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Abstract

We introduce a novel algorithm that turns a flash selfie taken with
a smartphone into a studio-like photograph with uniform lighting. Our
method uses a convolutional neural network trained on a set of pairs of
photographs acquired in a controlled environment. For each pair, we
have one photograph of a subject’s face taken with the camera flash and
another one of the same subject in the same pose illuminated using a
photographic studio-lighting setup. We show how our method can amend
lighting artifacts introduced by a close-up camera flash, such as specular
highlights, shadows and skin shine.

1 Introduction

Photographs taken with mobile devices are nowadays predominant on the In-
ternet, including the web-based services dedicated to professional photography
such as Flickr, 500px, etc. This is due to the steady improvement of built-in
digital cameras in smartphones, which has made them a default choice of many
for taking pictures. Under favorable lighting conditions, smartphone picture
quality has reached that of digital reflex cameras, but smartphones are not able
to capture artifact-free images in low-light conditions. This is due to their sen-
sors’ size, a constraint that is not straightforward to solve because of the little
room available in modern phones. Therefore, taking pictures in low light often
triggers the camera flash, which is typically a low-power LED flash mounted
side by side with the camera lens that produces several artifacts.

Selfies are one of the most common forms of photographs taken with a smart-
phone. This practice consists of taking a picture of one’s face by holding the
phone in one hand or by using a so-called “selfie stick”. Selfies are also often
low-light photographs, an unfavorable combination that produces images with
specular highlights, sharp shadows, and flat and unnatural skin tones. In this
paper, we explore the possibility of turning flash selfies into studio portraits by
employing a convolutional neural network (CNN). Doing so is a challenge for
three reasons. Firstly, it involves handling both global and local discriminant
features e.g. skin tone and highlight, respectively. Secondly, it needs to match
how humans expect an image to look when a flash is not used. Finally, these
two requirements have to be met in the domain of human faces, where people
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Figure 1: Two examples from our results. The split images show a comparison
between the input and the output of our algorithm.

are very good at detecting any type of inconsistencies.

Smartphone flash selfies are a well-defined subdomain of photos with several
common traits that our proposal is able to address: they are three-quarter or
front single-face portraits, taken at close range, with a single flash co-located
with the camera lens. Our approach is based on CNN training with a set of
pairs of portraits (see Figure 1): one image with smartphone flash and one
with photographic studio lighting (a “ground truth” image). Each pair is taken
as simultaneously as possible, to keep the pose of the subject similar. The
flash correction problem applies to wider application domains than just selfies,
but generating the collection of images needed for this broader purpose would
be an arduous undertaking, with hundreds or thousands of images required.
After training our CNN with these image pairs, our model can be used to give
a studio-lighting appearance to a broad range of real-world smartphone flash
selfie images.

2 Related Work

Flash photography has been previously used to add details to photographs in
low-light conditions, which typically suffer from high noise. In two concurrent
works, Petschnigg et al. [1] and Eisemann and Durand [2] proposed transfer-
ring the ambient lighting from flash photographs with low ISO, which implies
low noise, into non-flash photographs of the same subjects/scene, with reduced
noise. Other works [3] have developed this idea further by removing over/under-
illumination at a given flash intensity, reflections, highlights, and attenuation
over depth. Removing or reducing unwanted reflections in pictures can be also
obtained by the approach proposed by Zhang et al. [4], an end-to-end learn-
ing technique for single-image reflection separation with perceptual losses and
a customized exclusion loss.

Eilertsen et al. [5] proposed an approach to obtain high dynamic range
(HDR) images from low dynamic range images based on the U-Net architecture
! originally developed as a CNN for biomedical image segmentation. Similarly,
Chen et al. [6] showed that U-Nets can be used successfully to de-Bayer images
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captured at low-light conditions and high ISO, which typically exhibit consid-
erable noise. They extensively studied different approaches to processing such
real-world noisy low-light images. For example, they tested a variety of archi-
tectures, loss functions (e.g., L1 (least absolute deviations), L2 (least square
errors), and the structural similarity index (SSIM?)), and different color inputs.

Aksoy et al. [7] presented a large-scale collection of pairs of images with
ambient light and flash light of the same scene. These images were obtained
by casual photographers using their smartphone cameras, and consequently, the
dataset covers a wide variety of scenes. The dataset was provided for future work
on high-level tasks such as semantic segmentation or depth estimation. Unlike
their dataset, whose objective is to provide matching between two images under
uncontrolled lighting conditions, our dataset aims to change the lighting scheme
by converting from flash lighting to a controlled photograph studio light.

3 Deep Flash
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Figure 2: The architecture of our encoder-decoder, with its typical U-shape.
The first 13 blocks represent the VGG-16’s convolutional layers, which perform
the image encoding. The second part reconstructs the output image and has
several convolutional and deconvolutional layers. Arrows show the shortcut
connections to the blue blocks of the decoder from their counterparts in the
encoder.

We developed an encoder-decoder CNN based on two sub-networks: the first
network performs the encoding of the input flash image to create a deep feature
map representation; the second network recreates the image starting from the
encoder’s output while removing the flash defects. We use Visual Geometry
Group’s VGG-16 [8] network to perform the image encoding that consists of
sixteen layers: the first thirteen are convolutional layers and the last three are
fully-connected layers. We used only the convolutional layers of VGG-16, which
are structured into five groups: the first two groups consist of two layers and
the last three groups consist of three layers as shown in Figure 2. There are
three operations performed by each CNN layer: several parallel convolutions,
non-linear activation using ReLU (Rectified Linear Unit) functions, and max
pooling operations [9].

The decoding task was performed using a decoder component that is based
on Eilertsen et al.’s U-Net based approach [5]. The output produced from VGG-
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16 represents an input for the decoder after a further convolution operation. We
use batch normalization after each convolution to normalize the output distribu-
tion of each layer in order to provide valid input for the next layer. To this end,
batch normalization constrains the activation function input to have unit vari-
ance and mean zero. After each batch normalization, the output tensor crosses
through the next activation function, which introduces a non-zero gradient for
the next inputs. Decoder layers consist of operations such as convolutions, batch
normalization, deconvolutions, and concatenations.

To reduce the “vanishing gradients” problem that affects very deep neural
networks, we employed a residual learning network-based approach3. The van-
ishing gradients problem concerns the backpropagation phase, where an inverse
crossing of the network is performed to update the weights through the gra-
dient of the error function. When a network is composed of many layers, the
weight updating can be reduced so much from the last to the first layers that
the updates in the first network layers become inefficient, thereby stopping the
training. A way to solve this problem is to concatenate each blocks output of
the VGG-16 with its counterpart in the decoder using concatenation layers (see
Figure 2). Another reason for our use of residual learning is that it recovers
information lost through the convolutions of the encoding phase, helping the
decoder in reconstructing the output image. Our encoder-decoder structured
neural network is also able to recreate similar input images of faces taken in a
different RGB lighting mode. Finally, we use deconvolutional layers to recon-
struct the output image, starting from the VGG-16 output tensor.

3.1 Training

To minimize the loss function, we train our neural network using an algorithm
called an Adam Optimizer 4, which is a stochastic gradient descent technique
with a special way of managing its learning rate. As the initial configuration of
the Adam Optimizer, we set the learning rate to 1075, set the ¢ value (useful
for avoiding divisions by zero) to 1078, and set the mini-batch size to 4. The
choice of mini-batch size value is due to the GPU capability and the input image
dimension. To compensate for the limited amount of available training data and
to increase the generalization level, we use transfer learning ®, a technique which
extends learning achieved in one domain to related problems.

In particular, the weights of the VGG-16 were initialized through a pre-
trained model originally used for face recognition [10]. This model was trained
through a dataset of 2.6 million faces belonging to 2600 identities, using an
NVIDIA Titan Black GPU. Our decoder weights were initialized using a trun-
cated normal distribution, which ensures that the weights initialization has unit
standard deviation and mean zero. This approach avoids dissolution or in-
creasing of the gradient, decreasing the probability of introducing critical errors
during training. For the initialization of the last decoder layer, we use Xavier
Initialization [11], which ensures that the signal passing through the neural net-
work is propagated accurately and that the weights are neither too small nor
too large.

3https://en.wikipedia.org/wiki/Residual_neural_network
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3.2 Encoding

To implement our solution, we chose an encoding that decouples the high-
frequency details such as hair or facial features from low-frequency details such
as global skin tone. To this end, we employed the well-known bilateral fil-
ter 9, which is a nonlinear filter that is frequently used to smooth images while
preserving edges. Such filtering was used on both the flash and uniformly-lit
(ground truth) images of our dataset before training our neural network. Once
the filter was applied, the flash filtered image was used as the input to our neu-
ral network and the target was the difference between the filtered flash image
and filtered ground truth image normalized to [0,1]. The use of this type of
encoding reduces artifacts such as blur due to the small misalignment of facial
expressions between the flash and ground truth images, closed/open eye, lips
position and other facial landmarks.

3.3 Loss Function

The method described in the previous section allows us to preserve the low
frequencies from the original non-filtered image for use in subsequent steps. We
minimize the distance between the low frequencies of the input and ground truth
as follows:

Llinte) = 337 3 (0~ Blval) = s ~ Blta)) m

where

Yd; :BL(xi,O'S,O'T) _2y1+1 (2)

tg; = BL(x;,04,0,) — 2t; + 1

Equation 1 is our objective (loss) function to be minimized, in which N rep-

resents the number of pixels, BL(x;,05,0,) is the CNN input, x; is the flash

image, y; is the predicted difference of the CNN, and t; = BL(x;,05,0,) —
BL(0;,0s,0), where o;, where o; is the ground truth.

We normalized our target difference images into the range [0 ...1] in order
to avoid negative values affecting the CNN convergence given its activation
functions. Then values are remapped into the range [—1, 1] and subtracted from
the input values. We performed the mean subtraction for each color channel
of each image pixel by pixel, but only in the evaluation phase of the objective
function. This operation was performed to distribute in a balanced manner the
weights of each image across the training. In this way, each image gives the
same contribution to the training, none more or less important than the others.
In contrast to the classical method of subtracting from each image the mean
computed across the whole training dataset, we subtracted the mean for each
image to remove the average brightness from each pixel. This operation can be
performed because our image domain consists of stationary data for which the
lighting parameters are well-defined and always the same both for the input and
for the output. For further details, see [9].

6 nttps://en.wikipedia.org/wiki/Bilateral_filter


https://en.wikipedia.org/wiki/Bilateral_filter

4 Dataset Creation

In order to produce a training set for our network, we acquired pairs of pho-
tographs of the same subject using the camera of a Google Nexus 6 smartphone
at full resolution (i.e., 13-Megapixel). We captured one photograph of the pair
using only the flash of the smartphone, and the other using a studio-like set
of lamps that provides uniform illumination. In post-processing, we aligned
each pair using the MATLAB Image Processing Toolbox™to minimize mis-
alignments. These are caused by a delay of about 400ms between the two shots
due to switching on and off the studio lamps. We set the non-flash image as the
misaligned one and the flash image as our reference, then ran a tool for affine
alignment, i.e., translation, rotation, scale, and shear. Since photographs in each
pair have different lighting conditions, we had to use a multi-modal optimizer
to align two images using intensity-based registration. In a few cases, misalign-
ments persist when one image has the subject with open eyes and the other
with closed eyes or vice-versa. In such cases, the worst images were removed
from the dataset.

After the alignment step, we identified the subject face by running a simple
face recognition API 7. This outputs a bounding box for a photograph that we
used to crop each image, which is finally downsampled to 512 x 512. During
our acquisition process, we managed to collect 495 pairs of photographs. These
pairs represent 101 people (both females and males) in different poses. In order
to have a larger dataset, we augmented this set using three common techniques:

e 5 rotations from —20 to +20 degrees around the center of the face bounding
box, using a 10 degree step;

e cropping the image to the face bounding box and rescaling to original
image size;

e flipping images horizontally.

These operations increased the original dataset by a factor of 20, obtaining a
training set of 9.900 images at a 3120 x 4160 resolution (13-Megapixel).

5 RESULTS AND DISCUSSION

We trained our CNN on pairs or 512x 512 images for about 5 days on an NVIDIA
Titan Xp GPU, performing 62 epochs and about 458,000 backpropagation itera-
tions. We interrupted the training when the value of the loss function computed
on 1,500 images reached a low level of approximately 0.0042.

We calculated the accuracy of the result as

100 ~
acc:100—<3w(1)h([)¥¥|fc—fc|>, (3)

where I = tg,I = yg,w(I) = width(I), and h(I) = height(I). After the training
step, we obtained an accuracy value of 96.2%. In the test phase, we evaluated
our approach using 740 test images, obtaining a loss-test value of 0.0045 and
an accuracy value of 96.5%. The evaluation was done on the dataset provided
from Y. Aksoy et al. [7], on images such as those shown in Figure 1, 3 and 4.

"https://github.com/ageitgey/face_recognition
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Ambient

Figure 3: Results of our approach on real selfie images of the dataset provided
by Y.Aksoy et al. [7]. The first column represents the input of our neural
network, the column center represents our result and the last column represents
the no flash ambient image.

5.1 Comparison with Reconstructed Ground Truth Im-
ages

One key idea of our technique is to train the CNN to learn the difference between
the bilateral filtered target and input images. The output of the pipeline then
subtracts the CNN prediction from the original input image. This allows us to
preserve the high frequency detail, even though the exact ground truth can’t be
reconstructed exactly, even with a 0 loss function.

But of greater concern are the misalignments due to pose changes between
the flash and non-flash photos, which would otherwise dominate when comput-
ing the input and output image differences. For these reasons, we introduce a
preconditioning operator on the ground truth:

0, =x; —2t; + 1 (4)

where t; is the target difference. This operator represents the reconstructed
ground truth in which some of the high frequencies lost through the bilateral
filter and not recoverable were not considered.

We show an excerpt of the validation data in Figure 5. Note how hairs,
beard and skin color are lost in the flash photo and restored in our results.
Also, shadows and highlights due to the flash are mitigated. We evaluated
the data by employing the Structural Similarity Index (SSIM) and saw results
ranging from 78 to 91%, indicative of relatively good agreement.



Figure 4: Our approach can be used on people with different features and
ethnicities. Although the flash highlights remain evident in the lenses of people
with glasses, they do not affect our approach to the rest of the image.

5.2 Comparisons with Other Techniques

We compared our results against three other approaches in the literature, see
Figure 6. The first approach is HDRNet by Gharbi et.al [12] and is based on
the use of a CNN combined with bilateral grid processing and local affine color
transforms. HDRNet is designed to learn the effect of any image operator and
hence is a suitable candidate to remove flash artifacts from photographs. The
second approach is Pix2Pix by Isola et al. [13], which is based on a “condi-
tional” Generative Adversarial Network (cGAN) for which image generation is
conditional on the type of image. This type of neural network was investigated
as a general-purpose solution to image-to-image translation problems. Isola et
al. tested their cGAN on different tasks such as photo generation and semantic
segmentation. The third approach is the style transfer method proposed by Shih
et al. [14] in which a multi-scale local transfer approach is applied to portraits.
The last two columns of Figure 6 also shows comparisons between the ground
truth images and reconstructed predictions.

We feel our technique compares favorably with these other methods in that
it makes the lighting uniform, removing the flash highlights without introducing
problems like altering geometries and blur effect.
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Figure 5: Validation dataset samples where the SSIM was computed through
central images and top right images. Such a dataset as well as the training
dataset, consists of images taken to approximate real selfie images using a smart-
phone and smartphone flash at a similar distance and angle of a real selfie. Top
left images are the flash images taken with the smartphone; bottom left images
are the filtered images with bilateral filter; centered images are the results of our
approach; top right images are reconstructed ground truth images and finally,
the bottom right images are the original ground truth images.

6 Conclusion

In photography, glare is a common issue that causes shiny highlights, especially
in portraits. In the majority of cases, glare is a defect, and the subjects seem
to be greasy. Glare can be removed from the face manually, but this involves a
complicated and uncertain result process that requires photo editing skills.
This paper proposes a technique that is able to dramatically increase the
quality of smartphone flash selfies by turning them into portraits with studio-like
lighting. The approach is able to automatically remove flash lighting artifacts
such as hard shadows and highlights by using a regression model based on
supervised learning. Our results confirm that learning-powered computational
photography is capable of highly effective lighting control, suggesting that it
might be valuable in other contexts like relighting for better presentation of
objects or for advanced shading removal in photogrammetric reconstructions.
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