Reliable Feature-Line Driven Quad-Remeshing

NICO PIETRONI, University of Technology Sydney, Australia
STEFANO NUVOLI, University of Cagliari, Italy
THOMAS ALDERIGHI, University of Pisa and ISTI-CNR, Italy
PAOLO CIGNONI, ISTI-CNR, Italy

MARCO TARINI, University of Milan, Italy

Fig. 1. A mosaic of the processed Thingi10K dataset. The entire dataset is available at https://www.quadmesh.cloud

We present a new algorithm for the semi-regular quadrangulation of an
input surface, driven by its line features, such as sharp creases. We define a
perfectly feature-aligned cross-field and a coarse layout of polygonal-shaped
patches where we strictly ensure that all the feature-lines are represented as
patch boundaries. To be able to consistently do so, we allow non-quadrilateral
patches and T-junctions in the layout; the key is the ability to constrain
the layout so that it still admits a globally consistent, T-junction-free, and
pure-quad internal tessellation of its patches. This requires the insertion of

Authors’ addresses: Nico Pietroni, University of Technology Sydney, Sydney, Australia,
nico.pietroni@uts.edu.au; Stefano Nuvoli, Dept. of Mathematics and Computer Science,
University of Cagliari, Cagliari, Italy, s.nuvoli@studenti.unica.it; Thomas Alderighi,
University of Pisa , ISTI-CNR, Pisa, Italy, thomas.alderighi@isti.cnr.it; Paolo Cignoni,
ISTI-CNR, Pisa, Italy, paolo.cignoni@isti.cnr.it; Marco Tarini, University of Milan, Milan,
Italy, marco.tarini@unimi.it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/8-ART155 $15.00

https://doi.org/10.1145/3450626.3459941

additional irregular-vertices inside patches, but the regularity of the final-
mesh is safeguarded by optimizing for both their number and for their
reciprocal alignment. In total, our method guarantees the reproduction of
feature-lines by construction, while still producing good quality, isometric,
pure-quad, conforming meshes, making it an ideal candidate for CAD models.
Moreover, the method is fully automatic, requiring no user intervention, and
remarkably reliable, requiring little assumptions on the input mesh, as we
demonstrate by batch processing the entire Thingil0K repository, with less
than 0.5% of the attempted cases failing to produce a usable mesh.

CCS Concepts: « Computing methodologies — Computer graphics;
Shape modeling; Mesh geometry models.

Additional Key Words and Phrases: modelling, geometry processing, quad-
meshing

ACM Reference Format:

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco
Tarini. 2021. Reliable Feature-Line Driven Quad-Remeshing. ACM Trans.
Graph. 40, 4, Article 155 (August 2021), 17 pages. https://doi.org/10.1145/
3450626.3459941

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

https://www.quadmesh.cloud
https://doi.org/10.1145/3450626.3459941
https://doi.org/10.1145/3450626.3459941
https://doi.org/10.1145/3450626.3459941

155:2 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

1 INTRODUCTION

Automatic quad-remeshing, the task of constructing a good pure-
quad meshing representation of a given surface, is a long-standing
open problem, despite intensive research, a succession of progresses
and breakthroughs, and an urgent need by the industry (where it is
known as “retopology”).

The problem is acknowledged as difficult, with a large number
of conflicting and elusive objectives, such as isometry (use of con-
trolled element size), well-shaped quadrangular polygons, regularity
(the mesh should be mostly like a grid), and compact underlying
structure (mesh should have only a limited number of well-aligned
irregular vertices). Automatic methods still fall short of the results
that are obtained by skilled human modelers. Pure-quad meshes are
inherently a very constrained class of digital representation objects,
with local changes having a long-reaching effect, making the prob-
lem impervious to any local approach; this is in stark contrast to
triangle and quad-dominant meshes.

An often neglected objective is the ability to recreate feature-lines
of the input shape, such as crease-angles (typical, for example, of
CAD models), which, in the context of quad-models, impose that
these lines are recreated by edges in the final meshing. This is dif-
ficult to reconcile with all the other objectives. Typical existing
approaches either sacrifice this objective when it contrasts the oth-
ers, or even ignore it, focus on the rest of the problem statement,
and then try to recover the lines e.g. by snapping vertices, in the
late stages of the process.

In this work, we devise an approach that, conversely, is designed
around the need to preserve edges. It is a patch-based approach,
where the surface is initially split into a coarse layout of polygonal
patches, that are then individually tessellated in a globally consis-
tent way. Differently from other patch-based approaches, we make
all feature-lines by construction part of the patch-boundaries. To
be able to do that, we relax considerably the requirements imposed
on the layout: our layouts can present T-junctions and, most im-
portantly, non-rectangular patches. These configurations will be
dealt with later, in the tessellation phase, leveraging a better under-
standing of patch-quadrangulation afforded by recent advancements
[Takayama et al. 2014; Tarini 2021].

To this end, we identify a minimal set of requirements that the
layout must fulfill in order to admit a valid solution, and a strat-
egy to construct layouts that embeds the feature-lines and meets
these minimal conditions. We then identify a set of additional condi-
tions, harder to fulfill, that promote the quality solution. Our layout
construction strategy strives to fulfill this second set of conditions
whenever possible. The result is that a final valid quadrangulation is
virtually always produced, presenting very high-quality on average,
at par with any state-of-the-art methods in this respect.

While previous layout-based methods may lack the flexibility
to conform the layout to an arbitrary set of feature-lines, they are
appealing because they naturally produce quadrangulations with an
underlying coarse structure by construction (meaning that the few
irregular vertices are aligned). In our case, extra irregular vertices
that are required in the final patch tessellation can partially com-
promise this: however, we mitigate this substantially by explicitly
optimizing for the reciprocal alignment of these vertices.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

Reliability. Another issue of automatic quadrangulation methods
is that they typically lack reliability, both because they necessitate
several assumptions on the representation of the input shape and
because several shapes are inherently difficult to quadrangulate. Our
method, based on a principled analysis of minimal requirements,
combined with a small number of ad-hoc measures counteracting
commonly encountered problems in the input meshes (such as poor
initial tessellation), makes the resulting method able to batch process
very large collections of data with almost infallible success rate, with
extremely good results both in terms of feature preservation and
meshing quality.

2 RELATED WORK

The last two decades have seen drastic progress in the ability to
automatically generate quad-meshes [Bommes et al. 2013b].

Our method falls in the category of coarse layout methods based
on a coarse layout construction [Campen 2017]. Compared to litera-
ture, it advanced the state-of-the-art in terms of reliability, and in
the ability to preserve feature-lines, without substantially sacrificing
mesh-quality (in terms of quad shapes, number and distribution of
irregular vertices, and so on).

2.1 Coarse-Layout based Methods

In this class of methods, a layout of patches is first constructed
over the surface, either to serve as a domain for a globally smooth
parametrization, or to tessellate each patch in the final mesh. In
the former case, the final quad-mesh is then constructed by tracing
isolines of the parametrization ([Kélberer et al. 2007; Ray et al. 2006;
Schertler et al. 2018]).

Conforming layouts. In most direct applications of this idea, the
layout is conforming (T-junction-free) and each patch is rectangular
shaped (e.g. [Bommes et al. 2013a, 2011; Campen et al. 2012; Panozzo
et al. 2011; Razafindrazaka and Polthier 2017; Tarini et al. 2011],
among others), using a variety of approaches. This leads to a direct
and easy final quadrangulation, but the constrained nature of the
layout (or “base complex”) makes its construction arduous.

Non-conforming layouts. For this reasons, many methods allow
for T-junctions in their definition (e.g. [Myles et al. 2014; Myles and
Zorin 2013; Schertler et al. 2018; Usai et al. 2016], among others).
This eases the construction, providing more degrees of freedom,
which can be exploited to optimize the domain in other respects,
however this requires the solution of a non-trivial problem to pro-
duce a conforming final-mesh and to determine a globally consistent
subdivision of the sides of the layout. To this purpose, similarly to
us, it is common to cast this problem as a separate optimization
problem, subject to a number of constraints. Unfortunately, it is
known [Myles and Zorin 2013] that this problem is not necessarily
feasible. Ad-hoc strategies have been proposed: for example, [Myles
and Zorin 2013] changes the underling direction field, and [Usai
et al. 2016] modifies the layout to avoid the difficult to solve configu-
rations. During these necessary fixing operations, the pursue of any
other objective is suspended. This is in contrast with our solution,
which will be shown in Section 6.1, and which is the same used to
deal with the following point.

Non-rectangular layouts. We go one step further and also drop
the constraint of requiring the patch layout to be rectangular, en-
dowing us more flexibility, which is necessary in our case to embed
arbitrary features lines as patch boundaries. We are still able to use
the resulting layout, thanks to the recent progresses in defining
the conditions and the space of solutions of the quadrangulation
of non-rectangular shaped regions, and in particular [Takayama
et al. 2014; Tarini 2021]. To our knowledge this strategy in the con-
text of quad-meshing has no predecessor. It was used in the similar
problem of fusing together existing quad-meshes, redefining their
structure only in the proximity of the connection [Nuvoli et al. 2019].
However, this approach would be unable to preserve the structure
of the quadrangulation of an entire complex shape. [Takayama et al.
2014] employs non-rectangular patches in manually designed lay-
outs. Neither approaches would be able to automatically construct
an appropriate layout.

2.2 Field-aligned methods

A fruitful trend in quad-remeshing strategies (including ours) is
to rely on an auxiliary tangent space direction field to control the
orientation of the edges, and, by implication, the location of irregular
vertices (at field singular points). Several methods specialized in the
design of cross-field with appropriate characteristics, e.g. curvature
alignment (see Course [Vaxman et al. 2017]). In the context of coarse
domain layout, this concept translates in the idea of constructing
the layout tracing lines which are aligned to the field, as we do. The
biggest difference with the State of the Art is that we trace lines
avoiding field singularities, rather that to connect them [Bommes
et al. 2011; Campen et al. 2013; Pietroni et al. 2015; Tarini et al.
2011], because we let the feature line dictate the location of the
corner of the patches, and we are able to deal with the resulting
non-rectangular patches. This is similar to what it is done in the first
phase of [Campen et al. 2012]. Robustly tracing lines on a discretized
surface is an interesting problem that has been solved before, e.g.
[Pietroni et al. 2016; Razafindrazaka et al. 2015]. Our solution, shown
in Section 5.3 adapts a similar concept.

The parametrization method of Myles et al. [2014] resembles our
method, in that the mesh is split into a set of quadrilateral patches
that allows for T-junctions, by tracing field-aligned lines, although
its objective is to derive a bijective parametrization rather than a
global quadrangulation. Our objective imposes additional consis-
tency constraints, such as to tessellate boundaries shared by two
patches consistently; this is a central part of our method, and can
require the addition of extra irregular vertices even inside quad-
rangular patches (e.g. see Figure 2). Among other key differences,
in [Myles et al. 2014] the lines are traced from field singularities,
disallowing patches to contain them, whereas we allow for irregular
vertices inside (non necessarily quadrilateral) patches and explicitly
optimize their placement; also, we allow the traced lines to drift
from the direction field in order to optimize the layout structure
and to avoid “spiralling”.

2.3 Feature-edges preservation

In earlier approaches, feature lines are preserved by snapping [Tarini
et al. 2010] vertices of a quad-meshes edges into feature lines during

Reliable Feature-Line Driven Quad-Remeshing « 155:3

Patch

Fig. 2. A simple strip glued to itself with boundary-conforming cross-field:
the mixed-integer parametrization (MIQ) [Bommes et al. 2009] cannot
obtain a valid quadrangulation because of huge distortions and foldovers
and in the intermediate parametrization (circled in red). In our method,
instead, irregular vertices are added inside the path, in appropriate position,
resulting in a valid and high-quality semi-regular tessellation (as shown in
the rear view, right-most image).

the process. In a similar spirit, parametrization-based methods force
the parametric position of the feature-edges on the closest integer
parametric line, e.g. [Tarini et al. 2011]. Such approaches can get
stuck in local minima or oscillate, as one snap operation can undo
another. In a similar spirit, other remeshing methods foster feature-
lines preservation by adding soft forces pushing or keeping vertices
on feature lines [Bommes et al. 2011, 2013b, 2009; Fang et al. 2018].
This is not necessarily effective on all the targeted features. Also, it is
difficult to ensure that this does not impact other requirements, such
as the absence of fold-overs in the parametrization. Methods such
as [Bommes et al. 2013a; Campen et al. 2015] introduce constraints
to avoid fold-overs, while another class of solutions goes one step
back in the pipeline [Diamanti et al. 2015; Myles and Zorin 2013;
Zhang et al. 2020] and re-optimize the cross-field and provide better
input for the following parameterization step. Instant Meshes [Jakob
et al. 2015] formulates an “extrinsic” parametrization approach that
“naturally” exhibit a form of sharp-feature alignment. The resulting
method behaves similarly to a feature-preserving force, leading to
similar problems (although no soft constraint is explicitly added,
and feature lines are not even explicitly detected).

A more recent technique proposed by Fang and colleagues [2018]
combines global parametrization with a local Morse-based approach
around the singularities. Such a method allows for managing com-
plex, sharp-features. Unfortunately, it tends to introduce unexpected
irregularities in the final quadrangulation and then break the overall
flow.

A new approach to preserve sharp-features has been recently
proposed by LoopyCuts [Livesu et al. 2020]. This technique (orig-
inally designed to create hex-meshes) distributes loops that run
nearby sharp features and then snap them at the end of the process.
However, this approach is not guaranteed to handle complex feature
configurations, which our method is able to process.

An orthogonal but closely related problem is how to automatically
detect features to be preserved (see e.g. [Matveev et al. 2020] for a
recent technique). We do not claim any advancement in this area,
and methods more sophisticated than the trivial dihedral angle
thresholding we employed can improve our results.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:4 «

G

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

§4.1
§4.2

Cross-field &
Singularities

Optimized
Mesh

Patch
Layout

Edge
Tessellation

§6.2 Output

Fig. 3. The phases of our remeshing algorithm. Refer to Section 3.2 for an overview, and the referred Sections for the specific phases.

3 OVERVIEW

Our processing pipeline takes as input a triangle mesh, with a given
set of feature-lines, and produces as output a good-quality quadri-
lateral mesh reproducing all the feature-lines as edges. Our method
falls in the category of coarse-layout based methods: first, we par-
tition the mesh into a layout of coarse regions (patches), then we
consistently quadrangulate each patch to obtain the final quad-mesh.

Although any set of the input mesh-edges can be selected as a
feature-line, in our experimental setup, we automatically identify
feature-lines as geometric creases.

The main parameter of the method is the target edge length, which
will be only roughly matched by the final mesh. In our experiment,
we set it automatically as the side of a square having 1/K the area
of the mesh, with K = 10* (unless otherwise specified).

3.1

Our method is designed primarily around the need to accurately
preserve feature-lines. We achieve this goal by ensuring that feature-
edges are preserved, or reproduced, by construction during each
phase of the method. The central part is that we tailor the patch-
layout around the feature-lines, ensuring that they are all repre-
sented as patch boundaries.

Naturally, we also strive to maximize the quality of the output
meshing, meaning that the resulting quad meshes should have ap-
proximately rectangular and flat-shaped faces, reasonable uniform
edge-sizes, and, most importantly, only the necessary irregular ver-
tices. Specifically, in our method, meshing quality is achieved pri-
marily by producing coarse-layouts where most or all patches allow
for predictably good-quality internal quadrangulations.

As an additional quality requirement, irregular vertices should
also be reciprocally aligned, whenever possible; this is known to
be beneficial [Bommes et al. 2011; Tarini et al. 2010] as it leads to
simpler separatrix graphs (e.g. see Figure 25).

Finally, we want our method to be reliable and fully automatic,
i.e., to be able to automatically produce good results on the largest
possible set of input meshes, with minimal requirements on their
initial meshing quality or consistency. We empirically verify the ful-
fillment of this objective by successfully batch-processing thousands
of models from the entire database Thingil0k [Zhou and Jacobson
2016].

These objectives make our method ideal for automatic processing
of CAD models.

Objectives

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

3.2 Steps breakdown

Figure 3 shows an overview of our pipeline.

Input-mesh optimization. As a preliminary step, we perform an
automatic triangle-mesh optimization of the input (Section 4.2, and
Figure 3.b), by performing a sequence of local operations aimed at
improving the triangle-shapes and vertex distribution of the input
mesh. During this process, we simply disallow any operation that
would disrupt a feature-edge. This step confers to our system the
ability to be used on meshes with very unevenly sized or ill-shaped
triangles, such as most CAD models.

Cross-field construction. Then, we compute a cross-field, ie., a
smooth, 4-rotational-symmetric tangent-vector field, on the surface
(see Section 4.3, and Figure 3.c). The field is aligned to the feature-
lines by construction and propagated over the rest of the surface. In
absence of feature-lines, the cross-field is aligned to main curvature
directions. The cross-field is sampled at mesh faces and defines a
set of singularities at mesh vertices.

Layout construction. Next, we trace a number of paths across
the surface, partitioning the surface into the layout patches to be
quadrangulated (see Section 5, and Figure 3.d). All feature-lines
are automatically considered part of the paths, and therefore they
appear as patch boundaries by construction. Additional paths are
traced along the directions specified by the cross-field. This is the
central step of the pipeline; its objective is to produce patches that
are easily “quadrangulable”, that is, which have a geometric shape
and a topology that strongly favors the existence of a valid, good-
quality semi-regular internal quadrangulation. We define a set of
topological and geometric criteria that allow us to quickly estimate
whether this is the case for a given patch. Our criteria descend from
the patch-quadrangulation strategy that will be used by the final
step. Armed with this, we adopt a greedy algorithm to identify a
minimal set of paths such that the criteria are met for all patches.

Tessellation of paths. In the next step, we tessellate the sides of
each patch in a number of final mesh-edges (see Section 6.1). We
determine the exact number (for each side) by solving a global
Integer Linear Program (ILP), driven by an objective function which
balances conflicting objectives such as constant edge length, and
regularity of the final meshing (see Figure 3.e). Specifically, the main
component of the objective function favors solutions that allow, in
most or all patches, a regular quadrangulation in the last step.

Patch quadrangulation. Once the number of edges around the
sides of each patch is determined, the final stage of the pipeline
consists of quadrangulating the interior of each patch (see Section 6,
and Figure 3.f). This task is carried independently for each patch and
results in the final conforming (T-junction free) pure quad-meshing.
In contrast to many previous patch-based methods, the internal
quadrangulation of a patch can feature irregular vertices. In each
patch, this task can be solved using one of two possible strategies.
The “simple strategy”, used whenever applicable, consists of the
insertion of at most a single internal irregular vertex (and none in
rectangular patches), as studied in [Tarini 2021]. Only in the few
patches where this solution is not applicable, we resort, as a fallback,
to the “general strategy”, i.e. the general patch tessellation algorithm
described in [Takayama et al. 2014]; this always finds a valid solu-
tion, by the use of multiple internal singularities, although at the
price of a diminished local meshing quality, edge alignment, and
regularity. The benefit of the simple strategy is not only that it consis-
tently produces good quality, maximally regular meshing, but, more
importantly, that the conditions for its applicability are expressed
in closed-form, as a function of the number of edges around the
patches [Tarini 2021], and this can be targeted in the other stages of
the pipeline; specifically, we use this to derive the characterization
of quadrangulable patches (for the layout-construction phase), and
the conditions pursued by the ILP in the path tessellation phase.

Irregular vertices and their reciprocal alignment. In our method,
irregular vertices of the final quad-mesh stem from two different
sources. They appear at corners of the patches, and internally in
patches. The former ones tend to be reciprocally aligned, by virtue
of the coarse structure of the layout (this is the premise of any
layout-based approach). To also favor the reciprocal alignment of
the latter vertices, we add an apposite term in the energy minimized
by the ILP.

The following Sections detail each phase of the above pipeline.

4 INPUT PREPARATION

As a preliminary step, we make the input triangle-mesh ready for
the subsequent phases.

4.1 Feature-edge identification

First of all, we mark a selection of mesh-edges as feature-edges,
which will be maintained (by construction) throughout all the rest
of the method, and thus will be reproduced in the final quad-mesh.
In all our experiments, we automatically select feature-edges as
creases, thresholding the dihedral angles, which works well for
CAD models, but other strategies can be devised.

When the input-mesh is not closed, we also choose to mark bound-
ary edges as feature-edges, so that they will also be preserved.

4.2 Preliminary input-mesh optimization

Most of the CAD models present an irregular tessellation with a
big disparity in triangle sizes, in edge lengths, and often extremely
long and thin triangles. This hinders subsequent phases, such as
cross-field definition, or path tracing.

To counter this, we perform a simple preliminary re-meshing
step on the input model, following the well-known approach of

Reliable Feature-Line Driven Quad-Remeshing « 155:5

Fig. 4. The effect of adaptive remeshing on one mechanical object from the
Thingi10k [Zhou and Jacobson 2016] repository.

[Hoppe et al. 1993]. A sequence of local operations like edge-flips,
edge-collapses, and edge-splits, are performed in order to make
edge lengths close to a given target value. We simply cycle over all
available operations in an arbitrary order and perform any that has
a beneficial effect, evaluated on the lengths of all affected edges. In
our case, during the entire process, we preserve feature-lines by
simply disallowing any operation that would disrupt them.

Our preliminary remeshing procedure comprehends two passes.
We perform a first cycle of operations targeting a uniform target
edge-length, set at half the edge-length requested in the final quad
mesh. Normally, [Hoppe et al. 1993] produces a triangle mesh with
fairly regularly-shaped and equally-sized faces; in our case, feature-
lines preservation can result in badly-shaped and smaller triangles
near conglomerations of feature-lines. We detect this occurrence
and interpret it as an indication of the necessity for a higher local
resolution (because the tangent-field will typically require high-
frequency features around these areas). For this reason, we perform
a second pass of operations where we target an adaptive edge-length,
defined locally as a function of the aspect ratio of the triangles
(measured as the ratio between inner and outer circle) at the end
of the first pass. We clamp the 10% percentile of faces with the
lower aspect ratio, then linearly interpolate the target edge-length
between 0.3 and 3 times the original requested length. This results
in a triangle mesh with a local resolution that is roughly adaptive
to the complexity of the input set of feature-lines (see Figure 4).

4.3 Cross-field definition

Next, we construct a cross-field (a 4-RoSy tangent-vector field [Vax-
man et al. 2017]) on the input surface, aligned to feature-lines, by
assigning a tangent direction in each triangle.

Initially, we split any input mesh face adjacent to multiple feature-
edges until each face is adjacent to at most one (see Figure 5). We
assign to any face adjacent to a feature-edge the field values match-
ing the direction of that edge. Finally, we diffuse the cross-field
values to every other triangle. During the propagation, we add soft
constraints to align the field to the main curvature directions, simi-
larly to [Panozzo et al. 2012]. This lets us define a cross-field even in
absence of any feature-line. We adopt the field propagation method
described in [Diamanti et al. 2014], but other similar solutions, e.g.
[Jakob et al. 2015; Zhang et al. 2020] could be used interchangeably.
The per-face cross-field determines irregular points at vertices.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:6 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

Fig. 5. Faces that are adjacent to multiple features edges are split, adding
new edges (red lines), and each face is assigned to the field direction aligned
to its only adjacent feature edge (green arrows). A cross field is then propa-
gated over other triangles (gray crosses).

5 PATCH LAYOUT DECOMPOSITION

In this step of the pipeline, we trace a set of field-aligned paths
along the field, which partition the surface into a layout of patches.
Patches need not be rectangular. Paths are allowed to intersect, as
long as they follow orthogonal, rather than parallel, directions of
the cross-field at the crossing. Paths can be closed loops, or have
end-points at mesh boundaries, or on other paths, possibly creating
T-junctions.

As a starting point, we convert all feature-lines to paths, simply
by marking all feature-edges as path-edges. The rest of the layout
is to be constructed by adding additional paths, striving to obtain
patches with a valid topology and a favorable shape. The new paths
never pass through singular points of the cross-field. New paths are
drawn as chains of input-mesh edges.

First, we cut the mesh open along feature-edges: each original
feature-edge generates two directed boundary-edges, one on each
side. Affected vertices are duplicated as required, and all copies
become boundary-vertices (we keep a list, for each vertex, of its
duplicates). If a duplicated vertex corresponds to a singular value
of the cross-field, it loses that status, and a value for the field is
updated by averaging the connected faces.

Then, each boundary-edge is labeled with an orientation, i.e. an
index specifying one of the four cross-field directions of its (unique)
adjacent face (cross-field directions are arbitrary numbered, clock-
wise, from 0 to 3). Observe that one of these directions is always, by
construction, perfectly aligned to the considered edge.

Classification of boundary vertices. Boundary-edges are necessar-
ily grouped in directed loops (surrounding a patch, or internal to a
patch). Inside each loop, we classify each traversed vertex according
to the number k of 90° clockwise turns that are required to make
the orientation of its previous and next edge match in the field. This
can be determined by a traversal of the fan of triangles around that
vertex. When k = 0, the boundary-vertex is said to be straight, when
k = 1, (equivalently, —3) it is a right-turn, when k = —1 (equivalently,
+3), a left-turn, and when it is k = +2, it is a U-turn (see Figure 6).

Observe that an original mesh-vertex on a feature-line is split
into boundary vertices receiving in general different labels and that
this labeling is also applied, unmodified, to copies of vertices that
were originally classified as field-singularities (see Figure 7).

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

U-Turn

Left-Turn

Fig. 6. The four different classes of boundary-vertices of the bluish patch.
The classification is defined by the orientation of the green boundary-edges
(green arrows) propagated across the cross field (black crosses).

BE
@% -/

Fig. 7. Examples of duplicating vertices along a path, and the labeling of the
boundary vertices derived by the field directions (green and orange boxes,
see Fig.6). The blue vertex is a field singularity (observe the field).

\%

5.1 Conditions for patches

As mentioned, we seek the patches that allow for a valid and high-
quality internal quadrangulation. At a bare minimum, we need them
to be a valid input for our “general” quadrangulation strategy (which
is the algorithm of [Takayama et al. 2014]).
This is guaranteed by the following three “validity conditions”:
Topological constraint The patch must be homeomorphic to
a disk, meaning that it must be adjacent to a single loop of
border-edges.
Valence constraint The valence of the patch must be between
3 and 6.
Convexity Only straight vertices and right-turns are allowed
on the boundary loop.

The valence of a (disk-homeomorphic) patch, used by the second
condition, is defined as the number of turns in its boundary loop,
and can be understood as its number of topological sides (a side of
a patch is the part of the loop from one turn to the next). The upper
limit to the value 6 reflects a limitation of [Takayama et al. 2014].

The third condition disallows left-turns, as they would result
in quad angles larger than 180°, and U-turns, as the resulting an-
gle would be close to 360°(in Figures 6,7,14, disallowed boundary
vertices are colored in orange, and allowed ones in green).

This set of conditions, while weak and easy to enforce, suffice
to guarantee the applicability of our fallback “general” strategy.
Yet, there is no guarantee on the quality of the resulting meshing;
experiments confirm that this can result in the introduction of an
excessive constellation of new internal irregular vertices (disrupting
field alignment), and impact negatively the isometry and quad-
shapes of the final mesh.

Conversely, our “simple” quadrangulation strategy, when appli-
cable, results in maximal regularity and tends to create good quality
meshing, well aligned to the smooth cross-field. Its applicability, as
studied in [Tarini 2021], depends on the fulfillment of simple equa-
tions or inequalities defined, in closed-form, on the integer number
of edges e; on each side i of a patch. We report these conditions in
full, for the cases that are relevant to us:

in a 3-sided patch: Vi, e; < ej11 + €j42

in a 4-sided patch: Vi, e; = ejy2

1)

in a 5-sided patch: Vi, e; + ej4+1 + ej+a > €j42 + €i43

in a 6-sided patch: Vi, e; < ej12 + €j44

(the indices are intended to be modulo the valency of the patch).

The integer edge numbers e; will only be determined in a subse-
quent phase. However, because we are targeting a constant edge
size, we can expect these numbers to be roughly proportional to
the (geodesic) lengths of the respective patch side. Therefore, we
can predict that the conditions above will be more likely to be met
whenever the same equation or inequality approximately holds on
the scalar lengths of the patch sides.

The conditions in Equation 1 can be understood as a generaliza-
tion to non-rectangular patches of the well-known condition, sought
in many coarse-layout based remeshing approaches, to attain oppo-
site sizes of rectangular patches of a matching length ([Campen et al.
2012; Pietroni et al. 2015; Schertler et al. 2018; Tarini et al. 2011],
among others).

With this set of motivations in mind, we want layout patches to
also fulfill the two following “quality conditions™:

Geometric Condition The lengths of the patches sides must
approximately fulfill the inequality or equality above (1). We
add a tolerance equal to the length of the shortest side.

Valence Match Rectangular (4-sided) patches should contain
no field-singular vertex, and patches with a single internal
field-singular vertex should only contain a valency matching
that of the singularity; no patches should contain more than
one field singularity.

The latter condition is useful as it favors the alignment of final
quad-mesh edges with the smooth cross-field, resulting in a higher-
quality meshing. This is because the simple strategy, when applied

Reliable Feature-Line Driven Quad-Remeshing « 155:7

on a non-rectangular patch, produces a single irregular vertex with
a valency corresponding to that of the patch, located somewhere in
the interior of the patch, and, when applied to a rectangular patch,
produces no irregular vertex.

Differently from the validity conditions, which are necessary to
guarantee a valid solution, adherence to the quality conditions is
only desirable because it favors the final meshing quality.

5.2 Layout Construction Procedure

The initial layout generated by the sole feature-lines typically in-
fringes the conditions stated above. We complete this layout by
adding new paths, to enforce the fulfillment of the validity condi-
tions on all patches, and maximizing the number of patches that
also meet the quality conditions.

Our heuristic consists of a succession of “rounds”, in each of which
we insert a certain number of new paths, targeting one specific
problem. The sequence of rounds is described below in Section 5.4.

All rounds work in the same fashion: we first trace a large number
of candidate paths on the mesh (Section 5.3), we sort them to get
a good spatial distribution and, in that order, we decide whether
or not to use them for the patch layout. Any candidate path that
does not intersect tangentially previously inserted paths is chosen
if either: (1) it contributes directly toward the fulfillment of any one
objective (for example by separating two singularities, or removing
a left-turn) or (2) it splits any patch that still does not meet all the
objectives. The latter helps because smaller patches make easier for
the objectives to be fulfilled.

After all rounds, we check if any patches still fail to meet the
validity conditions. In this case, we repeat a sequence of rounds
concentrated only on that patch, this time with only the candidate-
paths inside it and disallowing them to exit it (any new candidate-
path is stopped as soon as it reaches the patch boundary, creating
a T-junction). We recursively repeat this step until all patches are
solved.

This strategy allows the construction of shorter candidate paths,
with fewer chances to be prevented by invalid intersections with
existing paths; these new paths can, in turn, serve as a stopping
point in subsequent recursive steps, and so on until all constraints
are met (see Figure 8).

~ N

Fig. 8. An example of the recursive strategy fixing a constraint: the path
1 creates a T-junction, but, in the next recursive step, it allows path 2 to
terminate early (with another T-junction), thus allowing field-singularities
a and b to end up in two different patches, meeting the valency constraint.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:8 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

o

Fig.9. Examples of paths inserted in succession (in the Looped paths round).

Candidate Sorting. The order in which potential paths are consid-
ered for insertion drastically affects the set of paths that are picked.
We want to avoid conglomerations of close paths, so (similarly to
LoopyCuts [Livesu et al. 2020]) we always analyze the potential
path that presents the largest distance from the closest edge in any
picked path (including initial ones). Figure 9 exemplifies the effect
of this choice.

Clean-up of redundant paths. Once the rounds of path insertion
have completed we have a layout that meets the validity conditions
on all patches, and the quality conditions on most patches (if not
necessarily all). During its construction, however, there is no easy
way to predict whether a path being inserted will end up being
useful to the fulfillment of any constraint because multiple paths
can contribute to meet the same constraints. Therefore, at the end of
the insertion process, we iterate over all paths again and dissolve the
ones whenever we determine that its removal does not infringe any
condition that is already met. Once again, the ordering of testing
is relevant; empirically, we found that processing paths in reverse
of their insertion works best. Figure 10 shows the result of this
processing step.

Next, we illustrate how a single candidate path is constructed.

5.3 Tracing a Candidate Path

We cast the problem of tracing a new candidate path as a shortest-
path search between a given starting point and a set of potential
ending points. This is solved by executing the Dijkstra algorithm
over an auxiliary directed weighted graph G which is constructed
from the mesh for this purposes.

Auxiliary graph construction. First, we assign a cross-field value
at each vertex, except for field-singularities, by averaging the values

)\
V\/@ / //f"'~\, \ \\
\ (,t"t, \ \
K\(\ ”’ / 0\
o o\
N O /\
\ O //1/

,ﬂ""

Fig. 10. The effect of Clean-up of redundant paths.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

Fig. 11. Nodes of graph G from both sides of a split edges are connected. In
the image, positions of nodes has been offset to illustrate the connectivity
of the graph.

of the surrounding faces. While averaging cross-field values, we
take into account the 90° rotational symmetry of the field.

Similarly to [Campen et al. 2012] (which follows M4 mesh stratifi-
cation introduced by [Kélberer et al. 2007]), we populate G with four
nodes for each mesh-vertex, one for each tangent direction of the
field at that vertex, except for field-singularities. Singular vertices,
which do not have an associated field value, are not represented in
G (so, no path will be traced across them).

Because each node in G represents both a vertex and a field
direction, by selecting the starting node and the (potential) ending
nodes of the path search, we are prescribing not only the starting
and ending positions, but also the outgoing and incoming cross-field
directions of the candidate path being traced.

We connect two nodes in G whenever (1) they reside at two
vertices v; and v; connected by a mesh-edge, (2) they correspond to a
matching direction of the cross-field, and (3) the angle between (v —
v;) and their (averaged) field direction f is smaller than 45°. Each
connection is weighted by the modulus of its drift value, defined, as
in [Tarini et al. 2011], as the quantity

dij = (v —vj) - f+
where f+ is the tangent direction orthogonal to f, found as the cross
product with the surface normal (f = f X ny); this value measures
how much a path traversing that connection deviates from the field.

We also add a zero-weighted connection between any two nodes
located at straight vertices that are duplicates of an original mesh
vertex, having a matching tangent direction, but not on either of
the two opposite field directions aligned to the path (see Figure 11).
This allows a candidate path to be traced across an existing path,
but never tangentially to it.

Fig. 12. Paths are drawn over mesh edges, so in general they will be jagged.
Right: intersection occur at vertices, only if the followed direction fields
(black arrows) are orthogonal.

1

(@) UU (b)

Reliable Feature-Line Driven Quad-Remeshing + 155:9

G © @

Fig. 13. Different rounds of the tracing process: initial sharp-features (a); convexity-enforcement (b); looped-paths (c); border-to-border paths round (d).

Due to its connectivity, graph G automatically allows only for
candidate paths that go topologically straight over a cross-field direc-
tion, meaning that traces path always follow a consistent direction
of the cross-field. The weighting favors the alignment of the path
to the cross-fields.

The tracing of a candidate path can fail, when there are not
enough edges in the mesh.

Jagged paths. Because new candidate paths are drawn over mesh-
edges, they will in general be jagged (see Figure 12). We use the
modulus of the drift value as weigh because Dijkstra algorithm
requires weights to be non-negative. This has the drawback of pe-
nalizing zigzagging paths during the search, because their drifts in
opposite directions are summed up instead of canceling. To mitigate
this problem, we augment the connectivity of the G by inserting a
virtual connection between every two nodes originally separated by
two connections, setting its cost to be the sum of the two (signed)
drift values. However, whenever a virtual connection is traversed,
we also visit the intermediate node, in order to be able to detect
(tangential) crossings with any other candidate path.

Tangential crossing detection. Given two candidate paths, it is
trivial to check whether or not they intersect tangentially, by testing
if they pass through two nodes that reside at the same mesh vertex,
associated to two cross-field directions that are not orthogonal.

Arch-length estimation. To evaluate the fulfillment of the Geomet-
ric Condition (Section 5.1), we need to measure the lengths of the
sides of a patch. Summing all mesh edges forming the path would
overestimate its length of jagged paths. Instead, we only sum the
distance spanned by each edge along the cross-field associated to
that edge (which is the dot-product of the edge-vector with the
field-direction).

5.4 Rounds of insertion of paths

In each round of insertions, we identify a set of potential starting

nodes S, and of ending nodes E. Then, we attempt to trace a new

path from each node in S, toward any node in E. All successfully

traced paths are added to the pool of candidate paths for that round.
The performed rounds are as follow:

Convexity enforcement round. We construct candidate paths ex-
plicitly targeted at fixing left-turn and U-turns. As starting nodes S
for each left-turn vertex, we add two nodes, one going on straight,

and one turning right (see Figure 14,top); for each U-turn vertex,
we add three nodes in S, going straight or turning either direction
(see Figure 14,bottom). As ending nodes E, we choose the ones re-
siding on the vertices of S with opposite direction: this attempts
the creation of paths that fix two different turns, one at each end.
This round is repeated a second time, if there are still non-convex
patches, using, as E all the straight nodes; paths traced in this way
will end on a T-junctions (or on the mesh boundary). Figure 13.b
shows the result of this round.

Looped-paths round. In this phase, we populate the pool of poten-
tial paths with a set of loop paths. We select a uniformly distributed
subset of internal vertices (using the approach of [Corsini et al.
2012]), and we attempt to trace two potential looping paths. A po-
tential looping path is traced by using the same node as the only
element of S and E. Figure 13.c shows the result of this step.

Border-to-border paths round. The last phase of our tracing pro-
cess consists of joining straight boundary-nodes with other straight
boundary-nodes. As starting nodes S, we select a sub-sampling of
all straight boundary nodes. This creates small paths that can be
useful to solve residual problems. Figure 13.d and 9 shows the result
of this round.

Fig. 14. The convexity enforcement round. Left: the starting of nodes added
in S for candidate-paths designed to address a left-turn (Top) and a U-
turn (Bottom) boundary vertex. Right two images: alternative examples of
candidate-paths that can be inserted to meet convexity constraints.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:10 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

]
u]
|

57 AT
i F
L7 T l:,,lc,z,’,.
i il
LR i
A iittet a0p e eS|
R K KA W 2L LA DA
R deaan atdy B N LA [0‘%‘0 oy
L8 aetaamp Oelan | N\ Soaltogteg ey oSyl
N o :i [y JRX WAL LRSS
GG R LS
A G
L S

all patches

only rectangular patches

Fig. 15. The improvements induced by the regularity term for non-
rectangular patches.

6 FINAL QUADRANGULATION

After the layout is constructed, we need to quadrangulate each patch.
The quadrangulation must match at patch boundary, to ensure that
the final quadrangulation is conforming. We address this problem
by, first, determining the number of edges along each side.

6.1 Patch-side tessellation

We cast this problem a global Integer Linear Program. We split the
paths of the layout at every turn vertex and intersection, obtaining
a set of arches. For each arch, we represent the number of edges
contained an integer variable s; > 1. The number of edges found
along each side of a patch is given by the sum of a given set of s;
(see the two rightmost images in Figure 3).

The ILP minimizes an objective function defined over the s;. This
is given by the sum of several weighted terms, subject to the follow-
ing constraint.

Parity constraints. It is well known that a patch can be quadran-
gulated only if it is bounded by an even number of edges. Hence,
for each set of arches P surrounding a patch, we add a separated
auxiliary linear variable n and include a linear constraint:

Zsi =2nVieP (2)

Isometry term. We define an isometry term of the objective func-
tion that penalizes the (squared) discrepancy of every s; from its
ideal value s, given by the length of the arch (computed as seen in
Section 5.3) divided by the targeted quad-mesh edge:

Z(Si - $)?

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

Trinagular Pentagonal Hexagonal

a

2k=b+c—a

2k=a+c+d—-b—e

2k=b+c—a

Fig. 16. In atriangular, pentagonal, or hexagonal shaped patch, with a single
internal singularity (red dot), the number of edges on each side (a, b, c, d, €)
determine the positions k (expressed as a number of edges) at which the
separatrix line (red dotted lines) meet the shown side. Formulas for k values,
derived from [Tarini 2021], are shown for two of the sides; the others can
be determined by rotating the figure.

Regularity term (rectangular patches). A rectangular (4-sided)
patch, with e, e1, ez, e3 edges on each side, can be tessellated regu-
larly whenever opposite side match, i.e. when ey = ez and e; = e3
(which are two linear constraints, because each e; is by the sum of
a small subset of the variable s;). It is known that this condition
cannot always be globally enforced. A simple counterexample is
depicted in Figure 2. In other patch-based approaches (e.g. [Usai
et al. 2016]), this problem is addressed by detecting when the system
is unfeasible, and changing the layout accordingly, or modifying
the underlying guiding field [Myles and Zorin 2013]. In our system,
we only strongly favor, rather than impose, the equalities. The occa-
sional patches where the value mismatch be addressed, in the next
phase, by the “fallback” quadrangulation strategy.

Regularity term (non-rectangular patches). In our approach, patches
can also have n = 3, 5, or 6 sides. For these patches, the most regu-
lar internal quadrangulation possible is the one featuring a single
irregular vertex of valency n, which is our simple quadrangulation
strategy. After [Tarini 2021], a necessary condition for this strategy
to be viable is that the inequalities (Equation 1) hold for each side
of the patch i € [0, n) (note that the inequalities are not strict, the
equality case just resulting in the irregular vertex to be located along
the boundary of the patch). Similarly to the case for rectangular
patches, we include these conditions as hard-constraints could make
the system unfeasible; instead, we discourage their infringement
by penalizing them with a term in the objective function (see Fig-
ure 15). Specifically, whenever we need that a < b, with a and b
two quantities linear with the variables, we include a new auxiliary
variable in the system K, and we impose the hard linear constraints
a < b+KandK > 0. Then, K is added to the objective function.
Considering that different patches will have a different number of
inequalities, we normalize these energy terms for each patch.

For n = 3,4, 5, the conditions above are sufficient to ensure the
viability of the simple strategy. For hexagonal patches, an additional
condition is required [Tarini 2021]: the three even and the three odd
sides of the patch sum up to an even number of edges. To enforce
this in a soft sense, we add two auxiliary integer variable k and h,
and we constrain both k > 0 and a = 2h + k, with a being the sum
of all arches found on any even sides of the patch (and likewise, for
the odd sides).

(2) (b) ‘ ©

Reliable Feature-Line Driven Quad-Remeshing « 155:11

©

Fig. 17. The irregular vertices added internally to the patches will in general be misaligned (a); (b-e) this is countered by adding a Singularity alignment term
for each pair of matching sides of non-rectangular patches, pointed by arrows (see text).

Singularity alignment term. Assuming that the “simple” strategy
is applied inside a non-rectangular patch, exactly one stream of
edges stemming from the irregular point (often called a separatrix,
e.g. [Tarini et al. 2011]) will exit from each side of the patch (red lines
in Figure 16), splitting the side into two “sub-sides”. The number
of edges in the two is given by a linear equation of the number
of edges on the sides of the patch [Tarini 2021]. For completeness,
in Figure 16 we list the linear equations for all the cases that are
relevant in our scenario.

We can exploit this information to promote the reciprocal align-
ment of the internal singularities in two adjacent patches to be re-
ciprocally aligned. We proceed as follows. First, we identify pairs of
non-rectangular patches sides that are either adjacent (Figure 17.b),
or separated by a sequence of rectangular patches (Figure 17.c). Note
that pair of matching sides can also be found between different sides
of the same patch (Figure 17.d). For each such pair, we impose the
equality of the two matching sub-sides, in a soft sense (that is, we
impose an objective function term, consisting of the absolute differ-
ence between the sub-sides that must be matching). For simplicity
of implementation, our prototype neglects to add this term for pairs
of charts separated by T-junctions (Figure 17.e).

The effectiveness of this term is exemplified in Figure 18.

/4

w>

3
-
G

D
X

‘0
:

%
%5
7

O

XX
S

XN
%5 -2
208

s

:0
X%,
0%

XX
XX

XX
5

3
%
5
0
%00
SR
%

%

O
oo
%
XY
%

XX
00
XX
,
%

o
<

XK

&
X

X

X
28
BEKS
K
8K

XX
&

S
58
0
o
ol

%
A
QKKK
i
%
I
%
&
&S
%S
&
5
-
A
§.~

o

&
20!
*

2
X
X
5K

X

XX XX
SRR
0%

X0

-
o

s,

s,

&

2
X
%

o
o0
S
X

K

2
90,00
£S5

oo

()
7
2008
&2

2%
2%

2
L2

2
oo

L7

oo,

0%
0%
2

%
Iy
N

%
0%

90

X

X
s

S
S
¥
N

\!

Fig. 18. The effect of the singularity alignment constraints on the final result
(left not aligned, right aligned).

Balancing objectives. The four objective function terms, for isom-
etry, regularity (for rectangular and non-rectangular patches), and
singularity-alignment, are weighted by parameters that can be used
to strike a well-balanced trade-off between these potentially con-
flicting objectives. For the examples shown in Figures 24, 27 and 28,
we used 1 for isometry, 99 and 91 for the two regularity terms, and

9 for singularity-alignment. However, the overall system allows for
any variations of these parameters.

When the conditions reflected by regularity and singularity-
alignment terms are not met perfectly, we incur in a small dete-
rioration of the final quality (for example, extra singular vertices are
included, or existing singularity get misaligned); these penalties do
not necessarily aggravate for larger infringements of the conditions,
which, conversely, are penalized proportionally more by our objec-
tive functions. To counter this, we adopt a simple strategy where
the ILP is solved twice in succession, the second time dropping the
singularity alignment terms that were not met in the first run.

Implementation details. In some examples, the extreme complex-
ity of the shape generates a large number of variables, dispropor-
tionately affecting the performance of this phase. As a simple opti-
mization, we group the patches into multiple subsets of m adjacent
patches (we used m = 300) and separately solve each subsystem
fixing the number of edges in the arches along its boundaries.

6.2 Per-patch tessellation

As the last phase, each patch is individually quadrangulated, using
either the simple strategy [Tarini 2021] whenever applicable (fulfille-
ment of Equation 1), or the general strategy otherwise [Takayama
et al. 2014]. The constraints we imposed in precedent phases ensure
that, at worst, the latter case can be used, and a valid final mesh is
generated. As a final phase, we also apply a step of tangent space
smoothing [Pietroni et al. 2015] to improve the shape of the quads
while constraining vertices on the feature-lines.

7 RESULTS

We initially tested our method on a dataset composed of 308 triangle
meshes, which includes all the models used in [Myles et al. 2014]
and [Fang et al. 2018]. On a consumer-level laptop (MacBook Pro,
2.9 GHz Intel Core i7, 16GB RAM), the processing time for the
entire dataset was about 5 hours (a minute per mesh), distributed
as follows: 2h and a half for the initial meshing optimization, 50m
for the layout construction, and 2h for the final quadrangulation.
We defined features by thresholding crease edges dihedral angles at
45° followed by a erode-dilate procedure to remove small and noise
edges (if more than two sharp features meet at a single vertex, they
are not eroded). As the target edge-size, we used twice the average
edge-size of the input model after mesh optimization. Our prototype
is single-threaded and not optimized; it has been implemented using
the VCG Library [CNR 2013], CG3Lib [Muntoni and Nuvoli 2021],

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:12 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

Fig. 19. Feature lines are correctly preserved even when this necessarily
implies the creation of poorly shaped quads, with extremely acute angles.

Libigl [Jacobson et al. 2013], and Gurobi [Gurobi Optimization 2018]
to solve the ILP problem of Section 6.1.

Figure 24 shows a subset of the dataset; Figure 27 shows a chal-
lenging mechanical examples in this dataset. Our method success-
fully preserves all the sharp features specified in the original mesh
and performs well even with smoother organic meshes with no or
reduced sharp features, like the ones shown in Figure 28. Table 1
reports statistics of the processed dataset.

We performed a larger scale test on the Thingil0k dataset [Zhou
and Jacobson 2016], comprising ten thousand meshes. Our method
successfully quadrangulated 9877 models, after only very basic au-
tomatic clean-up. Another 3 input models are point clouds or empty
meshes; 66 could not be open by the OpenSource software Meshlab
[Cignoni et al. 2013]. To perform this test, we automatically split
each any existing non-manifold edge, and we remove any result-
ing non-orientable connected-component (this occurred 36 times).
Some of the results are shown in Figure 1 and Figure 29; 90% of the
meshes required less than 2.5 minutes, and the 99% of them within
12 minutes.

The entire set of results of both tests can be inspected at
www.quadmesh.cloud.

Figure 19 shows some challenging examples of sharp feature
preservation that would be hard to handle with quadrangulation
methods based on global parametrization. Our method can be used
to construct mesh at any prescribed, as exemplified in Figure 20; the
lower limit of the resolution is tied to the shortest side in the patch
layout, which is linked to the size of details with sharp features.
Our approach is resilient with a number of inconsistencies of the
input mesh, graceful degrading the result and delivering an output
reflecting the input problems, but usable in other areas (Figure 23).

Comparisons. We performed a direct comparisons against compet-
ing quad-remeshng methods. Figure 21 reports a visual comparison
with the quadrangulation technique of Fang et al. [2018]. Figure
26 shows a qualitative and quantitative comparison with Instant-
Meshes [Jakob et al. 2015] and Quadriflow [Huang et al. 2018];
faces are color-coded according to a measure of shape quality for
quad faces, the Scaled Jacobian [Stimpson et al. 2007], and their
distributions are shown by means of histograms. In addition to the
aforementioned better preservation of feature lines, the comparison
is favourable to our method, both in terms of required number of
irregular vertices and shape quality, especially in proximity of the
feature lines.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

Table 1. Measurements on the result meshes shown in various Figures. We
report: the number of vertices (#V), faces (#F), and irregular vertices (#1),
the average angle deviation from 90° (AD), the edge-length deviation from
the average edge-size (ED), and the average Scaled Jacobian (SJ) [Stimpson
et al. 2007]. For Fig 26, we compare with the meshes obtained with Instant
Meshing (IM) [Jakob et al. 2015] and Quadriflow (QF) [Huang et al. 2018].

Fig Model #V #F #1 AD() ED(%) S
Spiral 2389 2387 28 19.76 17.40 0.92
Nasty cheese | 15311 15574 2116 24.11 2231 0.88
Sydney 3298 3188 247 1747 15.66 0.93
Metatron 4647 4667 106 2246 14.68 0.90

,, Transmission | 13231 13247 169 783 1106 097
Mazewheel 17682 17712 577 2233 1578 0.88
Twirl 3708 3701 61 2272 1631 0.92
Fusee Lp 14783 14822 275 19.89 13.07 0.90
Gearbox 67680 67834 3314 2277 20.08 0.87
Plate Lp 13114 13130 238 13.25 1175 0.95
Guy 4125 4123 163 1638 1692 0.94
Chinese lion | 20919 20915 303 14.53 1229 0.95
Octopus 4339 4337 68 1286 21.16 0.95
Camel 4479 4479 143 18.67 29.30 0.92

,g David 8111 8109 381 16.26 16.93 0.93
Gargoyle2 31071 31069 480 15.14 15.77 0.94
Pegaso 18453 18457 336 14.23 1533 0.95
Vase lion 25127 25125 357 1546 15.10 0.94
Thai statue 28117 28121 538 1479 13.66 0.94
Filigree 26067 26171 844 1631 16.04 0.93
N.44503 18937 19130 829 0.28 13.11 0.95
N.128001 56309 56162 3917 14.44 19.14 0.93
N.58012 113799 113879 7977 1549 12.28 0.93
N.61394 38038 37730 1685 20.82 19.22 0.87
N.67792 16615 16735 490 1455 13.78 0.95

jo N69975 22629 22563 938 1644 15.99 0.92
N.81877 35185 35305 1835 19.62 15.99 0.92
N.94884 47116 47466 3479 21.85 20.07 0.89
N.230923 45410 45398 2108 22.66 30.57 0.87
N.364256 70060 68905 6654 18.04 16.14 0.91
N.423069 60804 60624 4123 2379 41.29 0.85
N.498974 376509 380068 32241 19.86 16.02 0.89

Ujoint (ours) 2674 2676 8 411 11.97 0.99
— with QF 2847 2849 32 745 7.89 0.97
— with IM 2764 2766 84 577 4.65 0.98

Sculpt (ours) 2148 2150 16 15.76 16.92 0.95
— with QF 1848 1850 52 17.52 1542 0.92
— with IM 2214 2216 149 10.32 9.79 0.96

Bolt (ours) 2045 2045 24 778 5.23 0.98

26 — with QF 1914 1914 22 1032 8.42 0.97
— with IM 2104 2104 88 7.60 7.24 0.97

Gear (ours) 2752 2750 88 5.27 7.25 0.99
— with QF 2639 2637 86 8.69 7.46 0.97
— with IM 2742 2740 129 598 7.38 0.98

Sharp S. (ours)| 3484 3482 34 2428 1847 0.87
— with QF 3539 3537 98 13.22 9.63 0.95
— with IM 3268 3260 267 12.25 1294 0.95

https://www.quadmesh.cloud

Fig. 20. Examples of quadrangulations created at different resolution.

S /171
5
Wiz

%

Fig. 21. Comparison of our method (right) with [Fang et al. 2018] (left).

8 DISCUSSION

Our novel remeshing approach is designed around the requirement
to preserve feature-lines, and produces good quality, isometric, pure-
quad, and conforming meshes. Its reliability is confirmed by exten-
sive experiments where a large number of models are automatically
quadrangulated.

One innovative element of our method is that irregular vertices
are introduced by two separated approaches: at corners of patches
(during layout construction), and internally to patches (during patch
quadrangulation). We are encouraged to consider this as a strongly
beneficial addition in the panorama of automatic quadrangulators,

Reliable Feature-Line Driven Quad-Remeshing « 155:13

N
(@) (b)

Fig. 22. (a) Miscategorized feature-edges might influence the final quadran-
gulation; (b) A squeezed patch considered almost perfectly quadrangulable
according to the side-length based criteria.

Fig. 23. Resilience: even when the input presents local inconsistencies such
as self-intersections, topological noise, double surfaces, and CSG leftovers,
our approach succeeds to build a quad tessellation, that is correct in areas
where the input is correct.

as we observe that it closely reflects the practice of hand-designed
quadrangulation by human modelers (which is still able to produce
results of unparalleled quality). The first class of irregular vertices is
directly dictated by the shape features, such as the corners of a cubic
shape; the second class of irregular vertices is indirectly imposed
by the constraints of quad meshing, such as a valency 5 vertex in
the center of a pentagonal panel, or the irregular vertices needed to
adjust the local tessellation density.

8.1 Limitations

Lack of strict guarantees. We do not possess a demonstration
that the minimal required conditions (during layout construction
of Section 5, and edge assignment, Section 6.1) can always be met
through our layout construction procedure, which in part relies on
heuristics. However, our system never failed to produce a result in
almost ten thousand models over real datasets, except in the 0.5%
of the cases (which mostly corresponds to non-orientable mesh, see
Section 7).

Problems affecting quality. The strict preservation of feature-lines
makes the system susceptible to miscategorized feature-edges, or
bad-quality (for example, noisy) ones (see Figure 22.a). With CAD
models, automatic labeling based on dihedral angles works well,
but with other categories of models, such as scanned meshes, this
requires more care and it is not trivial (see [Matveev et al. 2020]).

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:14 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

[Bommes et al. 2009]

proposed proposed

R ccsee
oS! s:“‘“‘\“
XX :“

S a
“t O !
SRS
““’::“

ZZ
s
(s

lz'l,l;,
\“' '

0 III, ;;;;;"'I
UL 7554755
UHIAL74 7542

s

AR N
2020, NS SSS
77 WA

I L ST S\

,
>

o>
o=

e

~
SSSaeS

4
s

=

proposed

Fig. 25. Because it strives to align close irregular vertices inside patches, our method tends to produce meshes in which the graph of separatrices emanated
from irregular vertices (shown in blue) is simpler, compared to competing methods, with fewer edges traversed by separatrices.

A potential weakness of our method is that choosing the internal
quadrangulation of patches based only on the boundary of the patch
can in theory result in loss of edge isometry. Note that this problem
cannot arise when the interior of the patch presents significant
geometric features, that would induce additional field singularities,
and thus trigger a split of the patch. Our experiments show that
this phenomenon is rare, but also that it results in substantially
shorter edges when it occurs (see Figure 22.b). Settling this question
requires more investigation.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

Alignment of irregular vertices . Our method aligns close irregular
vertices to each other, when this is compatible with the other ob-
jectives. As a result, the graph of separatrices constructed from our
meshes tends to be simpler than the one produced by competing
semi-regular quad-remeshing methods (Figure 25), but not, in many
cases, to the point of resulting in a coarse-quad layout. This calls
for more aggressive strategies to enforce alignment; in alternative,
separatrix-graph simplification methods such as [Bommes et al.
2011; Tarini et al. 2011] could be employed as a post-processing
step.

Reliable Feature-Line Driven Quad-Remeshing « 155:15

Instant
Meshes

Quadriflow

Proposed

Lo |l

Fig. 26. A comparison between Instant Meshing [Jakob et al. 2015] (top), Quadriflow [Huang et al. 2018] (middle) and the proposed method (bottom). The
faces are color-coded by shape quality, measured as their Scaled Jacobian [Stimpson et al. 2007]. In each model, we report the number of singularities in the
light blue circle, and the histogram of quality, in logarithmic scale — negative values, corresponding to concave faces, are represented in the red bin).

<0
Scaled Jacobian [

QRS

KRN

S
i

&
WL
NN

LN
SU

Fig. 27. Examples of quadrangulation of mechanical models with complex, challenging shapes.

Symmetries. A visual (qualitative) inspection of our results reveals problem, however, is that symmetries are not always respected,
in many cases a quality reminiscent of what is typically associated including the recurring case where similar features in an object (e.g.
with manual modeling by digital artists. One notable remaining in a decorative pattern) are quadrangulated slightly differently.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

155:16 « Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini

Fig. 28. Examples of quadrangulation of organic-looking model. Even if our method is designed around the need of preserving feature-lines, it also works well
on organic smooth mesh with no feature-lines.

423069

364256 58012 498974

Fig. 29. Examples of hi-res quadrangulated model from the Thingi10k repository.

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

ACKNOWLEDGMENTS

The authors thank Luigi Malomo for helping with triangular re-
meshing. The models are courtesy of the AIM@SHAPE Shape Repos-
itory, Stanford 3D Scanning Repository and Thingi10K Repository.

REFERENCES

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013a. Integer-grid maps for reliable quad meshing. ACM Trans. Graph 32, 4 (2013),
98:1-98:12.

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization
of Quadrilateral Meshes. Comput. Graph. Forum 30, 2 (2011), 375-384.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio T. Silva, Marco Tarini,
and Denis Zorin. 2013b. Quad-Mesh Generation and Processing: A Survey. Comput.
Graph. Forum 32, 6 (2013), 51-76.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.
ACM Trans. Graph. 28, 3 (2009), 77.

Marcel Campen. 2017. Partitioning Surfaces Into Quadrilateral Patches: A Survey.
Comput. Graph. Forum 36, 8 (2017), 567-588.

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality
quad layouts on manifolds. ACM Trans. Graph. 31, 4 (2012), 110:1-110:11.

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized global parametriza-
tion. ACM Trans. Graph 34, 6 (2015), 192:1-192:12.

Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical Anisotropic
Geodesy. Comput. Graph. Forum 32, 5 (2013), 63-71.

Paolo Cignoni, Guido Ranzuglia, Marco Callieri, Massimiliano Corsini, Matteo Dellepi-
ane, Marco Di Benedetto, Fabio Ganovelli, Giorgio Marcias, Gianpaolo Palma, Nico
Pietroni, Federico Ponchio, Luigi Malomo, Marco Tarini, and Roberto Scopigno.
2013. MeshLab: an Open-Source Mesh Processing Tool. http://www.meshlab.net.

CNR. 2013. The Visualization and Computer Graphics Library.
http://veg.isti.cnr.it/veglib/.

Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. 2012. Efficient and Flexible
Sampling with Blue Noise Properties of Triangular Meshes. IEEE Trans. Vis. Comput.
Graph 18, 6 (2012), 914-924. http://doi.ieeecomputersociety.org/10.1109/TVCG.
2012.34

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014.
Designing N-PolyVector Fields with Complex Polynomials. Comput. Graph. Forum
33,5 (2014), 1-11.

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015.
Integrable PolyVector fields. ACM Trans. Graph 34, 4 (2015), 38:1-38:12.

Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, and Jin Huang. 2018. Quad-
rangulation through Morse-Parameterization Hybridization. ACM Trans. Graph. 37,
4, Article 92 (July 2018), 15 pages. https://doi.org/10.1145/3197517.3201354

LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http://www.
gurobi.com

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1993. Mesh Optimization. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques (Anaheim, CA) (SIGGRAPH *93). Association for
Computing Machinery, New York, NY, USA, 19-26. https://doi.org/10.1145/166117.
166119

Jingwei Huang, Yichao Zhou, Matthias Niessner, Jonathan Richard Shewchuk, and
Leonidas J. Guibas. 2018. QuadriFlow: A Scalable and Robust Method for Quadran-
gulation. Computer Graphics Forum 37, 5 (2018), 147-160. https://doi.org/10.1111/
cgf.13498 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13498

Alec Jacobson, Daniele Panozzo, et al. 2013. libigl: A simple C++ geometry processing
library. http://igl.ethz.ch/projects/libigl/.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189:1-189:15.

Felix Kélberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface
Parameterization using Branched Coverings. Comput. Graph. Forum 26, 3 (2007),
375-384.

Marco Livesu, Nico Pietroni, Enrico Puppo, Alla Sheffer, and Paolo Cignoni. 2020.
LoopyCuts: practical feature-preserving block decomposition for strongly hex-
dominant meshing. ACM Trans. Graph 39, 4 (2020), 121.

Albert Matveev, Alexey Artemov, Ruslan Rakhimov, Gleb Bobrovskikh, Daniele Panozzo,
Denis Zorin, and Evgeny Burnaev. 2020. DEF: Deep Estimation of Sharp Geometric
Features in 3D Shapes. arXiv:2011.15081 [cs.CV]

Alessandro Muntoni and Stefano Nuvoli. 2021. CG3Lib: A C++ geometry processing
library. https://doi.org/10.5281/zenodo.4431777

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global
parametrization. ACM Trans. Graph. 33, 4 (2014), 135:1-135:14.

Ashish Myles and Denis Zorin. 2013. Controlled-distortion constrained global
parametrization. ACM Trans. Graph. 32, 4, Article 105 (July 2013), 14 pages.
https://doi.org/10.1145/2461912.2461970

Reliable Feature-Line Driven Quad-Remeshing « 155:17

Stefano Nuvoli, Alex Hernandez, Claudio Esperanga, Riccardo Scateni, Paolo Cignoni,
and Nico Pietroni. 2019. QuadMixer: layout preserving blending of quadrilateral
meshes. ACM Trans. Graph 38, 6 (2019), 180:1-180:13.

Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin. 2012. Fields on
symmetric surfaces. ACM Trans. Graph 31, 4 (2012), 111:1-111:12.

Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, and Paolo Cignoni. 2011.
Automatic Construction of Quad-Based Subdivision Surfaces using Fitmaps. IEEE
Transaction on Visualization and Computer Graphics 17, 10 (october 2011), 1510-1520.
https://doi.org/10.1109/TVCG.2011.28

Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Scopigno, and Paolo Cignoni.
2016. Tracing Field-Coherent Quad Layouts. Comput. Graph. Forum 35, 7 (2016),
485-496.

Nico Pietroni, Davide Tonelli, Enrico Puppo, Maurizio Froli, Roberto Scopigno, and
Paolo Cignoni. 2015. Statics Aware Grid Shells. Comput. Graph. Forum 34, 2 (2015),
627-641.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460-1485. https:
//doi.org/10.1145/1183287.1183297

Faniry H. Razafindrazaka and Konrad Polthier. 2017. Optimal base complexes for
quadrilateral meshes. Computer Aided Geometric Design 52-53 (2017), 63 — 74.
https://doi.org/10.1016/j.cagd.2017.02.012 Geometric Modeling and Processing 2017.

Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. 2015. Perfect Matching
Quad Layouts for Manifold Meshes. Comput. Graph. Forum 34, 5 (2015), 219-228.

Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini. 2018. Generalized
Motorcycle Graphs for Imperfect Quad-Dominant Meshes. ACM Trans. Graph. 37, 4,
Article 155 (July 2018), 16 pages. https://doi.org/10.1145/3197517.3201389

CJ Stimpson, CD Ernst, P Knupp, PP Pébay, and D Thompson. 2007. The Verdict library
reference manual.

Kenshi Takayama, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Pattern-Based
Quadrangulation for N-Sided Patches. Comput. Graph. Forum 33, 5 (2014), 177-184.

Marco Tarini. 2021. Closed-form Quadrangulation of N-Sided Patches.
arXiv:2101.11569 [cs.GR]

Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and Enrico Puppo. 2010.
Practical quad mesh simplification. Comput. Graph. Forum 29, 2 (2010), 407-418.

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011.
Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph.
30, 6 (2011), 142:1-142:12.

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2016.
Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton. ACM
Trans. Graph. 35, 1, Article 6 (Dec. 2016), 13 pages. https://doi.org/10.1145/2809785

Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt,
Mirela Ben-Chen Technion, and Daniele Panozzo. 2017. Directional Field Synthesis,
Design, and Processing. In ACM SIGGRAPH 2017 Courses (Los Angeles, California)
(SIGGRAPH ’17). Association for Computing Machinery, New York, NY, USA, Article
12, 30 pages. https://doi.org/10.1145/3084873.3084921

Paul Zhang, Josh Vekhter, Edward Chien, David Bommes, Etienne Vouga, and Justin
Solomon. 2020. Octahedral Frames for Feature-Aligned Cross Fields. ACM Trans.
Graph. 39, 3 (2020), 25:1-25:13. https://doi.org/10.1145/3374209

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv:1605.04797 [cs.GR]

ACM Trans. Graph., Vol. 40, No. 4, Article 155. Publication date: August 2021.

http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.34
http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.34
https://doi.org/10.1145/3197517.3201354
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1145/166117.166119
https://doi.org/10.1145/166117.166119
https://doi.org/10.1111/cgf.13498
https://doi.org/10.1111/cgf.13498
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13498
https://arxiv.org/abs/2011.15081
https://doi.org/10.5281/zenodo.4431777
https://doi.org/10.1145/2461912.2461970
https://doi.org/10.1109/TVCG.2011.28
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1016/j.cagd.2017.02.012
https://doi.org/10.1145/3197517.3201389
https://arxiv.org/abs/2101.11569
https://doi.org/10.1145/2809785
https://doi.org/10.1145/3084873.3084921
https://doi.org/10.1145/3374209
https://arxiv.org/abs/1605.04797

	Abstract
	1 Introduction
	2 Related work
	2.1 Coarse-Layout based Methods
	2.2 Field-aligned methods
	2.3 Feature-edges preservation

	3 Overview
	3.1 Objectives
	3.2 Steps breakdown

	4 Input preparation
	4.1 Feature-edge identification
	4.2 Preliminary input-mesh optimization
	4.3 Cross-field definition

	5 Patch Layout decomposition
	5.1 Conditions for patches
	5.2 Layout Construction Procedure
	5.3 Tracing a Candidate Path
	5.4 Rounds of insertion of paths

	6 Final quadrangulation
	6.1 Patch-side tessellation
	6.2 Per-patch tessellation

	7 Results
	8 Discussion
	8.1 Limitations

	Acknowledgments
	References

