally well predicted, although there is some inconsistent ground-truth labelling of tree

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning « 16:23

Fig. 8. Ballcourt dataset. Left: the original uncleaned point cloud (all scans aligned). Right: the cleaned point cloud. In this
dataset, the vast majority of the acquired data is removed, and the points that remain have some similarity to the removed
data.

trunks near the scanner that causes later prediction errors. The scanner also acquires a large depth range and
is sometimes placed right next to a wall (generating “holes” in some scans). The predictor works well, because
the keep/discard regions are qualitatively distinct and there is less of the arbitrary labelling that occurs in many
other campaigns. The full data set is shown in Figures A.8 to A.10.

Montelupo: This site contains the exterior of an old building in a walled area with plant growth as well as a
separate chamber interior—Figure 7, Row 2. The sample scans show only the exterior wall and building. The
low accuracy prediction occurs because all previous scans were taken from a distance. For this scan, the scanner
is placed against a wall and, since this is a new geometric configuration, the prediction does poorly. Since the
adjacent wall occupies a large part of the full dome scan, the poorly predicted information is propagated across a
large segment of the scan. Nonetheless, as the full campaign shows—Figures A.6 and A.7—the classifier recovers
after this scan and produces good results overall.

Bagni: This site covers part of the ruined site in Pisa—Figure 7, Row 3—and includes surrounding city buildings
and clutter that have to be removed. There are also large distances involved for some of the scans, with distant
buildings and thin structures that need to be removed. The campaign also includes the interior of a chamber.
As the low-prediction example shows, some scans are not well recovered—likely due to an overdependence on
the “distance to point” feature, which is expecting the city building to be more distant based on previously seen
scans. While the overall classification accuracy is high, fine detail—such as the bars of the railings/barrier around
the site—remains a challenge. As noted earlier, thin structures are badly affected by the point-cloud resampling
and distance from the scanner. The full data set is presented in Figures A.11 and A.12.

Ballcourt: This campaign surveys a ruined Mayan structure surrounded by jungle—see Figure 8. The classifier
exhibits very poor accuracy on the Ballcourt campaign. Here the down-sampled accuracy drops and the high-
resolution point-cloud accuracy is dramatically worse—by 20% for one scan. Applying the post-process improves
matters slightly, but the results remain poor. The reasons for this poor performance are:

o large scale and consistently poor classification close to the scanner,
e extensive contradictory labelling, and
e small and scattered labelling errors in the ground-truth input.

The first issue is a direct consequence of the other two. The labelling problem is best appreciated by looking
at the ground-truth labels and the predicted (post-processed) results—see Figure 9. The initial training set
(not shown) is similar to the first ground-truth image in this figure. It contains trees as discard and ground
cover/grass and building as point types to be kept. The classifier makes some errors, but the first scan is well

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:24 « P. Marais et al.

Fig. 9. Ballcourt data, showing contradictory labelling. The left image shows the ground-truth labels, and the right
images show the post-processed prediction.

Fig. 10. Errors in input ground truth. The closeup image shows a section of the Ballcourt campaign, which includes
labels for discard (blue) and keep (green). However, the keep labels have a large number of isolated points that are marked
as discard, even though they appear to be part of the keep class. The post-process explicitly seeks to reduce small isolated
point clusters, and thus these points end up being flagged as classification errors.

classified, given that only 20% of the input labels were used. The next image in the sequence is very badly
classified: based on prior training data, the classifier expects ground to be part of the “keep” class. It still
manages to pick up most trees and the higher parts of structures. Nonetheless, the dominance of ground in
this scan means that the error is very large and is magnified further, since the scanner is surrounded by this
point type. The classifier notes that ground is now “bad” and adds many point features back with a heavy
weighting to compensate. The full set of ground-truth labels and post-processed results is listed in the Appendix
(Figures A.13 and A.14). These show that the next scan does a lot better, although the classifier has been skewed
by the inconsistent labels. Unfortunately, the following scan in the sequence (the fourth scan) introduces a large
patch of samples that contradict what the classifier had seen in the previous scan. As expected, the classifier
does badly. This alternating association of ground points between the “keep” and “discard” classes essentially
asks the classifier to reconcile contradictory data. Interestingly enough, except for the ground points, the other
elements such as trees and buildings are mostly recovered. We will return to this point later.

Although it is not apparent from the ground-truth labels, there are also widespread but isolated errors in
the input. This is illustrated in Figure 10. This shows part of a scan near the base of a structure, with a tree

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning - 16:25

A\

Fig. 11. Effect of post-process. The classification image on the left is directly up-sampled from the 3D point prediction.
The image on the right has been post-processed.

to the right. Note the very small isolated (blue) point clusters interspersed with the green region. Based on
a reasonable assumption of regional smoothness, these would seem to be incorrectly labelled. Since the post-
process is designed to discourage very small isolated components, these points are effectively set to green and
thus marked as classification errors when compared to the ground-truth labelling. This is the main cause of the
very large keep/discard error component numbers noted below. The impact of these errors is to further bias the
retraining stage, since the classifier is given yet more incorrect or contradictory information.

General comments: Errors in the keep/discard classification are most evident close to depth discontinuities:
these are not only from incorrect high-confidence predictions, but also from incorrect filling of unclassified
pixels during the post-process. Although the post-process is intended to propagate good predictions and to
avoid doing so over depth discontinuities, it is limited by the accuracy of the predicted labels it is extrapolating.
There are also isolated unclassified points for which a neighbouring label is the only viable match, even if it is
across a steep depth discontinuity. Nevertheless, on average, the post-process ensures a cleaner classification
with significantly less misclassified point clusters—see Figure 11. As we noted above, some classification errors
are a result of problems with the ground-truth labelling.

The impact of the features we used on classification accuracy was not explored in any detail: while we used
a common set of features for 3D point classification, these were not necessarily optimal for our data sets. In
particular, the point re-sampling we employ only partially mitigates point density differences through the cloud
and is not ideal when there are many thin structures that need to be cleaned from a campaign. Informal feature
importance tests showed that Z-based features (height and cylindrical features) and depth from scanner are
favoured by the classifier. While these ensure more robustness against the diversity of keep/discard labels, they
may overwhelm weaker features that are better at representing intrinsic neighbourhood properties.

Finally, it is important to emphasize how the cleaning process differs from the object classification or point
segmentation task. For most learning applications, the goal is to associate each point with a class label, and mem-
bership of that class is typically hard, e.g., a point is part of a tree or part of a pole. In the cleaning task, the general
goal is to achieve a binary labelling, keep and discard, but the problem is complicated by the common practice of
also discarding part of the point cloud for what we have termed “modelling” reasons. In this case, a label that is
nominally correctly assigned by the classifier based on previous learning can be arbitrarily invalidated. To learn
the true classification rule in such circumstances requires learning to establish rules about modelling decisions.
Unfortunately, these rules appear to be somewhat arbitrary, since they are (a) based on aesthetics and personal
preference in many cases and (b) depend on the kind of data being classified. This suggests that a modification
to the point cleaning work-flow might be a better option. For example, one could restrict cleaning to the pure
problem (keep/discard labelling) noted above and then run a post-edit step to delete parts of the labelled point set
that are not desirable for some reason. This might be a simple matter of using a 2D/3D painting/lasso interface
to delete unwanted points.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:26 « P. Marais et al.

Table 7. Expert vs System Timings (in seconds): Bagni di Nerone Campaign

Acc. G% | Acc.P% | Feat. | Train | Classify | Post. | Edit | Total || Expert
1 100.0 100.0 93 60 - - 540 696 540
2 97.0 97.8 76 80 9 10 - 175 480
3 97.6 98.6 99 105 10 11 - 225 360
4 92.7 92.9 153 199 10 31 - 393 240
5 98.9 99.3 151 - 9 30 - 190 180
6 94.4 98.8 130 250 8 19 - 407 420
7 98.3 99.0 95 - 11 10 - 116 360
8 96.9 97.9 81 326 11 9 - 427 420
9 99.5 99.8 100 - 14 7 - 121 360
10 99.1 99.7 87 - 14 7 - 108 420
11 98.2 98.5 90 - 13 7 - 110 360
12 93.0 92.7 101 483 13 13 - 610 420
13 98.8 99.5 110 - 15 5 - 131 360
14 97.7 99.1 87 573 16 9 - 685 420
15 98.6 99.2 71 - 14 10 - 95 360
Tot. (98.0) 1,524 | 2,076 168 178 540 | 4,489 5,700

Acc. G records the classifier prediction accuracy (with no post-process), Acc. P, with postprocessing. The
average prediction accuracy (post-processed), excluding the first manually labelled scan, is 98%.

4.6 Classifier Generalization Test

To determine if there is much “transferability” between scanning campaigns, we took the classifier generated
from the full Songo Mnara data set and used this to classify all the Montelupo scans. As Supplementary Figure A.1
shows, the initial scan is badly misclassified, but the classifier recovers as it adds more data from the Montlupo
campaign. However, the recovery can be attributed to the new data from Montelupo overwhelming the original
Songo Mnara training data, as shown by the very large number of training samples added in the first scan. There
is one notable change: the Songo Mnara training data contains many scanning positions close to walls, so the
Montelupo scan that caused a large drop in performance—see Figure A.7(b)—is handled much better using the
mixed classifier. Nonetheless, the slightly lower classification accuracy coupled with the the greatly increased
training times suggest that it is better to develop a classifier per scanning campaign, as we originally proposed.

4.7 System vs Expert User

In an attempt to gauge real-world performance, we present timings produced by our system (using ground-truth
labels) and timings produced by an expert user with 15 years of experience in cleaning cultural heritage scans. In
total, 15 scans from a new Roman site, Bagni di Nerone—see Table 2—were cleaned using the MeshLab software
tool [7].

The expert user times were estimated by the cleaner based on a job start/end timer. Timings do not include
loading/saving times. To avoid unnecessary processing, we imposed a constraint whereby classifier retraining,
using all the accumulated features since the last retrain, only occurs when the scan classification accuracy (with
no post-processing) falls below 98%. This reduced the number of training iterations from 15 to 8 while retaining
reasonable results. The classification images are shown in Figures A.11 and A.12.

Table 7 shows the timings obtained when the scans are classified by our system and the expert user. The
“Acc. G” column reports the prediction accuracy, with no post-processing, which is used to determine if a new
retraining cycle is required. The final post-process prediction accuracy is listed under “Acc. P.” The average
(post-processed) prediction accuracy, excluding the initial labelled scan, is 98%.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning - 16:27

We included the original estimated cleaning time for scan 1, since this is required to bootstrap the classifier.
The “Edit” column in the table should indicate the time required to clean the misclassified points in the remaining
scans; since we do not have these, we have not reported any numbers here. Instead, we compare the total system
time for all processing, excluding editing, and the times reported by the expert user. As the table indicates, the
non-editing processing time is about 20mins less than the expert user. This means that 20mins are available to
clean the remaining 14 scans, after prediction, before the semi-automated system and expert user times match.
Since the number of misclassified points is small and captures many small discard regions such as railing posts
and trees correctly, this task seems achievable. Furthermore, when the misclassifications are large, they are fairly
smooth blobby regions that could be easily selected with a lasso or similar selection tool. While the average scan
cleaning time was more than 6mins for the expert, this included full scan cleaning with no assistance. It is also
important to note that if the random forest is parallelised, then the processing time for classification and training
could shrink by up to 28mins in this example, assuming a four-core CPU (which is fairly standard on modern
PCs). This would allow 48mins for the user to to correct 14 scans, which would be much easier to achieve.
Additional processing time optimization, such as reducing feature compute times, could also be implemented.

5 CONCLUSION

Point-cloud cleaning is a tedious and time-consuming part of the processing pipeline used to transform data
from a terrestrial laser scanner into a useful 3D model. The problem is exacerbated when many scans have to
be cleaned, since a large and complex scan may require more than 30mins to clean. Clearly, any system that can
reduce this time will help to accelerate the scan-processing work-flow. In this article, we introduce a framework
that seeks to use machine learning to semi-automate the process of point-cloud cleaning with a focus on applica-
tions in the cultural heritage domain. The heritage structures encountered in the CH domain vary dramatically,
as do the environments around them. This makes the application of machine learning challenging, since there
is little general consistency across data sets. Instead of trying to learn a general cleaning classifier, we develop
an approach that incrementally learns a Random Forest classifier for a given campaign, requiring only a single
cleaned scan to start. The classifier refines over time, by noting the kinds of points it has misclassified before,
based on feedback gathered as the user corrects mislabelled points. A weighting scheme based on the confi-
dence assigned to incorrect points is used to nudge the classifier towards better prediction of problematic point
structures. To further reduce user effort, a post-process is applied to the classified output by treating the point
cloud as a 2D “classification” image and attempting to reduce small isolated or inconsistent point predictions.
This exploits the natural raster scan order in which 3D points are acquired and uses information on local depth
discontinuity to reassign point labels.

The results show that this approach consistently produces classified point clouds, across a variety of scanning
campaigns, in which, on average, most points are correctly assigned as keep/discard. Furthermore, as desired,
the number of small mislabeled components is greatly reduced compared to using the classifier alone. While the
processing times can be significantly improved, as noted in this article, optimization of the method was not the
focus of this investigation. Nonetheless, an informal cleaning experiment is presented that shows that even in
its unoptimized state, the proposed framework results in a potential time-saving over a fully manual cleaning
process when compared to an expert user.

5.1 Future Work

The system can be improved in several ways. The simplest improvement is the parallelisation of the RF classifier.
This is a matter of finding a better ML library or layering OpenMP on top of the implementation provided by
OpenCV. The more important areas to be addressed are:

Scalability: The main bottleneck at the moment is the potentially unbounded growth of the training set for the
RF classifier. While this growth should be slow for consistent data, sometimes it grows more quickly than we

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

16:28 « P. Marais et al.

anticipated, leading to slow training times. A possible solution is to resample the training sets when it exceeds a
given size by randomly choosing a smaller number of samples for each set. Each sample would retain the weight
it was allocated earlier in the training. Extensive testing would be needed to assess the impact of this change on
prediction accuracy.

Consistency: A problem we highlighted earlier was the tension between labelling and modelling decisions when
choosing points to discard. A possible solution, easy to accommodate in the work-flow, is to have the user—once
a prediction has been presented—select points that should NOT be considered when retraining the classifier.
These points will be ignored when determining point classification errors, but the user can reassign them if
desired, ensuring that the classifier solves only the labelling problem.

Aligned datasets: While we did not require an alignment among the scans, this information, if present, could
be successfully exploited to improve the convergence of the classifier; for example, we could transfer the classi-
fication of samples from a scan into other ones according to their distance. This could allow the user to work on
only a few scans and have the whole dataset automatically cleaned.

Improved smoothing: The heuristic approach we used to smooth the classification image appears to work
fairly well, given the limited and complex data we have available per pixel. Nonetheless, it would be interesting
to see whether a carefully crafted CRF/MRF could be used to further improve the quality of the final classification
image.

It would also be interesting to try other classifiers, with the caveat being that they need to train and predict
quickly enough to ensure the system remains useful. Additional features could be explored, including image-
based features based on texture, since these may be less subject to colour or intensity return variations. Although
adding features will generally increase training time, a detailed analysis of feature importance could determine
which features in the extended set are truly useful and a smaller, but information dense, set of features could be
determined. Finally, it would be interesting to see how well the framework functions when applied to non-CH
scanning campaigns.

ACKNOWLEDGMENTS

Finally, we would also like to thank the following groups for access to their point-cloud data:

e Em.-Prof. Heinz Riither and the Zamani Project (http:// www.zamaniproject.org/) for Songo Mnara;

e Visual Computing Group at CNR-ISTI (Pisa) for the data sets: Montelupo, Bagni di Nerone, Church, Mon-
ument, Stairs and Signoria;

e Stefan Lindgren from HumLab, University of Lund, for the Ballcourt data set.

REFERENCES

[1] GustavoE. A.P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. 2004. A study of the behavior of several methods for balancing
machine learning training data. ACM SIGKDD Explor. Newslett. 6, 1 (2004), 20-29.

[2] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms and Applications
(3rd ed.). Springer-Verlag TELOS, Santa Clara, CA.

[3] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., Secaucus, NJ.

[4] Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. Patt. Anal.
Machine Intell. 23, 11 (2001), 1222-1239.

[5] Leo Breiman. 2001. Random forests. Machine Learn. 45, 1 (2001), 5-32.

[6] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. 2018. DeepLab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Patt. Anal. Machine Intell. 40, 4 (2018), 834-838.

[7] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: An
open-source mesh processing tool. In Proceedings of the 6th Eurographics Italian Chapter Conference. 129-136. http://veg.isti.cnr.it/
Publications/2008/CCCDGR08.

[8] David Doria and Richard J. Radke. 2012. Filling large holes in lidar data by inpainting depth gradients. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’12). IEEE, 65-72.

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

http://www.zamaniproject.org/
http://vcg.isti.cnr.it/Publications/2008/CCCDGR08
http://vcg.isti.cnr.it/Publications/2008/CCCDGR08

(9]

[29]
(30]
(31]

(32]

(33]

Semi-automated Cleaning of Laser Scanning Campaigns with Machine Learning - 16:29

J. Elseberg, D. Borrmann, and A. Nichter. 2011. Full wave analysis in 3D laser scans for vegetation detection in urban environments.
In Proceedings of the 23rd International Symposium on Information, Communication and Automation Technologies. 1-7. DOI : https://doi.
org/10.1109/ICAT.2011.6102101

Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D. Wegner, Konrad Schindler, and Marc Pollefeys. 2017. Semantic3D. net: A new
large-scale point cloud classification benchmark. Retrieved from arXiv preprint arXiv:1704.03847.

Timo Hackel, Jan D. Wegner, and Konrad Schindler. 2016. Fast semantic segmentation of 3D point clouds with strongly varying density.
ISPRS Ann. Photogram., Remote Sens. Spatial Inform. Sci. 3, 3 (2016).

Jungong Han, Ling Shao, Dong Xu, and Jamie Shotton. 2013. Enhanced computer vision with Microsoft Kinect sensor: A review. IEEE
Trans. Cyber. 43, 5 (2013), 1318-1334.

Alexander Hermans, Georgios Floros, and Bastian Leibe. 2014. Dense 3D semantic mapping of indoor scenes from RGB-D images. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’14). IEEE, 2631-2638.

Jing Huang and Suya You. 2016. Point cloud labeling using 3D convolutional neural network. In Proceedings of the 23rd International
Conference on Pattern Recognition (ICPR’16). IEEE, 2670-2675.

Juha Hyypp4, Anttoni Jaakkola, Yuwei Chen, and Antero Kukko. 2013. Unconventional lidar mapping from air, terrestrial and mobile.
In Proceedings of the Photogrammetric Week Conference. 205-214.

Byung-soo Kim, Pushmeet Kohli, and Silvio Savarese. 2013. 3D scene understanding by Voxel-CRF. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV’13). IEEE, 1425-1432.

J. Kisztner, J. Jelinek, T. Danék, and J. Ruzicka. 2016. 3D documentation of outcrop by laser scanner—Filtration of vegetation. Perspect.
Sci. 7 (2016), 161-165. DOI : https://doi.org/10.1016/.pisc.2015.11.026

Hema S. Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Saxena. 2011. Semantic labeling of 3D point clouds for indoor
scenes. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 244-252.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In
Proceedings of the Conference on Advances in Neural Information Processing Systems. 1097-1105.

Rickert Mulder and Patrick Marais. 2016. Accelerating point cloud cleaning. In Proceedings of the 14th Eurographics Workshop on Graph-
ics and Cultural Heritage (GCH’16). Eurographics Association, 211-214. DOI : https://doi.org/10.2312/gch.20161410

Daniel Munoz, Nicolas Vandapel, and Martial Hebert. 2008. Directional associative Markov network for 3-D point cloud classification.
In Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission.

Guan Pang and Ulrich Neumann. 2013. Training-based object recognition in cluttered 3D point clouds. In Proceedings of the International
Conference on 3D Vision (3DV’13). IEEE, 87-94.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. Pointnet: Deep learning on point sets for 3D classification and
segmentation. Proc. Comput. Vis. Patt. Recog., IEEE 1, 2 (2017), 4.

Heinz Riither, Christoph Held, Roshan Bhurtha, Ralph Schroeder, and Stephen Wessels. 2012. From point cloud to textured model, the
Zamani laser scanning pipeline in heritage documentation. South African J. Geomat. 1, 1 (2012), 44-59.

Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof. 2009. On-line random forests. In Proceedings of the
12th IEEE International Conference on Computer Vision Workshops (ICCV°09). IEEE, 1393-1400.

Richard Socher, Brody Huval, Bharath Bath, Christopher D. Manning, and Andrew Y. Ng. 2012. Convolutional-recursive deep learning
for 3D object classification. In Adv. Neural Inform. Proc. Syst. 656—-664.

Rudolph Triebel, Kristian Kersting, and Wolfram Burgard. 2006. Robust 3D scan point classification using associative Markov networks.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA06). IEEE, 2603-2608.

Julien Valentin, Vibhav Vineet, Ming-Ming Cheng, David Kim, Jamie Shotton, Pushmeet Kohli, Matthias Niessner, Antonio Criminisi,
Shahram Izadi, and Philip Torr. 2015. SemanticPaint: Interactive 3D labeling and learning at your fingertips. ACM Trans. Graph. 34, 5,
Article 154 (Nov. 2015), 17 pages. DOI : https://doi.org/10.1145/2751556

Martin Weinmann, Boris Jutzi, Stefan Hinz, and Clément Mallet. 2015. Semantic point cloud interpretation based on optimal neighbor-
hoods, relevant features and efficient classifiers. ISPRS . Photogram. Remote Sens. 105 (2015), 286—-304.

Daniel Wolf, Johann Prankl, and Markus Vincze. 2015. Fast semantic segmentation of 3D point clouds using a dense CRF with learned
parameters. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’15). IEEE, 4867-4873.

Jingyu Yang, Ziqiao Gan, Kun Li, and Chunping Hou. 2015. Graph-based segmentation for RGB-D data using 3-D geometry enhanced
superpixels. IEEE Trans. Cyber. 45, 5 (2015), 927-940.

Na-Eun Yang, Yong-Gon Kim, and Rae-Hong Park. 2012. Depth hole filling using the depth distribution of neighboring regions of depth
holes in the Kinect sensor. In Proceedings of the IEEE International Conference on Signal Processing, Communication and Computing
(ICSPCC’12). IEEE, 658-661.

Zhi-Hua Zhou and Ji Feng. 2017. Deep forest: Towards an alternative to deep neural networks. Retrieved from arXiv preprint
arXiv:1702.08835.

Received March 2018; revised October 2018; accepted November 2018

ACM Journal on Computing and Cultural Heritage, Vol. 12, No. 3, Article 16. Publication date: June 2019.

https://doi.org/10.1109/ICAT.2011.6102101
https://doi.org/10.1109/ICAT.2011.6102101
https://doi.org/10.1016/j.pisc.2015.11.026
https://doi.org/10.2312/gch.20161410
https://doi.org/10.1145/2751556

