
Pacific Graphics 2019
C. Theobalt, J. Lee, and G. Wetzstein
(Guest Editors)

Volume 38 (2019), Number 7

High Dynamic Range Point Clouds for Real-Time Relighting

Manuele Sabbadin1 , Gianpaolo Palma1 , Francesco Banterle1 , Tamy Boubekeur2, Paolo Cignoni1

1Visual Computing Lab - ISTI CNR, Pisa, Italy
2Telecom Paris, Institut Polytechnique de Paris & Adobe

LDR Point
Cloud

HDR Photo

HDR Expansion
Section 4

HDR Point
Cloud

BSH Construction
Section 5.1

3D Model

Final Rendering
Section 5.3

Microbuffer Rendering
Section 5.2

BSH Cut

Mipmapped G-Buffer

BRDF DepthNormal

Microbuffer

Figure 1: Our relighting framework can be split into two parts: the preprocessing of the LDR point cloud and the real-time PBGI rendering
of a 3D model inside the acquired environment. In the preprocessing step, our algorithm expands the dynamic range of the point cloud
using an input HDR photo (the inset shows the difference map from the LDR version) and computes the BSH to use in the following PBGI
algorithm. The proposed PBGI algorithm takes advantage of the computation capabilities of the Geometry Shader and of a new mipmapping
operator for the G-Buffer to speed-up the computation of the micro-buffers of each pixel of the viewport. Finally, the collected micro-buffers
are convolved by the BDRF of each unprojected pixel to render the final image.

Abstract
Acquired 3D point clouds make possible quick modeling of virtual scenes from the real world. With modern 3D capture pipelines,
each point sample often comes with additional attributes such as normal vector and color response. Although rendering and
processing such data has been extensively studied, little attention has been devoted using the light transport hidden in the
recorded per-sample color response to relight virtual objects in visual effects (VFX) look-dev or augmented reality (AR) sce-
narios. Typically, standard relighting environment exploits global environment maps together with a collection of local light
probes to reflect the light mood of the real scene on the virtual object. We propose instead a unified spatial approximation of
the radiance and visibility relationships present in the scene, in the form of a colored point cloud. To do so, our method relies
on two core components: High Dynamic Range (HDR) expansion and real-time Point-Based Global Illumination (PBGI). First,
since an acquired color point cloud typically comes in Low Dynamic Range (LDR) format, we boost it using a single HDR photo
exemplar of the captured scene that can cover part of it. We perform this expansion efficiently by first expanding the dynamic
range of a set of renderings of the point cloud and then projecting these renderings on the original cloud. At this stage, we
propagate the expansion to the regions not covered by the renderings or with low-quality dynamic range by solving a Poisson
system. Then, at rendering time, we use the resulting HDR point cloud to relight virtual objects, providing a diffuse model of the
indirect illumination propagated by the environment. To do so, we design a PBGI algorithm that exploits the GPU’s geometry
shader stage as well as a new mipmapping operator, tailored for G-buffers, to achieve real-time performances. As a result, our
method can effectively relight virtual objects exhibiting diffuse and glossy physically-based materials in real time. Furthermore,
it accounts for the spatial embedding of the object within the 3D environment. We evaluate our approach on manufactured
scenes to assess the error introduced at every step from the perfect ground truth. We also report experiments with real captured
data, covering a range of capture technologies, from active scanning to multiview stereo reconstruction.

CCS Concepts
• Computing methodologies→ Computer graphics; Rendering; Rasterization; Image processing; Point-based models; Mixed
/ augmented reality;

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-7994-1046
https://orcid.org/0000-0002-1032-2092
https://orcid.org/0000-0002-6374-6657
https://orcid.org/0000-0002-2686-8567

M. Sabbadin et al. / HDR Point Clouds for Relighting

1. Introduction

Relighting a virtual 3D object in the context of a real scene is a chal-
lenging but mandatory process for the realistic integration of digi-
tal assets in augmented reality (AR) applications. One of the main
steps of such a process consists of shading the virtual object with
a model of the lighting that is as close as possible to the real light
field of the scene. Currently, this model takes typically the form
of one or several High Dynamic Range (HDR) environment maps,
reconstructed from several photos or videos of the scene and used
as infinitely distant light emitters [ZL17, RPAC17]. Although effi-
cient at approximating incoming light in outdoor environments, this
Image-Based Lighting (IBL) falls short when nearby light transport
effects and visibility relationships cannot be ignored. Scenarios as
simple as moving an object in a corridor reveals the lack of di-
mensionality of a 2D map quickly when used as a substitute for
the ideal – but intractable – plenoptic light field. Eventually, one
needs to represent the scene’s lighting in three dimensions, with a
lighting model that can capture (dis)occlusion events when mov-
ing the object in 3D space. Interestingly, numerous technologies
exist for quick and automatic acquisition of large 3D point clouds
of environments, either using low budget hardware such as RGB-
Depth cameras (Microsoft Kinect, Intel RealSense, StructureSen-
sor, etc.) [WSG∗16, DNZ∗17] or even simple RGB cameras to-
gether with multiview reconstruction algorithms [SF16]. These de-
vices provide a dense sampling of the 3D scene, where each sample
carries several attributes (e.g., position, normal vector and color).
Assuming a diffuse scene, we can use the colored point cloud as
an approximate radiance cache and computing its reflection on a
virtual object ends up effectively relighting it.

Starting from this observation, we propose a framework to re-
light virtual objects in real time using a 3D point sampling of a real
scene (Fig. 1). To do so, we address the two main challenges in-
duced by the use of a point cloud as a relighter. First, as captured
colored point clouds typically come in Low Dynamic Range (LDR)
format, we propose a new method to reconstruct an HDR colored
point cloud from an LDR one using a single representative HDR
image of the scene. Second, at rendering time, we need to solve, in
real time, for the visibility between the point cloud and the virtual
object. In particular, given a location on the virtual object, we seek
for the visible subset of the point cloud that should be considered
to shade it. We address this problem by developing a new variant of
the Point-Based Global Illumination (PBGI) algorithm. Combined
with IBL for distant direct illumination and screen-space reflections
for local color bleeding, our approach provides a convincing real-
time solution for a collection of AR scenarios such as games, visual
special effects previz, and computer-aided design.

Contributions. The paper presents two complementary contribu-
tions:

• a method to expand the dynamic range of a colored 3D point
cloud using a single HDR photograph covering a small part of
the environment and without any calibration data; i.e., without
the estimation of the intrinsic and extrinsic camera parameters;
• a rendering pipeline inspired from the PBGI algorithm that can

shade virtual objects using the HDR point cloud in real time,
exploiting the Geometry Shader stage to traverse a spatial hi-
erarchy, indexing the point cloud, efficiently and introducing a

G-Buffer mipmapping mechanism to speed-up the indirect visi-
bility determination.

We report experiments conducted with our framework on captured
and synthetic data to perform ground truth comparisons. We eval-
uate each stage of our framework individually by comparing the
output of the proposed HDR expansion algorithm numerically and
measuring the differences introduced by the HDR point cloud in the
rendering. We also report an exhaustive performance analysis of the
proposed PBGI algorithm, illustrating its use in an AR application
scenario where the rendering of the object is composited with the
original media used for the acquisition of the point cloud (Fig. 11).
In our framework, we never "render" the HDR point cloud but use
it as a radiance cache for relighting virtual objects.

2. Related Work

2.1. Inverse Tone Mapping

Inverse/reverse tone mapping operators (ITMOs/RTMOs)
[RWP∗10, BADC17] expand the dynamic range of LDR im-
ages/videos to obtain content that can be employed in HDR
applications such as HDR visualization or Image-Based Light-
ing [Deb98]. Typically, they can be classified into three main
classes: global, expand map-based, and user-based. A global
ITMO expands the dynamic range of LDR content using a
per-pixel function, such as a linear scale [AFR∗07] or power
function [Lan02, MSG15], with global statistics. Expand map-
based operators [BLDC06, RTS∗07, KO14] increase the dynamic
range using a global function (i.e., linear, inverse sigmoid, etc.)
that varies locally using an expand map (i.e., a map with values
in [0,1]), which controls the areas need to be expanded and
the relative intensity. Finally, user-based operators expand the
dynamic range of LDR content with user inputs such as classifying
areas [DMHS08] or cloning details from well-exposed areas into
under-exposed and over-exposed regions [WWZ∗07]. Recently,
deep learning has been employed with success for expanding
LDR content [EKD∗17, EKM17, ZL17, MBRHD18]. However,
these approaches are not straightforward to apply to point clouds
because large training sets (i.e., point clouds with HDR color data)
are challenging to acquire and there are very few publicly available
datasets. A general framework for enhancing (including dynamic
range) videos using reference photos was proposed by Baht et
al. [BZS∗07]. Starting from a set of reference photos of the entire
scene, the framework requires Structure-from-Motion and a dense
Multi-View Stereo to transfer the details in the video. In our case,
we have only a single HDR input photo to reduce acquisition time
with a lightweight framework without camera calibration.

2.2. Point Based Global Illumination

For a survey on real-time global illumination methods, we refer the
reader to the state-of-the-art report by Ritschel et al. [RDGK12]
and to the work of Silvennoinen and Lehtinen [SL17] for a recent
overview. In our context, working with dense point clouds naturally
led us to adopt the Point-Based Global Illumination framework.
Introduced by Christensen [Chr08], who built upon surfel-based
ambient occlusion [Bun05] and LightCuts [WFA∗05], the PBGI

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

algorithm generalizes the idea of z-buffered rasterization in a 2-
step process. At caching time, the 3D scene is densely sampled, the
sample set is shaded and a multiresolution structure, e.g., bound-
ing sphere hierarchy or octree, is generated over it. At rendering
time, for each receiver, e.g., unprojected final image pixel, (i) a
so-called micro-buffer (a low resolution color+depth hemispherical
buffer aligned to the shaded point normal) is generated, (ii) an adap-
tive light cut is searched in the PBGI tree, and (iii) the retrieved cut
nodes are splatted into the micro-buffer, solving for visibility using
the depth component. The final receiver response, e.g., pixel color,
then sums the convolution of its micro-buffer by its BRDF with
its direct illumination response. This algorithm is free from noise,
accounts for long-range indirect lighting and reproduces an impor-
tant subset of GI effects. Its evolutions demonstrate high scalability
for parallel architectures [REG∗09, HREB11] and out-of-core ex-
ecution [Tab12], robustness to compression [BB12] and factoriza-
tion [WHB∗13], the ability, to a certain extent, to cope with non-
diffuse effects [WMB15], and scalability to render complex scenes
from a very large number of viewpoints [KBLE19]. Our key obser-
vation is that a 3D scanning colored point cloud already provides
the input of a PBGI tree avoiding the significant amount of work
requested at caching time. At the same time, its 3D spatial em-
bedding allows accounting for near-field effects and local visibility
relationship when used to relight a virtual object.

2.3. Relighting

Relighting synthetic objects using natural real-world lighting (e.g.,
HDR environment maps) is an important topic in computer
graphics, sparking a vast literature from the seminal work on
IBL [Deb98]. Over the years, researchers have worked on different
subtopics: increasing the realism of classic IBL to have local effects
(e.g., local shadows, shading, and caustics) by densely sampling the
environment [UKL∗13], editing the lighting [Pel10, BCD∗13], in-
serting virtual objects in single photographs [KHFH11, KSH∗14,
GSY∗17, HSH∗17] or in a single RGB-D frame [XLL∗18]. Many
methods are limited to the portion of the scene which is visible in
the photograph. They are based on the extraction of the most im-
portant light sources, visible or invisible, ignoring the lighting con-
tribution of the other part of the scene, that can be critical for the
lighting of, e.g., glossy objects. Moreover, these methods focus on
the estimation of the lighting environment, relying on a final ren-
dering, based on ray tracing, that does not aim at real-time perfor-
mance. For a complete overview of this topic, we point the reader
to the survey by Kronander et al. [KBG∗15].

Research more focused on our work is MR360 by Rhee et
al. [RPAC17], an interactive mixed reality system based on an LDR
360 panoramic video. They employed a simple inverse tone map-
ping operator to enhance the LDR panoramic video reproducing
only lighting effects due to directional lights. Zhang et al. [ZCC16]
presented a system for capturing scenes using RGBD scanners
tailored for emptying and refurnishing indoors. Starting from an
RGBD scan, it produces a scene model of the empty room, its light-
ing emitters, and its materials. Although they integrate a set of LDR
photos with auto-exposure, the method cannot return the entire dy-
namic range of the scene. Finally, Whelan et al. [WSG∗16] in-
troduced ElasticFusion, a real-time dense visual SLAM algorithm

with the estimation of the position of the main light sources ex-
ploiting the scene’s geometry and specular regions. This estimation
makes possible the insertion and rendering, with coherent lighting,
of synthetic objects in augmented reality applications.

3. Algorithm Overview

Our goal is the real time relighting of a virtual object inside a real
scene using an acquired colored point cloud of the environment.
The inputs of our method are (i) PLDR, the colored point cloud of
the environment, (ii) IHDR, an HDR photograph of a representative
portion of the scene free from registration (intrinsic and extrinsic
camera parameters are unknown), and (iii) O, the 3D polygon mesh
of the object to relight equipped with material properties. PLDR can
be acquired automatically using inexpensive hardware such as an
RGBD camera [DNZ∗17], or with a simple RGB camera together
with a multiview stereo software [SF16]. Since the output clouds of
these devices come with LDR color data, the first component of our
framework is a procedure designed to expand the dynamic range
of the overexposed regions of PLDR using IHDR (Sec. 4). Then, at
rendering time, the resulting HDR point cloud PHDR is used for
relighting the 3D model of the virtual object O using the second
component of our framework: a new PBGI algorithm bootstrapped
directly from PHDR and designed to achieve real-time performance
(Sec. 5). Fig. 1 shows an overview of the proposed algorithm.

4. HDR Expansion of Point Clouds

To expand the dynamic range of PLDR, we assume that IHDR pro-
vides a representative distribution of the dynamic range in the 3D
scene, acquiring some of the overexposed areas. We do not esti-
mate the intrinsic and extrinsic camera parameters to align IHDR
to the point cloud, making the capture process easy, since IHDR
can be taken completely independently of PLDR. For the same rea-
son, we do not calibrate the response function of the acquisition
devices, but we remove only the gamma correction from the input
images and point clouds assuming γ = 2.2. To inject the dynamic
range of IHDR in PLDR, we propose a new algorithm (Alg. 1) which
leverages an efficient matching method running in 2D and propa-
gate the dynamic expansion to the entire 3D point cloud. In the first
step (Sec. 4.1), we extend the dynamic range of a set S of LDR
renderings of PLDR using a randomized matching method before
backprojecting the resulting HDR images on PLDR. In the second
step (Sec. 4.2), we fill the missing or corrupted HDR values in the
gradient domain, yielding PHDR.

Algorithm 1 Point Cloud HDR Expansion

Input: LDR point cloud PLDR, HDR photo IHDR
Output: HDR point cloud PHDR

1: S← CREATELDRRENDERINGS(PLDR)

2: ILDR← FINDBESTEXPOSURE(IHDR,PLDR)

3: P∗
HDR← PLDR

4: for all Si ∈ S do
5: NNFi← GENERALIZEDPATCHMATCH(Si, ILDR)

6: SHDRi ← HDRMAPPING(NNFi, IHDR)

7: P∗
HDR← PROJECT(SHDR)

8: PHDR← GRADIENTDOMAININFILLING(P∗
HDR)

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

4.1. HDR Expansion and Backprojection

In this step, we want to estimate the HDR data in the overexposed
regions of a set of unlit LDR renderings S of PLDR. The render-
ings have to be taken from reasonable points of view so that they
cover as much as possible the overexposed areas of the scene. Even
if there exist solutions to extract these points of view automati-
cally [DBGBR∗14], we merely proceed manually, letting the user
navigate the scene and generate freely S (Alg. 1 line 1). We per-
form the actual rendering by point splatting PLDR onto 1024×1024
viewports, storing the camera matrix for future backprojection
needs.

In the next stage, we seek an LDR version ILDR of IHDR with
an exposure as close as possible to the one used for the color ac-
quisition in PLDR, so that ILDR can act as a good indirection to re-
late IHDR and PLDR (Alg. 1 line 2). We proceed by looking for the
best exposure value e that minimizes the Wasserstein distance W
between the histogram H of PLDR and the histogram H of ILDR,
resulting from a simple tone-mapping of IHDR based on the ap-
plication of the exposure e and a simple clamping operation (see
Eq. 2). Computing the histograms on the luminance channel of the
XYZ color space using 128 bins, we set the following minimization
problem:

argmin
log2(e)∈[a,b]

W(H(PLDR),H(ILDR(e))) (1)

ILDR(e) = clamp(e · IHDR,0.0,1.0). (2)

We find the solution of Eq.1 with a simple iterative procedure,
where at each step we sample uniformly (100 samples) the log-
space of the exposure range [a,b], and we select the exposure value
that produces the minimum Wasserstein distance. At each iteration,
we half the range search, centering it around the exposure value se-
lected in the previous one. We iterate the procedure until conver-
gence i.e., the error does not decrease or a maximum number of
iterations has been reached (10 in practice). We initialize the whole
process using the exposure range [a,b] of the images retrieved us-
ing the exposure fusion operator [MKR07] on IHDR. As a result, we
obtain ILDR with a color range that is closer to PLDR, increasing the
performance of the upcoming matching process.

Then, we expand the dynamic range of each rendering in S with
IHDR through ILDR, without any calibration data. We propose a
new alternative strategy to the state-of-the-art inverse tone map-
ping solutions, that our experiments proved to be more robust to
the incomplete and noisy nature of a point cloud (see Sec. 6.2 for
a comparison). In particular, we run the generalized PatchMatch
algorithm [BSGF10] between each rendering Si and ILDR, leverag-
ing its robustness to rotation and scale due to a multi-resolution
approach (Alg. 1 line 5). For each pixel in Si, we compute the off-
set in ILDR to retrieve the most similar patch, defining the nearest
neighbor field (NNF), and a quality field as the Sum of Squared Dif-
ferences (SSD) between patches. Then we use the (LDR-defined)
NNF to fetch HDR values from IHDR and substitute LDR values
in Si, yielding expanded HDR renderings (Alg. 1 line 6). Note that
the matching procedure can create blurry images Si due to the size
of the patches. This effect is indeed not a problem for our frame-
work, because we are interested in the global distribution of the real
radiance in the point cloud to obtain a coherent object relighting.

Finally, we backproject the expanded HDR values from Si to
the point cloud, using the camera matrix stored for each image Si
(Alg. 1 line 7). We consider only over-exposed areas, i.e., points
with an original LDR luminance above the threshold tl = 0.9 where
the camera sensor starts to acquire poorly, as shown in [RTS∗07].
For all the other points, we assign the original LDR color as HDR
color assuming that the input point cloud was acquired with a rea-
sonable exposure, as is usual for video acquisition devices. Since
over-exposed areas have the dominant contribution during relight-
ing, we expand these regions only, leaving unchanged the under-
exposed ones. For points visible in more renderings, we compute
a weighted average of the candidate HDR values, using the qual-
ity field to weight more heavily candidates with a low SSD. In the
backprojection, we apply the exposure value computed for gener-
ating ILDR to align the black values of IHDR to PLDR. This avoids
abrupt color/luminance changes near the boundary between regions
with the original LDR color and regions with the projected HDR
color.

Our HDR expansion can run in two distinct modes by either
extending the luminance range or the entire color from IHDR. In
the latter case, the overexposed areas remain closer to the original
ones instead of leaning toward boosted whites, which is instrumen-
tal when the acquisition hardware introduces chromatic color shift
artifacts. For instance, expanding only the luminance range is use-
ful when PatchMatch introduces artifacts due to colors in the point
cloud which are not present in the HDR image. Fig. 2 shows the
differences between both modes.

(a) LDR (b) HDR lum (c) HDR color (d) Ref.

Figure 2: Expanding the color as in (c) leads to results closer to the
ground truth (d) than expanding only the luminance (b). (a) shows
the rendering with the LDR point cloud.

4.2. Gradient-domain HDR Infilling

The output of the previous steps is a partially HDR point cloud
P∗HDR where some regions may lack valid HDR colors either be-
cause there are not visible in any rendering or because the 3D points
receive HDR colors with low confidence, detected by a high patch
error (SSD above a threshold th = 1 in all our experiments). There-
fore, we propose to reconstruct the full PHDR by propagating the
HDR color from valid neighbors in the gradient domain [PGB03]
(Alg. 1 line 8). Let Ω be the set of invalid HDR points, ∂Ω the set
of the points on the boundary of the target regions (with valid HDR
color), G the k-nearest neighbors graph of the points (in our experi-
ments we always use k = 16), Np the set of neighbors of the point p

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

in the graph G, H(p) and L(p) respectively the HDR and the LDR
color of the point p. The final HDR color H(p) for the points in Ω

is computed by solving a Poisson problem:

∀p ∈Ω |Np|H(p)−∑
q∈Np∩Ω

H(q) = ∑
q∈Np∩∂Ω

H(q)+∑
q∈Np

∇pq, (3)

where ∇pq is the local gradient of the LDR colors between the
points p and q defined as ∇pq = (L(p)− L(q)). Again, we can
propagate either the luminance only or the entire RGB color.
Fig. 3 shows a rendering of P∗HDR, the invalid area and PHDR af-
ter gradient-domain propagation.

Figure 3: After the projection of the HDR data to the point cloud
(left image), some points can miss HDR values or receive invalid
HDR color (magenta points in the center image) stemming from
low PatchMatch confidence. The image on the right shows the final
result, after the gradient-domain reconstruction.

5. Real-Time PBGI

We can now use PHDR to lit a synthetic object O using a new real-
time PBGI algorithm. Since PHDR already contains an approxima-
tion of the diffuse indirect lighting of the environment, we skip the
expensive shading caching phase of the PBGI and run the algorithm
directly from PHDR. Our method runs in three steps:

1. the construction of the bounding sphere hierarchy H structuring
PHDR, at loading time (Sec. 5.1),

2. the adaptive tree cut search in H to fill every per-pixel micro-
buffer (Sec. 5.2),

3. the convolution of the resulting micro-buffer by the pixel’s
BRDF, yielding the final pixel color value (Sec. 5.3).

To achieve real-time performance in the second step, our PBGI al-
gorithm exploits intensively the GPU geometry shading stage and
a new G-Buffer mipmapping mechanism. In this way, it alleviates
the main PBGI bottleneck, the pixel shading, where each pixel re-
quires filling a specific micro-buffer. In the following, after explain-
ing our implementation of the classical PBGI algorithm (Sec. 5.1
and 5.2), we will present our contributions: MIP-PBGI and Cross-
PBGI (Sec. 5.2.1).

5.1. Hierarchy Construction

We compute a Bounding Sphere Hierarchy (BSH) H of PHDR from
which per-receiver cuts will be gathered to fill micro-buffers at ren-
dering time. Using the data of all the points in the node, each inter-
nal node A stores the average color cA, the average position pA and
the radius rA of the bounding sphere, the bounding cone containing

the normal vectors (stored as direction ~nA and half cone aperture
αA), and two indices for the children nodes. A leaf node contains
the position, color, normal and radius. Alg. 2 shows the main steps
for the tree construction.

Algorithm 2 BSH Construction
Input: HDR point cloud PHDR
Output: Bounding Sphere Hierarchy H

1: V ← GETMORTONCODES(PHDR)

2: V∗← PARALLELSORT(V) (by [HKS09])
3: H← CREATELEAFNODES(V∗)
4: H← CREATEINNERNODES(H) (by [Kar12])
5: H← FILLINNERNODES(H)

6: H← PRUNING(H)

First, we voxelize the point cloud in its bounding box using a
64 bits Morton code and average the data for the cell containing
more than one point. Second, the resulting nodes are Morton-sorted
with the GPU method proposed by Ha et al. [HKS09], a parallel
prefix sums [HSO07]. Third, we create the inner nodes using the
algorithm of Karras et al. [Kar12]. Fourth, we propagate the leaves’
attributes to the inner nodes: the color is propagated as a simple
average of the children colors, while the position and the radius are
computed with an approximate smallest sphere [FGK03], forcing
the parent node always to contain its children. For the normal cone,
we use the algorithm by Barequet et al. [BE05] to compute the
minimum cone bounding a set of vectors. Finally, we prune the
hierarchy by collapsing the sub-trees containing points with similar
color and normal to speed up the visit of H at rendering time. In
all our experiments, we use the same pruning thresholds: a color
variance below tc = 0.01 and an average dot product of the normals
above tn = 0.98. As shown in Fig 4, the approximation introduced
by the pruning step is negligible in the final rendering.

Figure 4: Comparison of the renderings using the original BVH
(left) and the clustered version (center). On the right the map with
the probability to perceive differences between them computed with
HDR-VDP-2.2.

5.2. Micro-buffer Rasterization

At rendering time, we use H to gather, in real time, the incoming
radiance from the surrounding scene over each rasterized point of
O. To do so, we extend the concept of micro-buffers [REG∗09] with
a new mipmapping operator designed for the G-Buffer resulting
from the rasterization of O. The G-buffer contains, for each pixel
(i, j), the position pi j, the normal ~ni j and the material attributes
brdfi j of the rasterized object. Intuitively, the algorithm stores the
incoming radiance in a set of small environment maps, the micro-
buffers, one for each rasterized object point in the G-Buffer. The

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

(a) (b)

Figure 5: Visibility conditions for a BSH node used in the MIP-
PBGI. (a) A node is discarded if its normal cone is not facing the
view direction of the pixel. For instance, A is discarded by p2 but
not by p1. (b) The node is discarded when located outside the visi-
bility cone of the pixel . Here, A1 is inside the visibility cone of p j,
A2 is not.

incoming radiance is gathered from the nodes of H in the form of
the optimal tree cut w.r.t. the resolution of the micro-buffer and
the distance of the object point to the scene. The algorithm starts
the traversal of H from the root node A and decides between (i)
pursuing the visit on the children nodes, (ii) rasterizing the node
in the micro-buffer or (iii) discarding it because it is not visible
from the receiver. This decision depends on the solid angle Ω(A)
subtended by the node A and the solid angle Ω subtended by a
pixel (i, j) of the micro-buffer (from now on called m-pixel). More
precisely, Ω(A) is the solid angle of the cone stemming from the
3D location pi j of the pixel and the position pA of the node:

Ω(A) = 2π

(
1−

√
1− (rA/dist(A))2

)
, (4)

where dist(A) = ‖pA− pi j‖ and rA is the node radius. The solid
angle of each m-pixel is approximated as constant, subdividing the
solid angle of the hemisphere by the resolution of the micro-buffer.
If Ω(A)> Ω, we continue the visit in the children nodes, otherwise
we rasterize the node in the micro-buffer using a paraboloid map-
ping [HS98] along the direction ~ω = pA−pi j. Each m-pixel stores
the color of the rasterized node cA and the value dist(A) to perform
the depth test. The node A is discarded if its normal cone is not
facing the view direction of the considered point (see Fig. 5a)

−~ω ·~nA < cos(αA +π/2) . (5)

We refer to this version of the algorithm as "Classic PBGI".

5.2.1. MIP-PBGI and Cross-PBGI

To speed up the rendering time, we propose two new extensions
of PBGI: MIP-PBGI, a multiresolution approach based on a new
mipmapping operator for the G-Buffer; and Cross-PBGI (or X-
PBGI) which merges the MIP and Classic approaches. MIP-PBGI
parallelizes the traversal of H in a multi-resolution fashion follow-
ing two observations. As pointed out by Hollander et al. [HREB11],

the GPU Geometry Shader (GS) and the hardware Transform Feed-
back (TF) feature can be used to parallelize the visit of several
branches of the BSH for the same pixel, instead of executing a
depth-first visit in a single shader. The method works iteratively,
with the input of the current GS iteration stored in the TF buffer
by the previous GS iteration. The second observation by Wang
et al. [WHB∗13] points out that the BSH cuts gathered to fill
the micro-buffers end up to be very similar for receivers which
are close in position and normal. We further develop this idea by
traversing H using a mipmapped version of the G-buffer propos-
ing a new mipmapping operator for normal vectors (see Fig. 6).
Given an internal level i, for each pixel, we store the minimum
cone of directions (direction~n and half aperture angle γ) containing
the normals of all the pixels in the first level projected in that pixel
at level i. The cone is computed using the algorithm by Barequet et
al. [BE05].

Classic G-Buffer Cone
Difference

mipmap mipmap angle

10
24
×

10
24

51
2
×

51
2

25
6
×

25
6

Figure 6: Three mipmap levels of the normal data in the G-Buffer.
The first column shows the classical mipmapping. The second and
the third columns show the result of the new operator, respectively
the cone direction and the aperture of the cone. The last column
shows the differences between the two approaches computed as the
angle between the vectors. The main variations are near the depth
discontinuities.

Our MIP-PBGI (Alg. 3) starts by generating a buffer of indices
pairs which is sent to the GS, where each pair contains the index
of the root node of H and the index of a non-empty pixel in the
smaller mipmap level of the G-buffer. Let [Ak, p j]i the input pair
of the GS at level i of the mipmapped G-buffer and let Ω(p j) be
the solid angle of the normal cone stored in the pixel p j computed
as Ω(p j) = 2π(1− cosγ j). If i = 0, i.e., first mipmap level of the
G-buffer, the algorithm works as Classic PBGI. Otherwise, four al-
ternative paths occur: (i) to continue the visit of the BSH in the
children nodes; (ii) to continue the visit in the next mipmap level
of the G-buffer; (iii) to discard the node because not visible from
the receiver; (iv) to rasterize the current node in the micro-buffer
of the pixel. In particular, if the solid angle of Ak is greater than

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

Algorithm 3 MIP-PBGI - Geometry Shader

Input:
BSH H, mipmapped G-Buffer G, micro-buffer solid angle Ω

Pair [Ak, p j]i with node of H and pixel in the level i of G

1: Ω(Ak)← 2π(1−
√

1− (rAk/dist(Ak))2) . solid angle of Ak

2: ~ω← pAk −pp j

3: if i = 0 then . In the first G-buffer mipmap level
4: if −~ω ·~nAk < cos(αAk +

π/2) then . node not visible
5: DISCARD(Ak)
6: else if ¬ISLEAF(Ak) ∧ Ω(Ak) > Ω then

. continue in the Ak children
7: return {[LEFT(Ak), p j]0, [RIGHT(Ak), p j]0}
8: else
9: RASTERIZE(Ak)

10: else . In the next G-buffer mipmap level
11: Ω(p j)← 2π(1− cosγ j) . solid angle of p j normals cone
12: βAk ← arcsin (rAk/dist(Ak))

13: φAk ← arccos (~ω ·~np j)

14: if (−~ω ·~nAk < cos(αAk +
π/2)) ∧ (φAk −βAk > γp j + π/2) then

. node not visible
15: DISCARD(Ak)

16: else if ¬ISLEAF(Ak) ∧ Ω(Ak) > Ω(p j) then
. continue in the Ak children

17: return {[LEFT(Ak), p j]i , [RIGHT(Ak), p j]i}
18: else if ¬ISLEAF(Ak) ∧ Ω(Ak)≤ Ω(p j) then

. continue in the next mipmap level
19: return {[Ak, p j0]i+1, [Ak, p j1]i+1, [Ak, p j2]i+1, [Ak, p j3]i+1}
20: else
21: RASTERIZE(Ak)

the solid angle of the G-buffer pixel Ω(Ak) > Ω(p j), we continue
the visit in the children of Ak, pushing a new pair in the TF buffer
for each of them, with the same pixel. In the opposite case, i.e.,
Ω(Ak)≤Ω(p j), our algorithm keeps the same BSH node and con-
tinues the visit by generating four new pairs in the TF buffer, one
for each child of the pixel p j in the next mipmap level i+ 1. With
this procedure, the first part of the BSH visit is shared by neigh-
boring pixels in the G-Buffer. Using normal cones in the G-buffer
guarantees that all the nodes of H required to shade a pixel in the
lowest mipmap level are gathered. During the visit, a node is dis-
carded if its normal cone is not facing the normal of the pixel (Eq.
5) or if its view direction cone does not intersect the visibility cone
of the pixel (see Fig. 5b):

φAk −βAk > γp j +π/2, (6)

where βAk = arcsin
(

rAk
dist(Ak)

)
is half the aperture of the view di-

rection cone of Ak, defined by its distance from p j and its radius
rA, and φAk = arccos

(
~ω ·~np j

)
is the angle between the pixel’s nor-

mal cone direction ~np j and the direction ~ω that connects p j at the
center of Ak. Finally, when Ak is a leaf or the solid angle of the
node is smaller than the solid angle of the m-pixel (Ω(Ak) ≤ Ω),
we reached the first mipmap level and we rasterize the node into
the m-pixels covered by its visibility cone. During rasterization, we
compute a simple ray-plane intersection using the plane described
by the position and the direction of the normal cone of the node.

Our MIP-PBGI induces a significant speedup compared to Clas-
sic PBGI for large viewports with large micro-buffer, while for

small ones it has worse performance (see Fig. 10 and the addi-
tional material). Moreover, the allocation of the output buffer used
to store all primitives emitted by a GS iteration quickly becomes a
bottleneck even for low-resolution viewports. To solve these prob-
lems, we introduce X-PBGI where MIP-PBGI is used only until
Ω(Ak) > Ωtr, with a new threshold Ωtr > Ω. When this condition
is false, the algorithm refines further the cut of the input pair using
a depth-first search visit in a single shader, such as the classic ap-
proach. This hybrid version splits the visit of each pixel into several
shaders, each one acting on a different sub-tree of H. The choice of
an appropriate value for the threshold Ωtr speeds-up the algorithm
and reduces the memory usage. Experimentally, we noticed that the
threshold Ωtr = 32Ω provides the best trade-off between memory
and time in our scenes.

5.3. Micro-buffer Rendering

The output of the previous step is a texture filled with the micro-
buffers data. Each micro-buffer can be used to compute the fi-
nal pixel color by convolving it with the pixel’s BRDF model
brdf(~ωin,~ωout), using a quadrature numerical integration on the
discrete set of directions of the micro-buffer. The outcoming ra-
diance of the pixels along the view direction ~ωout is equal to:

Lout(~ωout) = ∑
i, j

[
brdf(~ωi j,~ωout)Ci j Ωi, j (~n ·~ωi j)

]
, (7)

where Ci j is the color response stored in the m-pixel, ~ωi j is the as-
sociated input direction, and Ωi, j is the solid angle of the m-pixel
(i, j) according to the paraboloid mapping. Since the input cloud
could have a non uniform point distribution or area with missing
data (especially for clouds generated by multi-view stereo recon-
struction), the micro-buffer can end up with many empty m-pixels
in extreme scenarios. To limit this issue, preserving real-time per-
formances, we optionally make the rasterization stopping criteria
"over conservative", using a threshold that is four times the solid
angle of the m-pixel (Ω(Ak) ≤ 4Ω). This translates into a larger
node coverage in the micro-buffer. Last, for the remaining empty
m-pixels, we set them to the average color of the entire cloud.

5.4. Implementation Details

We implemented our rendering algorithm in OpenGL 4.4 using GS
and TF capabilities and storing the BSH in a Shader Storage Buffer
Object. Each node encompasses the indices of the children node (2
unsigned int), the position (3 floats), the color (3 floats), the radius
(1 float) and the normal cone (encoded as an unsigned int in RGBA
color format, where the RGB channels code the cone direction and
the alpha the half aperture angle). Each node requires 40 bytes in
total. We store the micro-buffers in a 2D texture with size equal to
the viewport multiplied by the size of the micro-buffer. Each pixel
in the texture is a half float RGBA color, where the alpha channel
contains the depth values. The texture is read and written inside the
shaders using the Image Load/Store functionalities. Classic PBGI
visits the BSH for each pixel inside a single shader and does not
need additional memory. On the contrary, MIP-PBGI and X-PBGI
visit the BSH in an iterative and parallel way using the GS, together
with the TF to store the output of the GS, which are pairs of indices
(2 unsigned int). Each pair contains the index of a node of the BSH

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

ATRIUM DESK CORRIDOR OFFICE

P
M

A
T

C
H

L
U

M
L

D
R

Figure 7: Rendering results of the X-PBGI with the LDR point cloud (bottom) and with the cloud expanded with PMATCHLUM (top) in four
acquired real scenes. The 3D models, an airplane and a helmet, are equipped with a spatially varying Disney Principled BRDF.

and the Z-order index of the pixel in the G-Buffer. At each iteration,
the algorithm takes in input the output pairs of the previous itera-
tion and generates the new pairs by refining the visit in the BSH
or in the next level of the G-Buffer. The algorithm stops when the
output TF buffer is empty, which means that all the needed nodes
were rasterized in the micro-buffer. Finally, X-PBGI requires an
additional stream in the TF to store the pairs where the cut in the
BSH must be refined using Classic PBGI.

6. Results

We tested the proposed pipeline with different datasets comparing
the results of both the steps, HDR expansion (Sec. 6.2) and PBGI
rendering (Sec. 6.3), with state-of-the-art methods. We performed
our tests on a PC with an Intel i7-6700 CPU, 32GB of RAM, and
an NVIDIA GeForce GTX1080 GPU with 8GB of video memory.

6.1. Dataset

For our tests, we employed a set of point clouds obtained with dif-
ferent technologies (Tab. 1). The tested clouds are:

• SPONZA, SIBENIK and FIREROOM, a Monte Carlo point sam-
pling of three synthetic scenes after having baked the HDR dif-
fuse color response using path tracing;
• ATRIUM, BUILDING and KITCHEN, three scenes reconstructed

from a single HDR panoramic image with a user-assisted method
[BCD∗13] (with HDR color);
• CORRIDOR, a scene reconstructed with the multiview stereo

software COLMAP [SF16] using the 1065 video frames of a
walk in a corridor (with LDR color);

• OFFICE and DESK, scenes with several light sources acquired
with a Kinect using BundleFusion [DNZ∗17] (with LDR color);
• TOYROOM, a simple modeled room obtained with a Monte

Carlo sampling of the 3D model after having baked the LDR dif-
fuse color response using path tracing; this dataset is only used
to evaluate the new PBGI algorithm.

Regarding point clouds with HDR ground truth color data, the LDR
version was obtained by simply applying an exposure using Eq. 2.
The rendered objects present different BRDF data such as pure dif-
fuse, GGX [WMLT07], and Disney Principled [Bur12].

Points Shots HDR BSH N.Nodes N.Cluster
SPONZA 3.0M 3 180.5s 14.6s 6.0M 1.3M
SIBENIK 4.0M 2 185.3s 18.0s 8.0M 2.2M
FIREROOM 1.0M 1 56.1s 4.3s 2.0M 1.2M
ATRIUM 818k 1 50.4s 3.3s 1.6M 450K
BUILDING 871k 1 50.1s 4.3s 1.7M 125K
KITCHEN 1.25M 1 47.4s 5.5s 2.4M 440K
CORRIDOR 2.87M 3 171.3s 13.8s 5.8M 3.7M
OFFICE 3.54M 1 59.5s 20.0s 7.1M 2.6M
DESK 2.81M 1 57.0s 13.1s 5.6M 1.2M

Table 1: For each scene, the table reports the number of points,
the number of shots used for the HDR expansion (each shot is a
cubemap), the time for the expansion, the time to build the BSH
hierarchy, and the number of nodes of the BSH (before and after
the clustering).

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

GROUND LDR PMATCHRGB PMATCHLUM ENDORGB ENDOLUM EILERRGB EILERLUM LANDIS LANDISPC BANTERLE BANTERLEPC

Figure 8: Ground truth comparison of the renderings obtained with the different HDR expanded versions of the point cloud ATRIUM. For
each rendering, the bottom image shows the probability map (computed with HDR-VDR-2.2) to detect differences from the ground truth
rendering. More comparisons are available in the additional material.

6.2. HDR Expansion Evaluation

To test the HDR expansion method presented in Sec. 4, we
used the six clouds with ground truth HDR color (SPONZA,
SIBENIK, FIREROOM, ATRIUM, BUILDING and KITCHEN). Start-
ing from the LDR version of these clouds, we compare our method
(PMATCH) with two alternative solutions. The first one is based
on the substitution, inside the proposed method, of the Patch-
Match algorithm with a state-of-the-art ITMOs, to do the expan-
sion of the renderings before their backprojection on the cloud.
We tested two image ITMOs, the global operator by Landis et
al. [Lan02](LANDIS) and the expand-map based operator by Ban-
terle et al. [BLDC06](BANTERLE), and two recent deep learning
networks proposed by Eilertsen et al. [EKD∗17](EILER) and by
Endo et al. [EKM17](ENDO). For classical ITMOs, we focused on
non-linear operators because they typically provide high-quality
results for IBL [BDA∗09]. Regarding deep learning methods, we
used the pre-trained network provided by the authors. The second
class of solutions is based on the extension of the classical im-
age ITMOs (LANDIS-PC and BANTERLE-PC) to the structure of a
point cloud, by applying the operators directly to the color of each
point. For deep learning and PatchMatch methods, we tested either
the possibility to transfer only the luminance (method with the suf-
fix LUM) or the entire color (method with the suffix RGB) of the
expanded renderings. For the ITMOs, we used only the luminance
because these operators work only on it, and the maximum lumi-
nance value of IHDR to determine the maximum value to reach after
the expansion.

We evaluated all methods numerically in two ways: (i) mea-
suring the distance of the expanded cloud from the ground truth
HDR data using the Root Mean Square Error (RMS) on the per-
point color; (ii) comparing the relighting effect obtained on a vir-
tual object placed inside the scene and rendered with the proposed
X-PBGI algorithm. In the last case, we measure the differences be-
tween the renderings with the expanded point cloud and the render-
ing with the ground truth HDR cloud using three different errors:
the RMS error; the quality value of the HDR-VDP-2.2 [MN15]; the

Structure Similarity (SSIM) [WBSS04] applied to the PU encod-
ing [AMS08] of the luminance values. For each dataset, we selected
two different viewpoints. In the rendering, we remove the back-
ground to avoid wrong perceptual impressions. Fig. 8 shows the
rendering obtained using the point cloud ATRIUM expanded with
the tested methods together with the relative probability maps of
detecting differences from the ground truth. The probability maps
are computed using HDR-VDP-2.2. Tab. 2 contains the numeri-
cal values of this comparison. The images and data of the other
scenes are provided in the additional material. The PMATCH meth-
ods show the best results for almost all the tests. When they do not
have the best score they are really close to the best ones. Look-
ing at the RMS error on the point data only, the PMATCH methods
are less competitive. This is due to the trivial computation of the
RMS that does not take into account the distribution of the error
in space, differently from the evaluation of the relighting effects.
Also, the probability maps of HDR-VDP-2.2 visually show that the
PMATCH methods produce the best results with a lower probability
of detected differences from the ground truth.

6.3. PBGI Performance

We compared the performance of the PBGI algorithms intro-
duced in Sec. 5.2.1 (MIP-PBGI and X-PBGI) with Classic
PBGI [REG∗09]. We used two test scenes (TOYROOM and
SPONZA) with two different rendering viewpoints: the first one
with a detail of the object that gets all the viewport; the second one
where the entire object is visible in the viewport. Fig. 10 shows the
charts with the time and the memory of the first view in the TOY-
ROOM scene by changing the viewport and the micro-buffer size.
The charts of the other views and scenes are provided as additional
material. MIP-PBGI shows its benefits only for large viewports and
large micro-buffers. Then, due to the intensive use of GPU memory
to store the output of the GS in the TF, in some case MIP-PBGI is
not able to complete. The X-PBGI approach is the fastest method,
reaching a speed-up of 10x compared to Classic PBGI. Further-
more, its memory occupancy is always lower than MPI-PBGI. The

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

RENDERING POINT CLOUD

RMS HDR-
VDP SSIM RMS

LDR 0.231 78.55 0.832 3.649
BANTERLE 0.114 81.82 0.938 2.383
LANDIS 0.175 80.03 0.932 3.349
BANTERLEPC 0.193 80.01 0.804 5.099
LANDISPC 0.150 80.52 0.948 2.834
EILERLUM 0.257 79.10 0.881 5.554
EILERRGB 0.240 79.11 0.881 5.554
ENDOLUM 0.245 78.87 0.824 3.549
ENDORGB 0.245 78.85 0.824 3.549
PMATCHLUM 0.109 81.33 0.969 2.145
PMATCHRGB 0.068 81.69 0.969 2.145

Table 2: Numerical comparison of the renderings in Fig. 8 with
the ground truth rendering. The error metrics are the RMS error,
the quality of HDV-VDP-2.2, and the Structure Similarity (SSIM).
The green text highlights the best results (for HDR-VDP and SSIM
higher values are better). The last column shows the RMS error
computed directly on the cloud color data. More comparisons are
available in the additional material.

additional material contains some renderings of the same scene
with the three PBGI algorithms. Note that they differ only in how
the BVH is traversed, but they fill the microbuffers in a very sim-
ilar way. This is also confirmed by the high PSNR values, that are
always above the 46dB.

To evaluate the approximation introduced by the proposed X-
PBGI, we compared its relighting results with a path tracing
(ground truth) and with Voxel Cone Tracing [CNS∗11] (VCT).
Fig. 12 shows the renderings of the same object in the TOY ROOM

scene with the relative error maps. The additional material contains
more data for this comparison. For the rendering, we use a view-
port 512×512 pixels. The X-PBGI uses 32×32 micro-buffer. For
the VCT we test two different versions: VCT16 uses 16 cones uni-
formly distributed on the visible hemisphere of each surface point
with 40◦ aperture, plus a cone in the specular mirror direction
with an aperture depending on the material roughness; VCT1024
uses 1024 cones distributed like the 32× 32 micro-buffer with the
paraboloid mapping used in our PBGI methods and an aperture de-
pending on the solid angle of the pixel that the cone represents. Nu-
merically, the error introduced by X-PBGI, measured as RMS and
PSNR, is lower in all the tests. VCT16 obtains reasonable render-
ings in a short time but with a higher error than X-PBGI. Regarding
VCT1024, the error is lower than VCT16 at the cost of higher ren-
dering time, but the results remain inferior to X-PBGI. In particular,
VCT introduces more approximation on the ornament on the bot-
tom of the bust, where the contribution of the color objects in the
scene is overestimated. Then, the main limitation of VCT methods
is the right weight to give to each cone color contribution during the
final convolution with the BRDF. In our test, we use the solid angle
covered by each cone. The main advantages of the proposed PBGI
are the real-time/interactive performance and the ability to capture
more faithfully close and mid-range illumination effects, such as
the color bleeding on the front of the bust.

6.4. Limitations

The main limitation of our PBGI evolution is the rendering of very
shiny surfaces (i.e., low roughness) due to the approximation in-
troduced by the size of the micro-buffers. For small micro-buffers,
the algorithm may not capture the important reflection directions
properly, and this may lead to higher errors, e.g., banding artifacts,
as shown in Fig. 9. The use of larger micro-buffers mitigates these
issues, but this solution increases the rendering time. An alterna-
tive solution could be the use of an importance sampling strategy
during the construction of a micro-buffer as proposed by Ritschel
et al. [REG∗09] or adaptive micro-buffers [WMB15]. Our results
lack of any kind of self occlusion effect. We can overcome this
issue using a state-of-the-art method, such as Screen Space Soft
Shadow [GCS10] or Precomputed Radiance Transfer [SKS02] to
precompute the visibility function using spherical harmonics. Some
of the algorithms used in the proposed framework are affected by
inherent limitations that directly influence our results. For exam-
ple, the PatchMatch algorithm [BSGF10] gives poor results if IHDR
and the set of LDR renderings S are incoherent. Using the qual-
ity value returned by the PatchMatch mitigates this limitation but
cannot completely overcome the problem. For this reason, it is im-
portant to choose carefully both IHDR and the set S.

16 X 16 24 X 24 32 X 32

Figure 9: Comparison of the renderings of the same object with
roughness 0.1 (GGX) by changing the micro-buffer size. In this
case, the high specularity of the material leads to banding artifacts
for small micro-buffer.

6.5. Applications

Fig. 7 shows the benefit of our framework in a look-dev scenario.
The figure presents the rendering of an airplane and a helmet with a
spatially varying Disney Principled BRDF placed in different real
scenes using the LDR point cloud and the HDR cloud expanded
with the method PMATCHLUM. The contribution of the HDR ex-
pansion increases the realism of the rendering especially on the
shiny regions of the object. Fig. 11 shows the results in an AR ap-
plication scenario where the rendering of the object in the scene
CORRIDOR is combined with a video frame used for the acquisi-
tion of the point cloud. The renderings with the HDR cloud show

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

MICRO-BUFFER 16×16 MICRO-BUFFER 24×24 MICRO-BUFFER 32×32

Ti
m

e
(m

s)

9.7
37.8

138.9

752

15.2
40

131.1

604.6

9.1 19.3
62.1

285.3

0

100

200

300

400

500

600

700

800

128 256 512 1024

21.3

85.1

598

31.2
88

293

13.3
41.4

156.7

0

100

200

300

400

500

600

700

800

128 256 512

35.2

254.5

3272

51.9

151

565.2

24.7
82.3

316.2

0

100

200

300

400

500

600

700

800

128 256 512

CLASSIC

MIP-PBGI

X-PBGI

M
em

or
y

(M
B

)

11 38

147

756

6 22
89

356

0

100

200

300

400

500

600

700

800

128 256 512 1024

16
56

206

10
40

159

0

100

200

300

400

500

600

700

800

128 256 512

28
91

325

19
77

306

0

100

200

300

400

500

600

700

800

128 256 512

CLASSIC

MIP-PBGI

X-PBGI

Viewport Size Viewport Size Viewport Size

Figure 10: Performance comparison (time and memory occupancy) of the three PBGI algorithms – Classic [REG∗09], MIP-PBGI and X-
PBGI (Sec. 5.2) – varying the viewport and the micro-buffer size. These tests are performed on the point clouds TOYROOM with a 512×512
viewport where the object gets all the viewport. For the memory occupancy, we report the additional memory required to store the output
primitives of the Geometry Shader in the Transform Feedback buffers. More comparisons are available in the additional material.

more coherent lighting with the environment. The additional mate-
rial contains a video with small animations of these objects inside
the HDR expanded clouds compared with the result obtained with
the LDR cloud.

LDR HDR (PMATCHLUM)

Figure 11: AR compositing of the rendering of two objects in the
scene CORRIDOR with a video frame used for the computation of
the point cloud.

7. Conclusion

We have presented a framework to exploit the data encoded into a
captured 3D point cloud (radiance, spatial, and visibility informa-
tion) of a real-world scene to perform real-time relighting of a vir-
tual object inside the scene. Our framework is based on two main

contributions: an HDR expansion method to create an HDR 3D
point cloud from an LDR one using a single HDR picture – to our
knowledge, this is the first 3D ITMO; a real-time relighting engine
based on a new PBGI variant equipped with a G-Buffer mipmap-
ping mechanism. We have experimented our framework with sev-
eral datasets with and without HDR ground truth color data, show-
ing good numerical performance and convincing visual results. Fur-
thermore, we have shown the results obtained in an AR scenario
with animated virtual objects. Although our two contributions are
presented as an integrated framework, both can be of interest in-
dependently for other applications such as the simple visualization
of enhanced cloud on new HDR devices or the previsualization of
visual special effects.

In future works, we plan to investigate the preprocessing steps to
increase the quality of the input LDR point cloud in terms of den-
sity and point distribution, accounting for the data source. This step
should help to populate regions with no information, improving the
quality of the rendering. Finally, on-the-fly HDR expansion could
help using our framework in a dynamic AR scenario, where the real
environment may change over time.

Acknowledgements

This work was partially supported by the EU H2020 Programme
EMOTIVE: EMOTIve Virtual cultural Experiences through per-
sonalized storytelling (grant no. 727188), the French National Re-
search Agengy (ANR) under grant ANR 16-LCV2-0009-01 AL-
LEGORI, and by BPI France, under grant PAPAYA.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

Ground Truth X-PBGI Environment Map VCT16 VCT1024

RMSE 0.0368 - PSNR 34.69dB RMSE 0.0525 - PSNR 31.61dB RMSE 0.1552 - PSNR 22.19dB RMSE 0.1080 - PSNR 25.34dB

Time 174ms Time 17.20s Time 12ms Time 4500ms

RMSE 0.0183 - PSNR 40.77dB RMSE 0.0258 - PSNR 37.78dB RMSE 0.0745 - PSNR 28.56dB RMSE 0.0555- PSNR 31.12dB

Time 165ms Time 17.19s Time 9ms Time 4500ms

Figure 12: Comparison of X-PBGI rendering with the ground truth obtained with a path tracing, the classical environment map algorithm,
and two different versions of the Voxel Cone Tracing (VCT) algorithm (16 cones plus a specular cone for VCT16 and 1024 cones for
VCT1024). Each rendering shows the relative error map from the ground truth. (Top) GGX BRDF with roughness 0.1. (Bottom) Pure diffuse
BRDF. More comparisons are available in the additional material.

References
[AFR∗07] AKYÜZ A. O., FLEMING R., RIECKE B. E., REINHARD E.,

BÜLTHOFF H. H.: Do HDR Displays Support LDR Content? A Psy-
chophysical Evaluation. ACM Trans. Graph. 26, 3 (2007), 38. 2

[AMS08] AYDIN T. O., MANTIUK R., SEIDEL H.-P.: Extending quality
metrics to full luminance range images. In Human Vision and Electronic
Imaging XIII (2008), vol. 6806, International Society for Optics and Pho-
tonics, p. 68060B. 9

[BADC17] BANTERLE F., ARTUSI A., DEBATTISTA K., CHALMERS
A.: Advanced High Dynamic Range Imaging: Theory and Practice (2nd
Edition). AK Peters (CRC Press), July 2017. 2

[BB12] BUCHHOLZ B., BOUBEKEUR T.: Quantized point-based global
illumination. Comp. Graph. Forum (Proc. EGSR 2012) 31, 4 (2012),
1399–1405. 3

[BCD∗13] BANTERLE F., CALLIERI M., DELLEPIANE M., CORSINI
M., PELLACINI F., SCOPIGNO R.: Envydepth: An interface for recover-
ing local natural illumination from environment maps. Comput. Graph.
Forum 32, 7 (2013), 411–420. 3, 8

[BDA∗09] BANTERLE F., DEBATTISTA K., ARTUSI A., PATTANAIK
S. N., MYSZKOWSKI K., LEDDA P., CHALMERS A.: High dynamic
range imaging and low dynamic range expansion for generating HDR
content. Comput. Graph. Forum 28, 8 (2009), 2343–2367. 9

[BE05] BAREQUET G., ELBER G.: Optimal bounding cones of vectors
in three dimensions. Inf. Process. Lett. 93, 2 (2005), 83–89. 5, 6

[BLDC06] BANTERLE F., LEDDA P., DEBATTISTA K., CHALMERS A.:
Inverse tone mapping. In GRAPHITE (2006), ACM, pp. 349–356. 2, 9

[BSGF10] BARNES C., SHECHTMAN E., GOLDMAN D. B., FINKEL-
STEIN A.: The generalized PatchMatch correspondence algorithm. In
ECCV (2010). 4, 10

[Bun05] BUNNELL M.: Dynamic ambient occlusion and indirect light-
ing. GPU Gems 2 (2005), 223–233. 2

[Bur12] BURLEY B.: Physically based shading at disney. In ACM SIG-
GRAPH 2012 Courses:Practical physically-based shading in film and
game production (2012), ACM, p. 26. 8

[BZS∗07] BHAT P., ZITNICK C. L., SNAVELY N., AGARWALA A.,

AGRAWALA M., COHEN M., CURLESS B., KANG S. B.: Using pho-
tographs to enhance videos of a static scene. In EGSR (2007), Euro-
graphics Association, pp. 327–338. 2

[Chr08] CHRISTENSEN P.: Point-based approximate color bleeding.
Pixar Technical Notes 2, 5 (2008), 6. 2

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN
E.: Interactive indirect illumination using voxel cone tracing. Computer
Graphics Forum 30, 7 (2011), 1921–1930. 10

[DBGBR∗14] DI BENEDETTO M., GANOVELLI F., BALSA RO-
DRIGUEZ M., JASPE VILLANUEVA A., SCOPIGNO R., GOBBETTI
E.: Exploremaps: Efficient construction and ubiquitous exploration of
panoramic view graphs of complex 3d environments. Comp. Graph. Fo-
rum 33, 2 (2014), 459–468. 4

[Deb98] DEBEVEC P.: Rendering synthetic objects into real scenes:
bridging traditional and image-based graphics with global illumination
and high dynamic range photography. In SIGGRAPH (1998), ACM
Press, pp. 189–198. 2, 3

[DMHS08] DIDYK P., MANTIUK R., HEIN M., SEIDEL H.-P.: En-
hancement of bright video features for HDR displays. Comp. Graph.
Forum 27, 4 (2008), 1265–1274. 2

[DNZ∗17] DAI A., NIESSNER M., ZOLLHÖFER M., IZADI S.,
THEOBALT C.: Bundlefusion: Real-time globally consistent 3d recon-
struction using on-the-fly surface reintegration. ACM Trans. Graph. 36,
3 (2017), 24:1–24:18. 2, 3, 8

[EKD∗17] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R.,
UNGER J.: Hdr image reconstruction from a single exposure using deep
cnns. ACM Trans. Graph. 36, 6 (2017). 2, 9

[EKM17] ENDO Y., KANAMORI Y., MITANI J.: Deep reverse tone map-
ping. ACM Trans. Graph. 36, 6 (Nov. 2017), 177:1–177:10. 2, 9

[FGK03] FISCHER K., GÄRTNER B., KUTZ M.: Fast smallest-
enclosing-ball computation in high dimensions. In European Symposium
on Algorithms (2003), Springer, pp. 630–641. 5

[GCS10] GUMBAU J., CHOVER M., SBERT M.: Screen Space Soft Shad-
ows. GPU Pro. A.K. Peters/CRC Press, 2010, pp. 477–491. 10

[GSY∗17] GARDNER M.-A., SUNKAVALLI K., YUMER E., SHEN X.,

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

M. Sabbadin et al. / HDR Point Clouds for Relighting

GAMBARETTO E., GAGNÉ C., LALONDE J.-F.: Learning to predict in-
door illumination from a single image. ACM Trans. Graph. 36, 6 (2017),
176:1–176:14. 3

[HKS09] HA L., KRÜGER J., SILVA C. T.: Fast four-way parallel radix
sorting on gpus. Comp. Graph. Forum 28, 8 (2009), 2368–2378. 5

[HREB11] HOLLANDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. Comp. Graph. Forum 30, 4
(2011), 1233–1240. 3, 6

[HS98] HEIDRICH W., SEIDEL H.-P.: View-independent Environment
Maps. In SIGGRAPH/Eurographics Workshop on Graphics Hardware
(1998), Spencer S. N., (Ed.), The Eurographics Association. 6

[HSH∗17] HOLD-GEOFFROY Y., SUNKAVALLI K., HADAP S., GAM-
BARETTO E., LALONDE J.: Deep outdoor illumination estimation. In
CVPR (2017), pp. 2373–2382. 3

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum
(scan) with cuda. GPU gems 3, 39 (2007), 851–876. 5

[Kar12] KARRAS T.: Maximizing parallelism in the construction of bvhs,
octrees, and k-d trees. In HPG Conference (2012), pp. 33–37. 5

[KBG∗15] KRONANDER J., BANTERLE F., GARDNER A., MIANDJI E.,
UNGER J.: Photorealistic rendering of mixed reality scenes. Comp.
Graph. Forum 34, 2 (2015), 643–665. 3

[KBLE19] KOL T. R., BAUSZAT P., LEE S., EISEMANN E.: Megaviews:
Scalable many-view rendering with concurrent scene-view hierarchy
traversal. Computer Graphics Forum 38, 1 (2019), 235–247. 3

[KHFH11] KARSCH K., HEDAU V., FORSYTH D., HOIEM D.: Render-
ing synthetic objects into legacy photographs. ACM Trans. Graph. 30, 6
(2011), 157:1–157:12. 3

[KO14] KOVALESKI R. P., OLIVEIRA M. M.: High-quality reverse tone
mapping for a wide range of exposures. In SIBGRAPI (August 2014),
IEEE Computer Society, pp. 49–56. 2

[KSH∗14] KARSCH K., SUNKAVALLI K., HADAP S., CARR N., JIN H.,
FONTE R., SITTIG M., FORSYTH D.: Automatic scene inference for 3d
object compositing. ACM Trans. Graph. 33, 3 (2014), 32:1–32:15. 3

[Lan02] LANDIS H.: Production-ready global illumination. In SIG-
GRAPH Course Notes 16 (2002), pp. 87–101. 2, 9

[MBRHD18] MARNERIDES D., BASHFORD-ROGERS T., HATCHETT
J., DEBATTISTA K.: Expandnet: A deep convolutional neural network
for high dynamic range expansion from low dynamic range content.
Comp. Graph. Forum 37, 2 (2018), 37–49. 2

[MKR07] MERTENS T., KAUTZ J., REETH F. V.: Exposure fusion. In
Proceedings of the 15th Pacific Conference on Computer Graphics and
Applications (2007), IEEE Computer Society, pp. 382–390. 4

[MN15] MANISH NARWARIA RAFAL MANTIUK M. P. D. S. P. L. C.:
Hdr-vdp-2.2: a calibrated method for objective quality prediction of
high-dynamic range and standard images. Journal of Electronic Imaging
24 (2015), 24 – 24 – 3. 9

[MSG15] MASIA B., SERRANO A., GUTIERREZ D.: Dynamic range
expansion based on image statistics. Multimedia Tools and Applications
(2015), 1–18. 2

[Pel10] PELLACINI F.: envylight: An interface for editing natural illumi-
nation. ACM Trans. Graph. 29, 4 (July 2010), 34:1–34:8. 3

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image editing.
ACM Trans. Graph. 22, 3 (July 2003), 313–318. 4

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:
The state of the art in interactive global illumination. Comp. Graph.
Forum 31, 1 (2012), 160–188. 2

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEIDEL H.-P.,
KAUTZ J., DACHSBACHER C.: Micro-rendering for scalable, parallel
final gathering. ACM Trans. Graph. 28, 5 (Dec. 2009), 132:1–132:8. 3,
5, 9, 10, 11

[RPAC17] RHEE T., PETIKAM L., ALLEN B., CHALMERS A.: MR360:
mixed reality rendering for 360◦ panoramic videos. IEEE Trans. Vis.
Comput. Graph. 23, 4 (2017), 1379–1388. 2, 3

[RTS∗07] REMPEL A. G., TRENTACOSTE M., SEETZEN H., YOUNG
H. D., HEIDRICH W., WHITEHEAD L., WARD G.: Ldr2hdr: On-the-
fly reverse tone mapping of legacy video and photographs. ACM Trans.
Graph. 26, 3 (2007), 39. 2, 4

[RWP∗10] REINHARD E., WARD G., PATTANAIK S. N., DEBEVEC
P. E., HEIDRICH W.: High Dynamic Range Imaging - Acquisition, Dis-
play, and Image-Based Lighting (2. ed.). Academic Press, 2010. 2

[SF16] SCHÃŰNBERGER J. L., FRAHM J. M.: Structure-from-motion
revisited. In CVPR (June 2016), pp. 4104–4113. 2, 3, 8

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting envi-
ronments. ACM Trans. Graph. 21, 3 (July 2002), 527–536. 10

[SL17] SILVENNOINEN A., LEHTINEN J.: Real-time global illumination
by precomputed local reconstruction from sparse radiance probes. ACM
Trans. Graph. 36, 6 (2017), 230:1–230:13. 2

[Tab12] TABELLION E.: Point-based global illumination directional im-
portance mapping. In ACM SIGGRAPH Talk (2012). 3

[UKL∗13] UNGER J., KRONANDER J., LARSSON P., GUSTAVSON S.,
LÖW J., YNNERMAN A.: Spatially varying image based lighting using
hdr-video. Computers and Graphics 37, 7 (2013). 3

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (2004), 600–612. 9

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A scalable approach to
illumination. ACM Trans. Graph. 24, 3 (2005), 1098–1107. 2

[WHB∗13] WANG B., HUANG J., BUCHHOLZ B., MENG X.,
BOUBEKEUR T.: Factorized point based global illumination. Comp.
Graph. Forum 32, 4 (2013), 117–123. 3, 6

[WMB15] WANG B., MENG X., BOUBEKEUR T.: Wavelet point-based
global illumination. Comp. Graph. Forum 34, 4 (2015), 143–153. 3, 10

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE K. E.:
Microfacet models for refraction through rough surfaces. In Eurograph-
ics Conference on Rendering Techniques (2007), pp. 195–206. 8

[WSG∗16] WHELAN T., SALAS-MORENO R. F., GLOCKER B., DAVI-
SON A. J., LEUTENEGGER S.: Elasticfusion: Real-time dense SLAM
and light source estimation. I. J. Robotics Res. 35, 14 (2016), 1697–
1716. 2, 3

[WWZ∗07] WANG L., WEI L.-Y., ZHOU K., GUO B., SHUM H.-Y.:
High dynamic range image hallucination. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 Sketches (2007), ACM, p. 72. 2

[XLL∗18] XING G., LIU Y., LING H., GRANIER X., ZHANG Y.: Auto-
matic spatially varying illumination recovery of indoor scenes based on
a single rgb-d image. IEEE TVCG (2018), 1. 3

[ZCC16] ZHANG E., COHEN M. F., CURLESS B.: Emptying, refurnish-
ing, and relighting indoor spaces. ACM Trans. Graph. 35, 6 (2016),
174:1–174:14. 3

[ZL17] ZHANG J., LALONDE J.: Learning high dynamic range from
outdoor panoramas. In IEEE ICCV (2017), pp. 4529–4538. 2

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

